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PREFACE

This thesis is concerned with the construction and analysis of robust adaptive nu-

merical methods for singularly perturbed problems in integro and partial differen-

tial equations. The main feature of these problems is that their solutions possess

boundary layers, due to which classical numerical methods on uniform meshes fail

to provide good numerical numerical approximations to the solutions of these prob-

lems. So, special techniques are required to resolve the boundary layers and obtain

numerical approximation that converges to the exact solution independent of the

perturbation parameter.

Firstly, a class of singularly perturbed degenerate parabolic convection-diffusion

problems is considered on a rectangular domain. The finite difference discretiza-

tion consists of an upwind finite difference scheme on a layer-adaptive non-uniform

mesh in the spatial direction and an implicit Euler scheme on a uniform mesh in

the time direction. The adaptive mesh in spatial direction is generated via equidis-

tribution of a suitably chosen monitor function. The error analysis is performed for

the proposed method using truncation error and barrier function approach and the

method is proved to be robust convergent of first order in both time and space.

Next, a robust convergent adaptive numerical method is developed for solving a class

of singularly perturbed parabolic reaction-diffusion problems with Robin boundary

conditions. The discretization consists of a modified Euler scheme in time, a cen-

tral difference scheme in space, and a special finite difference scheme for the Robin

boundary conditions. The adaptive mesh in spatial direction is generated via equidis-

tribution of a suitably chosen monitor function. We discuss error analysis and prove

that the method is robust convergent of order two in space and order one in time.

Then, this adaptive numerical method is extended for a singularly perturbed time

xxiii



delayed parabolic reaction-diffusion problem with Robin boundary conditions. The

method is proved to be robust convergent of order two in space and order one in

time.

Thereafter, a high order numerical method is constructed for a class of singularly

perturbed time dependent reaction-diffusion boundary value problem on a layer-

adaptive equidistribution mesh. The numerical scheme comprises of the implicit

Euler scheme to discretize in time and a high order non-monotone finite difference

scheme to discretize in space. The analysis of the method is done in two steps,

splitting the contribution to the error from the time and space discretizations. It

is shown that the method is robust convergent having order one in time and order

four in space. Further, we use the Richardson extrapolation technique to improve

the order of convergence from one to two in time.

At the end, a class of nonlinear singularly perturbed Volterra integro-differential

equation is considered. The problem is discretized by an implicit finite difference

scheme on arbitrary non-uniform meshes. The scheme comprises of an implicit

difference operator for the derivative term and an appropriate quadrature rule for

the integral term. The numerical scheme is proved to be uniformly stable on an

arbitrary non-uniform mesh. We derive a posteriori error estimate for the scheme

that holds true uniformly in the small perturbation parameter.

Extensive numerical experiments are performed to validate the obtained theoretical

error estimates.
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