
Chapter 1

Introduction

1.1 Singularly perturbed problems

Among boundary value problems, a significantly studied class includes the problems

for singularly perturbed differential equations. The main reason is that in diverse

areas of engineering and applied mathematics the modelling of several physical phe-

nomena is done through singularly perturbed differential equations. For example,

in computational fluid dynamics, hydrodynamics, chemical reactor theory, financial

modelling, gas porous electrodes theory, mathematical biology, heat and mass trans-

fer processes in composite materials with small diffusion coefficients. Mathematical

models involving singularly perturbed differential equations appear, for example, in

modelling of semiconductor devices, viscous fluid flow problems with large Reynolds

numbers, and convective heat transfer problems with large Péclet numbers.

The first time singularly perturbed problems came in light in 1904 when Prandtl

presented his article [1] on boundary layer phenomena in the Third International

Congress of Mathematicians. This ingenious research explained the substantial effect

of small viscosity in a fluid flow about the body. Due to the effect of viscosity in

a very thin region near the body surface fluid velocity decreases rapidly from its

steady value far from the body. This results in two non-uniform velocity profiles.

This shows that multiscale behavior may arise, even in simple flow problems, and it

is also important to see how erroneous it may be if we neglect the same. However,

the term “Singular perturbation” first came in literature in 1946 in the paper [2] by

Freidrichs and Wasow.
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Singular perturbation theory completely changed the foundation of modern fluid

dynamics. In many fields of science and engineering the physical phenomena are

modelled by singularly perturbed problems, yet it is strange to see that in the earlier

stage not much interest was shown in solving them. A substantial work on singularly

perturbed problems was first recorded in the form of the Ph.D. thesis of Wasow

[3] in 1941. The theory of singular perturbation gained its greatest significance

through Freidrichs and Wasow’s groundbreaking works [2, 4]. After that numerous

mathematicians started working on this branch of mathematics. In the last few

decades this branch of mathematics has flourished to a good level. Although many

useful techniques have been developed, important developments are continuing and

the advantageous research is on.

A formal definition of singularly perturbed problems can be found in [5].

Definition 1.1.1. [5] Let (Pε) be a problem with solution uε ∈ S for all ε ∈ G, where

S a is function space with norm ‖.‖S and G ⊂ Rn is a parameter domain. The

continuous function u : G→ S, ε 7→ uε is said to be regular for ε→ ε? ∈ ∂G if there

exists a function u? ∈ S such that:

lim
ε→ε?
‖uε − u?‖S = 0,

otherwise we say uε is singular and (Pε) is singularly perturbed.

It is important to note that the above definition of singularly perturbed problems is

norm dependent. A good discussion in this direction can be found in [5, 6]. Further,

it is found that the maximum norm is the most suitable norm for studying singularly

perturbed problems.
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Singularly perturbed differential equations are typically characterized by a small

perturbation parameter multiplied with the highest order derivative term. Un-

like regularly perturbed problems, their solutions (or their derivatives) approach

a discontinuous limit as perturbation parameter ε approaches zero. In general, the

solutions of singularly perturbed problems exhibit multiscale phenomena, that is,

solutions vary rapidly within some parts of the domain and behave smoothly away

from them. The regions of the domain where this rapid change occurs are called

as layer regions and where solutions behave smoothly are called as regular regions.

If the layer regions appear near the boundaries of the domain, they are called as

boundary layers regions, otherwise they are called as interior layer regions.

1.2 Numerical solutions of singularly perturbed

differential equations

Analytical solutions of most of singular perturbed differential equations arising in

physical systems is not known or very difficult to find. In this situation the mainly

two approaches to find their solutions are numerical methods and asymptotic ex-

pansions. The asymptotic analysis tries to gain insight into the qualitative behavior

of a family of problems. A decent literature on asymptotic analysis of singularly

perturbed problems is available in the books [7–12] . Note that for most of the

singularly perturbed nonlinear and partial differential equations, it is not possible

to construct asymptotic expansions. So, one has to go numerical methods for such

problems. Some good reference books on numerical methods for singuarly perturbed

problems are [5, 6, 13, 14].
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The solutions of singularly perturbed problems vary rapidly within the layer regions,

which makes it unfeasible to obtain a satisfactory numerical solution with the help

of traditional numerical methods, because they require a very large number of mesh

points to resolve the layers. More specifically, we need the number of mesh points

to be inversely proportional to some powers of the perturbation parameter, which is

not practical for small perturbation parameter. Therefore, it is important to develop

numerical methods that behave well for all values of the perturbation parameter,

no matter how small. Such methods are called as parameter-uniform/ parameter-

robust/uniformly convergent/robust convergent methods.

Definition 1.2.1. [5] Let (Pε) be a problem with solution uε and let UN
ε be its

approximation obtained by some numerical method. The method is said to be

uniformly convergent or robust with respect to the perturbation parameter ε in a

given norm ‖.‖? if there exists N0 independent of ε such that

‖uε − UN
ε ‖? ≤ Cϑ(N) for N ≥ N0,

with a function ϑ that is independent of ε and lim
N→∞

ϑ(N) = 0; and a constant C > 0

that is independent of ε and N.

Mainly, there are two common strategies for constructing parameter-robust numeri-

cal methods: fitted operator and fitted mesh approaches. In fitted operator approach

the problem is discretized on a uniform mesh by a specially designed discrete op-

erator that captures the layer behavior of the solution. This approach was first

suggested by Allen and Southwell [15] in 1955 for a fluid flow problem of a viscous

fluid past a cylinder. It is possible to construct an appropriate fitted operator on a

uniform mesh for singularly perturbed problems with regular boundary layers, but

in [16] and [17] it is established that there exists no fitted operator on a uniform

mesh for singularly perturbed problems with parabolic boundary layers. Also, for
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problems in higher dimensions and involving nonlinearity, construction of a fitted

operator is a very difficult task. More insights about fitted operator methods can

be found in [14, 15, 18–22].

Fitted mesh approach involves the construction of a fitted mesh that is adapted to the

multiscale behavior of the solution of a singularly perturbed problem. On these non-

uniform meshes that are condensed towards the boundary layers, only standard finite

difference/element operators are enough to produce good numerical approximations

and obtain parameter-robust numerical methods. The advantegeous thing about the

fitted mesh methods over fitted operator methods is that the nonlinear problems and

higher dimensional problems involving complicated domain structures can also be

easily dealt with fitted mesh methods. For the first time in 1969 Bakhvalov [23]

proposed a fitted mesh which is generated by a suitable mesh generating function

which appropriately redistributes an equidistant mesh, so that the maximum number

of mesh points lie inside the boundary layer region(s). Some utilizations of this

mesh can be found in [24–30]. However, Bakhvalov mesh is applied to a large range

of problems, its complicated construction always create difficulties to extend it to

higher dimensional problems. Thereafter, two more graded meshes are introduced

by Vulanović [31] and Gartland [32]. The construction of these meshes is also very

complex and have the similar difficulty level in extending them to higher dimensions.

Another frequently-studied and relatively simpler mesh is Shishkin mesh [33], which

is actually a piecewise-uniform mesh constructed with the help of a transition point.

Based on the a priori information about the solution transition point is chosen in

such a way that half of the mesh points lie inside the boundary layer(s) and rest half

lie outside. Shishkin mesh is the most favourable fitted mesh because of its simplicity

and applicability to more complicated problems. However, it is observed that rate

of convergence for approximate solutions on a piecewise-uniform Shishkin mesh is
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not optimal with respect to the discretization of the problem. Some applications of

Shishkin meshes are found in [6, 18, 18, 30, 34–45].

If sufficient information about the location and width of the layers is available, ap-

propriate layer-adapted meshes discussed above can be constructed. A more popular

approach for constructing highly non-uniform layer-adaptive meshes is based on the

equidistribution principle [46]. This approach involves the equidistribution of a pos-

itive monitor function and aims to cluster automatically the maximum number of

mesh points in the layer regions. The monitor function automatically detects the

the presence, location, and width of the layers and mesh points are accordingly dis-

tributed. It is important to note that it produces optimal convergent results. We

shall discuss this approach in detail in the next section.

1.3 Mesh equidistribution

The idea of mesh equidistribution is first introduced by de Boor [47]. Starting with a

uniform mesh, this approach aims to condense the maximum number of mesh points

inside the layer region(s) by equidistributing a positive function of the solution over

each sub-interval of the domain. This positive function is approximated from the

solution of the original problem and is known as the monitor function since it defines

a measurement of the numerical error. We can define the equidistributed mesh as

follows:

Definition 1.3.1. The mesh {xi}Ni=0 is said to be defined through equidistribution of

the monitor function M(y(x), x) if

� xi

xi−1

M(y(z), z) dz =

� xi+1

xi

M(y(z), z) dz, 1 ≤ i ≤ N − 1, (1.1)
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or equivalently,

� xi

xi−1

M(y(z), z) dz =
1

N

� 1

0

M(y(z), z) dz, 1 ≤ i ≤ N. (1.2)

Equidistributing condition can also be represented by an invertible mapping from the

computational uniform coordinates ξ ∈ [0, 1] to the physical non-uniform coordinates

x ∈ [0, 1] as � x(ξ)

0

M(y(z), z) dz = ξ

� 1

0

M(y(z), z) dz. (1.3)

The construction of equidistributed mesh is based on the optimal choice of the

monitor function. Some factors affecting the optimality of the monitor function are:

the type of the problem being solved, the numerical discretization being used, and

the norm of the error to be controlled. In [48], three types of monitor functions

are mentioned, which are of arc length type, combination of the curvature and

gradient type, and based on the truncation error or the solution residual. Arc

length type monitor functions have been considered by many authors, for instance

[49–52]. Also, a posteriori error estimation corresponding to the arc length monitor

function is done by Kopteva in [53]. However, in [54] it is pointed out that the

arc length based monitor function is unsuitable for reaction-diffusion type problems.

Beckett and Meckenzie in [55, 56] proposed a curvature based monitor function

which works fine for a wider class of singularly perturbed problems (see [57–62]).

The monitor function based on truncation error or solution residual is considered in

[63]. Some more insights about the mesh equidistribution technique can be found in

[36, 46, 49, 50, 64]. Adaptive numerical methods based on equidistributed meshes

have been successfully applied to a variety of singularly perturbed problems (see

[51, 54, 56, 58, 65–68]).

The success of these methods is due to the exponentially stretched mesh we obtain,
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which results in an improved rate of convergence as compared to the piecewise-

uniform fitted meshes. The use of a strictly positive monitor function theoretically

guarantees the existence and uniqueness of the equidistributed mesh. However,

rarely we can find it exactly, as the integrals in (1.1) are normally approximated. A

few algorithms are proposed in this regard including de Boor [47], and some of its

modifications by Pryce [69] and Linß [70]. It is observed that de Boor’s algorithm

numerically produces better results than the other modified versions. The conver-

gence of de Boor algorithm for singularly perturbed convection-diffusion problems is

dicussed by Kopteva and Stynes in [71] and for singularly perturbed reaction diffu-

sion problems by Chadha and Kopteva in [72]. In this thesis, for the construction of

adaptive meshes using equidistribution of the proposed monitor functions de Boor’s

algorithm is used.

1.4 Literature review

Since the past few decades the area of singularly perturbed problems have been a

centre of attraction for many researchers because of their regular occurence in the

modelling of various physical phenomena in science and engineering. Many reference

books like [5, 6, 18, 73] are available. Also, see the survey articles [74, 75]. We now

present a brief literature review for some classes of singularly perturbed problems

that are considered in this thesis.
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1.4.1 Singularly perturbed degenerated convection-diffusion

problems

In the recent few years singularly perturbed degenerate problems attracted the atten-

tion of various researchers due to their importance in the modeling of many physical

phenomena (see [76, 77]). For the numerical solution of singularly perturbed degen-

erated convection-diffusion problems, in [78] a classical implicit upwind difference

scheme on a piecewise-uniform Shishkin mesh in space and a uniform mesh in time

is considered. In [79], the Richardson extrapolation technique is considered. In [80],

a hybrid scheme on a piecewise-uniform Shishkin mesh in space and the backward

Euler scheme on a uniform mesh in time is considered. In [81], a parameter-robust

numerical method is given for a singularly perturbed degenerate convection–diffusion

problem with discontinuous source term. In [82], the backward Euler method on a

uniform mesh in time and a hybrid scheme on a generalized Shishkin mesh in space

is considered. Note that the numerical methods developed in all the above papers

are based on Shishkin meshes. Therefore, it is important to develop a robust numer-

ical method based on equidistributed meshes for singularly perturbed degenerated

convection-diffusion problems.

1.4.2 Singularly perturbed parabolic reaction-diffusion prob-

lems

Going through the literature, we see that the numerical solution of this class of

problems has drawn a lot of attention of researchers since a long time. In [34], a

standard finite difference approximation (central difference in space and backward

difference in time) on a fitted piecewise-uniform Shishkin mesh is considered and the
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method is proved to be almost second order in space and first order in time. A dis-

crete Green’s function based approach, that avoids both the solution decomposition

and use of special barrier functions, is used in [83]. On a general characterization

of fitted meshes the time-independent problem is analysed for convergence in the

same framework for both Shishkin and Bakhvalov meshes. In [84], the problem is

discretized by a scheme which is a combination of the classical central difference and

a cubic spline scheme for the spatial derivative and the backward difference scheme

for the time derivative. Then, stability and error estimate on Shishkin mesh are

obtained. In [85], a numerical method with convergence of almost fourth order in

space and second order in time is constructed using the compact finite difference

scheme on a generalized Shishkin mesh in space and Crank–Nicolson scheme on a

uniform mesh in time. Some more papers constructing high order parameter-robust

convergence are published by Clavero and Gracia (see [86], [87] and [88]). Then,

in [59], these problems are considered with a layer-adaptive equidistributed mesh

at each time level. The non-uniform spatial meshes in this paper are obtained by

equidistribution of a positive monitor function. The second and first order conver-

gence in space and time is shown. This may be noted that all the above references

are with Dirichlet type boundary conditions. A very less amount of work has been

done so far for parabolic reaction-diffusion problems with Robin boundary condi-

tions (RBCs). Some papers considering only stationary reaction-diffusion problems

with RBCs are [89, 90]; both the papers considered Shishkin mesh to resolve the

layers. Therefore, construction of efficient higher order numerical methods based on

layer-adaptive equidistributed meshes for singularly perturbed parabolic problems

with Dirichlet and Robin boundary conditions are required.
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1.4.3 Singularly perturbed time delayed parabolic reaction-

diffusion problems

Singularly perturbed delay differential equations often arise in the modelling of var-

ious physical, biological and chemical systems, such as in population dynamics,

variational problems in control theory, epidemiology, circadian rhythms, respiratory

system, chemostat models, tumor growth and neural networks. The delay term in

these models enable us to include some past behaviour to get more practical models

for the phenomena. A wide range of examples of delay models can be found in [91].

In [92], a numerical method comprising a standard finite difference operator (central

differencing in space and the backward difference in time) on a rectangular piecewise-

uniform fitted mesh is developed and is proved to be almost second order convergent

in space and first order convergent in time. A high order (almost fourth order in

space and second order in time) parameter-robust method for these problems is pre-

sented in [93]. In this paper, a hybrid scheme on a generalized Shishkin mesh is

considered in spatial direction and the implicit Euler scheme on a uniform mesh is

considered in time direction. Then, the order of convergence in time direction is in-

creased by Richardson extrapolation scheme. Some more references in this sequence

are [94–96]. Then, in [97] a numerical method for the delay problem consisting of

the implicit Euler scheme for the time derivative and the classical central difference

scheme for the spatial derivative together with the domain discretized by a uniform

mesh in the time and a non-uniform equidistributed mesh in space. Note that in all

the above papers the time delay problems with Dirichlet boundary conditions are

considered. However, the study of time delay problems with Robin boundary condi-

tions is still at an infant stage. Recently, in [98] the authors considered a singularly

perturbed parabolic reaction-diffusion problems with time delay and constructed a

finite difference method that is almost second order convergent in space and first
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order convergent in time. But, best to our knowledge, no work has been done to

develop a parameter-robust numerical method based on automatically generated

adaptive meshes for the partial differential equations of singularly reaction-diffusion

type with Robin boundary conditions. This motivated us to construct an efficient

higher order numerical method based on layer-adaptive equidistributed meshes for

the same.

1.4.4 Nonlinear singularly perturbed Volterra integro-

differential equation

These problems are an important class of problems, because of their regular ap-

pearance in many applications in various physical and biological systems, such as

diffusion-dissipation processes, filament stretching problems, epidemic dynamics,

and synchronous control systems [99–102]. Numerical methods for a linear singularly

perturbed Volterra integro-differential equation (VIDE) are developed in [103–107].

More specifically, an exponential type difference scheme is developed in [104]. In

[106] the problem is solved using a fitted operator technique on a piecewise-uniform

Shishkin mesh. In [105] a tension spline collocation method is presented. In [103]

a backward difference formula is used for the derivative and a repeated quadra-

ture rule is used for the integral term. Further, a Bakhvalov type mesh is used

to resolve the layer. In [107] the integrand is considered to be (x − s)−αy(s) with

0 < α < 1. Assuming the source term g(x) such that |g′(x)| ≤ (1 + x−α), a poste-

riori error estimate for a linear VIDE is derived. More precisely, it is proved that

||Ỹ −y||∞ ≤ C max
1≤i≤N

(h1−α
i +hi|D−Yi|), where Ỹ is the piecewise linear interpolant of

the computed solution Y and D− is the backward difference operator. But surpris-

ingly this a posteriori error estimate is not used for the adaptive mesh generation,
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instead an arc-length based monitor function is used. Numerical methods for a non-

linear singularly perturbed VIDE are developed in [108, 109]. In [108] the nonlinear

problem with a special Kernel is solved by asymptotic expansions and an implicit

Runge-Kutta method. In [109] a first order parameter-robust finite difference scheme

is constructed on a Bakhvalov type mesh. To the best of our knowledge, no published

paper developed a numerical method based on equidistributed meshes for nonlinear

singularly perturbed VIDEs. This gap in the literature is the motivation of our work

for this problem.

1.5 Outline of the thesis

This thesis is concerned with the construction and analysis of robust adaptive nu-

merical methods for singularly perturbed problems in integro and partial differential

equations. After our literature survey on adaptive mesh generation (by equidis-

tributing a monitor function over the domain) for singularly perturbed problems,

we found that there are many interesting and challenging problems still open. The

main hindrance that is faced by the researchers are: a proper choice of the moni-

tor function and convergence analysis of the designed methods. We can see from

literature survey that there are some advances in this direction, but the subject is

very far from being developed. The work embodied in the thesis is divided into six

chapters.

Chapter 1 consists of an introduction to singularly perturbed problems, parameter-

robust numerical methods, and adaptive mesh generation based on the equidistri-

bution principle. It also provides a brief literature review, thesis objectives, and

outline of the thesis.
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In Chapter 2, we propose an adaptive numerical method for a class of singularly

perturbed degenerate parabolic convection-diffusion problems posed on a rectangular

domain. The problem is discretized using the implicit Euler scheme on a uniform

mesh in time and upwind finite difference scheme on a layer-adaptive non-uniform

spatial mesh generated through the equidistribution of a suitably chosen monitor

function. The error analysis of the proposed method is given based on the truncation

error and barrier function approach. It is proved that the proposed method is robust

convergent of order one in both space and time. Numerical results are provided in

support of theoretical findings.

In Chapter 3, we develop a parameter-robust numerical method on equidistributed

meshes for solving a class of singularly perturbed parabolic reaction-diffusion prob-

lems with Robin boundary conditions. The discretization consists of a modified

Euler scheme in time, a central difference scheme in space, and a special finite

difference scheme for the Robin boundary conditions. On the adaptively gener-

ated equidistributed mesh we discuss error analysis and prove that the method is

parameter-robust convergent of order two in space and order one in time. To support

the theoretical result, numerical results on some test examples are provided.

In Chapter 4, a robust finite difference method is presented on the adaptive mesh

for a singularly perturbed parabolic reaction-diffusion problem with time delay and

Robin type boundary conditions. The adaptive mesh generation through the equidis-

tribution of a positive monitor function and the finite difference discretization is

analogous to that in Chapter 3. For the proposed method, parameter-robust con-

vergence of second order in space and first order in time is shown through rigorous

error analysis. Some numerical experiments are conducted in support of the theory.

In Chapter 5, we propose a high order parameter-robust numerical method for

singularly perturbed time dependent reaction-diffusion boundary value problems.
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The numerical scheme comprises of the implicit Euler scheme to discretize in time

and a high order non-monotone finite difference scheme to discretize in space. The

analysis of the method is done in two steps, splitting the contribution to the error

from the time and space discretizations. It is shown that the method is robust

convergent having order one in time and order four in space. Further, we use the

Richardson extrapolation technique to improve the order of convergence from one

to two in time. Numerical experiments are presented to confirm the theoretically

proven convergence result.

In Chapter 6, we consider a nonlinear singularly perturbed Volterra integro-

differential equation. The problem is discretized by an implicit finite difference

scheme on arbitrary non-uniform meshes. The scheme comprises of an implicit dif-

ference operator for the derivative term and an appropriate quadrature rule for the

integral term. The numerical scheme is proved to be uniformly stable on an arbi-

trary non-uniform mesh. We establish a posteriori error estimate for the scheme

that holds true uniformly in the small perturbation parameter. Numerical experi-

ments are performed and results are reported for validation of the theoretical error

estimate.

***********


