
Chapter 5

Strongly convergent Algorithms to

Solve Monotone Inclusion

Problems

In previous chapters of the thesis, we have proposed iterative methods which are

guaranteed to show weak convergence behavior under mild assumptions. Researchers

assume strong conditions like strong convexity or strong monotonicity on the oper-

ators to prove strong convergence of the algorithms. This chapter is dedicated to

propose and study strongly convergent algorithms to solve monotone inclusion prob-

lem without assuming strong convexity or strong monotonicity. Section 5.2 recalls

some important results in nonlinear analysis. In Section 5.3, we propose a generalized

Mann and normal-S iteration and study its convergence behavior. In Section 5.4,

This chapter is based on our submitted research work ”Dixit, A., Sahu, D. R., Gautam,
P., and Som, T. (2021) Strongly convergent Algorithms to Solve Monotone Inclusion Problems.
Optimization.”
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we propose a new forward-backward algorithm and a forward-backward type primal-

dual algorithm to solve the inclusion problem and complexly structured monotone

inclusion problem, respectively. In Section 5.5, we propose Douglas-Rachford type

algorithms to solve monotone inclusion problems and complexly structured mono-

tone inclusion problems of set-valued operators. In the last, we performed a numer-

ical experiment to show the importance of proposed algorithms to solve the image

deblurring problem.

5.1 Introduction

In Chapter 1, we have discussed the proximal point algorithm. Rockafellar [80] mod-

ified the proximal point agorithm and proposed an inexact proximal point algorithm

as follows:

xn+1 = JcnT (xn + vn), ∀n ∈ N, (5.1)

where vn is the error term in H. The sequence {xn} also converges weakly to the so-

lution set of inclusion problem provided
∑∞

n=1 vn <∞ and sequence {vn} is bounded

away from zero. Guler [44] showed by an example that sequence generated by proxi-

mal point algorithm (1.7) converges weakly, but not strongly, in general. It becomes

a matter of interest for the research community to modify the proximal point algo-

rithm to obtain strong convergence. In such consequences, Tikhonov method was

proposed which generates as follows,

xn+1 = JcnT (x), (5.2)

where x ∈ H and cn > 0 such that cn → ∞. Detailed study of Tikhonov regu-

larization method can be found in [26, 93, 92, 91, 96]. Lehdili and Moudafi [55]
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combined the idea of proximal algorithm and Tikhonov regularization to find an

algorithm converges strongly to the solution of inclusion problem 1.0.1. They solve

the inclusion problem 1.0.1 by solving the inclusion problem of fixed approximation

of T , which is Tn = T + µnId, i.e.,

find x ∈ H such that 0 ∈ Tn(x),

where µn is a regularization parameter. The proximal-Tikhonov algorithm is given

by

xn+1 = JTnλn (xn).

The Tikhonov regularization term µkId impelled the strong convergence to the al-

gorithm. In the absence of Tikhonov regularization term, proximal-Tikhonov algo-

rithm becomes the proximal algorithm which shows only weak convergence in most

of the cases. Strong convergence of the algorithm can be obtained by using some

other techniques also, some of them can be found in [8, 46].

The weak convergence of the algorithms reduces its applicability in infinite dimen-

sional spaces. To achieve the strong convergence of algorithms one assumes stronger

assumptions like strong monotonicity and strong convexity, which is difficult to

achieve in many applications. This situation lefts a question to the research commu-

nity: can we find the strongly convergent algorithms without assuming these strong

assumptions? The answer to this question is replied positively by Bot et al. in [17].

They modified the Mann algorithm as follows:

xn+1 = enxn + θn(S(enxn)− enxn), (5.3)

where en, θn are positive real numbers. The strong convergence of algorithm (5.3)

for nonexpansive operator, S is studied in Bot et al. in [17] when set of fixed points
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of S is nonempty and parameters θn and en satisfy the following:

(i) 0 < en < 1 for all n ∈ N, lim
n→∞

en = 1,
∑∞

n=1(1−en) =∞ and
∑∞

n=1 |en−en−1| <

∞;

(ii) 0 < θn ≤ 1 for all n ∈ N, 0 < lim infn→∞ θn,
∑∞

n=1 |θn − θn−1| <∞.

We consider the more general problem which is as follows:

Problem 5.1.1. Consider T, S : H → 2H are monotone operators. Find a point

x ∈ H such that 0 ∈ Tx ∩ Sx.

Remark 5.1. The algorithm (5.3) proposed by Bot et al. [17] can not apply to solve

inclusion problem 1.0.1.

In this paper, we introduce the normal-S iteration method based fixed point algo-

rithm to find common fixed point of nonexpansive operators T, S : H → H, which

converges strongly to minimal norm solutions of common fixed point problem of op-

erators S and T. Based on the proposed fixed point algorithm, we develop a forward-

backward algorithm and a Doughlas-Rachford algorithm containing Tikhonov regu-

larization term to solve the monotone inclusion problems. In many cases, monotone

inclusion problems are very complex, they contain mixtures of composite and paral-

lel sum monotone operators. Recently, many researchers have proposed primal-dual

algorithms to precisely solve the considered complex monotone inclusion system

[19, 18, 35, 21, 95]. We propose a forward-backward type primal-dual algorithm and

a Doughlas-Rachford type primal-dual algorithm having Tikhonov regularization

term to find the common solution of the complexly structured monotone inclusion

problems. The proposed algorithms have a special property that all the operators

are evaluated separately.
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5.2 Preliminary Results

This section devotes to some important results from nonlinear analysis and operator

theory. Let (X1, d1) and (X2, d2) be metric spaces, let T : X1 → X2, and C be a

subset of X1. Then T is Lipschitz continuous with constant β ∈ (0,∞) if

(∀x ∈ X1)(∀y ∈ X1) d2(Tx, Ty) ≤ βd1(x, y).

Definition 5.2.1. Let D be a nonempty subset of a Hilbert space H and let T : D →

H be a mapping. Then

(a) T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ D,

(b) firmly nonexpansive if

(∀x ∈ D)(∀y ∈ D) ‖Tx− Ty‖2 + ‖(Id− T )x− (Id− T )y‖2 ≤ ‖x− y‖2,

(c) quasinonexpansive if

(∀x ∈ D)(∀y ∈ Fix(T )) ‖Tx− y‖ ≤ ‖x− y‖.

Definition 5.2.2. Let D be a nonempty subset of H, let T : D → H and let

β ∈ (0,∞). Then T is β-cocoercive (or β-inverse strongly monotone) if βT is firmly

nonexpansive, i.e.

(∀x ∈ D)(∀y ∈ D)β‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉.
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Definition 5.2.3. Let D be a nonempty subset of H, let T : D → H be nonexpansive

and let α ∈ (0, 1). Then T is averaged with constant α or α-averaged, if there exists

a nonexpansive operator R : D → H such that T = (1− α)Id+ αR.

Let X be a real vector space. Let C be a subset of X. C is a cone if

C = R++C,

where R++ = {λ ∈ R|λ > 0}.

Definition 5.2.4. The intersection of all the linear subspaces of X containing C,

i.e., the smallest linear subspace of X containing C is denoted by span C, its closure

is the smallest closed linear subspace of X containing C and it is denoted by span C.

Let C be a nonempty subset of H. Then

interior of C is

int C = {x ∈ C : (∃ρ > 0)B(0; ρ) ⊂ C − x}

strong relative interior of C is

sri C = {x ∈ C : cone(C − x) = ¯span(C − x)}

strong quasi-relative interior of C is

sqri C = {x ∈ C :
⋃
ρ>0

ρ(C − x)is a closed linear subspace of space H}.

Lemma 5.2.1. [9, Proposition 25.1(ii)] If T1 and T2 are monotone operators then

the set of zeros of their sum zer(T1 + T2) = JγT2(Fix(RγT1RγT2)) ∀γ ≥ 0.
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Proposition 5.2.1. [9] Consider T1, T2 : H → H be α1, α2−averaged operators,

respectively. Then the averaged operator T1 ◦ T2 is α = α1+α2−2α1α2

1−α1α2
-avereaged.

Lemma 5.2.2. [9] Let T : H → H be a nonexpansive mapping. Let {un} be a

sequence in H and u ∈ H such that un ⇀ u and un − Tun → 0 as n → ∞. Then

u ∈ Fix(T ).

Lemma 5.2.3. [96] Let {an} be a sequence of nonnegative real numbers satisfying

the inequality

an+1 ≤ (1− θn)an + θnbn + εn ∀n ≥ 0,

where

(i) 0 ≤ θn ≤ 1 for all n ≥ 0 and
∑

n≥0 θn =∞;

(ii) lim supn→∞ bn ≤ 0;

(iii) εn ≥ 0 for all n ≥ 0 and
∑

n≥0 εn < ∞. Then the sequence {an} converges to

0.

5.3 Strongly convergent common fixed point al-

gorithm

This section devotes to investigate a computational theory for finding common fixed

points of nonexpansive operators. We introduce a common fixed point algorithm

such that sequence generated by the algorithm strongly converges to the set of

common fixed points of mappings.

115



Algorithm 5.3.1. Let S, T : H → H be nonexpansive mappings. Select {en},

{θn} ⊂ (0, 1) and compute the (n+ 1)th iteration as follows:

yn+1 = S[(1− θn)enyn + θnT (enyn)] for all n ∈ N. (5.4)

We now study the convergence behavior of Algorithm 5.3.1 for finding the common

fixed point of S and T .

Theorem 5.3.1. Let S, T : H → H be nonexpansive mappings such that Ω :=

Fix(T )∩Fix(S) 6= ∅. Let {yn} be a sequence in H defined by Algorithm 5.3.1, where

{θn} and {en} are real sequences satisfy the following conditions:

(i) 0 < en < 1 for all n ∈ N, lim
n→∞

en = 1,
∑∞

n=1(1 − en) = ∞ and
∑∞

n=1 |en −

en−1| <∞;

(ii) 0 < θ ≤ θn ≤ θ < 1 for all n ∈ N, and
∑∞

n=1 |θn − θn−1| <∞.

Then the sequence {yn} converges strongly to projΩ(0).

Proof. In order to prove the convergence of the sequence {yn}, we follow the following

steps:
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Step 1. Sequence {yn} is bounded.

Let y ∈ Ω. Since S and T are nonexpansive, we have following

‖yn+1 − y‖ = ‖S[(1− θn)enyn + θnT (enyn)]− y‖

≤ ‖(1− θn)enyn + θnT (enyn)− y‖

≤ (1− θn)‖enyn − y‖+ θn‖T (enyn)− y‖

≤ ‖enyn − y‖ (5.5)

= ‖en(yn − y)− (1− en)y‖

≤ en‖(yn − y)‖+ (1− en)‖y‖

≤ max{‖y0 − y‖, ‖y‖}.

Thus, {yn} is bounded.

Step 2. ‖yn+1 − yn‖ → 0 as n→∞.

Using nonexpensitivity of S and T , we have

‖yn+1 − yn‖ = ‖S[(1− θn)enyn + θnT (enyn)]− S[(1− θn−1)en−1yn−1 + θn−1T (en−1yn−1)]‖

≤ ‖(1− θn)enyn + θnT (enyn)− (1− θn−1)en−1yn−1 − θn−1T (en−1yn−1)‖

= ‖(1− θn)enyn − (1− θn−1)en−1yn−1 + θnT (enyn)− θn−1T (en−1yn−1)‖

≤ ‖(1− θn)(enyn − en−1yn−1) + (θn−1 − θn)en−1yn−1)‖

+ ‖θn(T (enyn)− T (en−1yn−1)) + (θn − θn−1)T (en−1yn−1)‖

≤ ‖enyn − en−1yn−1‖+ |θn − θn−1|C1

= ‖en(yn − yn−1) + (en − en−1)yn−1‖+ |θn − θn−1|C1

≤ en‖yn − yn−1‖+ |en − en−1|C2 + |θn − θn−1|C1,
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for some C1, C2 > 0. By applying Lemma 5.2.3 with an = ‖yn − yn−1‖, bn = 0,

εn = |en − en−1|C2 + |θn − θn−1|C1 and θn = 1 − en,∀n ∈ N, we obtain that

‖yn+1 − yn‖ → 0.

Step 3. ‖yn − Tyn‖ and ‖yn − Syn‖ → 0 as n→∞.

Let y ∈ Ω Note

‖yn+1 − y‖2 = ‖S[(1− θn)enyn + θnT (enyn)]− y‖2

≤ ‖(1− θn)enyn + θnT (enyn)− y‖2

= (1− θn)‖enyn − y‖2 + θn‖T (enyn)− y‖2 − θn(1− θn)‖enyn − T (enyn)‖2

≤ (1− θn)‖enyn − y‖2 + θn‖enyn − y‖2 − θn(1− θn)‖enyn − T (enyn)‖2

= ‖enyn − y‖2 − θn(1− θn)‖enyn − T (enyn)‖2, (5.6)

which implies that

θn(1− θn)‖enyn − T (enyn)‖2 ≤ ‖enyn − y‖2 − ‖yn+1 − y‖2.

≤ (‖enyn − y‖+ ‖yn+1 − y‖)‖enyn − yn+1‖

≤ (‖enyn − y‖+ ‖yn+1 − y‖)‖enyn − enyn+1 + enyn+1 − yn+1‖

≤ (‖enyn − y‖+ ‖yn+1 − y‖)(en‖yn − yn+1‖+ (en − 1)‖yn+1‖).

Since lim
n→∞

en = 1, by the condition (i), 0 < θ ≤ θn ≤ θ < 1 for all n ∈ N by the

condition (ii) and ‖yn+1 − y‖ → 0 by Step 2, we have ‖enyn − T (enyn)‖ → 0
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as n→∞. Now,

‖yn − Tyn‖ = ‖yn − enyn + enyn − T (enyn) + T (enyn)− Tyn‖

≤ ‖yn − enyn‖+ ‖enyn − T (enyn)‖+ ‖T (enyn)− Tyn‖

≤ 2(1− en)‖yn‖+ ‖enyn − T (enyn)‖ → 0 as n→∞.

and

‖yn − Syn‖ ≤ ‖yn − yn+1‖+ ‖yn+1 − Syn‖

= ‖yn − yn+1‖+ ‖S[(1− θn)enyn + θnT (enyn)]− Syn‖

≤ ‖yn − yn+1‖+ ‖(1− θn)enyn + θnT (enyn)− yn‖

≤ ‖yn − yn+1‖+ (1− θn)‖enyn − yn‖+ θn‖T (enyn)− yn‖

≤ ‖yn − yn+1‖+ (1− θn)(1− en)‖yn‖+ θn‖T (enyn)− Tyn + Tyn − yn‖

≤ ‖yn − yn+1‖+ (1− θn)(1− en)‖yn‖+ θn‖enyn − yn‖+ θn‖Tyn − yn‖

= ‖yn − yn+1‖+ (1− en)‖yn‖+ θn‖Tyn − yn‖ → 0 as n→∞.

Step 4. {yn} converges strongly to ȳ = projΩ(0).

From (5.5), we set

‖yn+1 − ȳ‖2 ≤ ‖enyn − ȳ‖2

≤ ‖en(yn − ȳ)− (1− en)ȳ‖2

≤ e2
n‖yn − ȳ‖2 + 2en(1− en)〈−ȳ, yn − ȳ〉+ (1− en)2‖ȳ‖2

≤ en‖yn − ȳ‖2 + 2e(1− en)〈−ȳ, yn − ȳ〉+ (1− en)2‖ȳ‖2.

(5.7)
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Next we show that

lim sup
n→∞

〈−ȳ, yn − ȳ〉 ≤ 0. (5.8)

Contrarily assume a real number l and a subsequence {ynj} of {yn} satisfying

〈−ȳ, ynj − ȳ〉 ≥ l > 0 ∀j ∈ N. (5.9)

Since {yn} is bounded, there exists a subsequence {ynj} which converges weakly

to an element y ∈ H. Lemma 5.2.2 alongwith Step 4 implies that y ∈ Ω. By

using variational characterization of projection, we can easily derive

lim
j→∞
〈−ȳ, ynj − ȳ〉 = 〈−ȳ, y − ȳ〉 ≤ 0, (5.10)

which is a contradiction. Thus, (5.8) holds and

lim sup
n→∞

(
2en〈−ȳ, yn − ȳ〉+ (1− en)‖ȳ‖2

)
≤ 0. (5.11)

Consider an = ‖yn − ȳ‖, bn = 2en〈−ȳ, yn − ȳ〉 + (1 − en)‖ȳ‖2, εn = 0 and

θn = 1− en in (5.7) and apply Lemma 5.2.3, we get the desired conclusion.

Corollary 5.3.1. Let R1, R2 : H → H be α1, α2-averaged operators respectively,

such that Fix (R1) ∩ Fix(R2) 6= ∅. For y1 ∈ H, let {yn} be sequence in H defined by

yn+1 = R2{enyn + θn(R1(enyn)− enyn)} ∀n ∈ N, (5.12)
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where {θn} and {en} are real sequences satisfy the condition (i) given in Theorem

5.3.1 and the condition:

0 < Θ ≤ α1θn ≤ Θ < 1 for all n ∈ N and

∞∑
n=1

|θn − θn−1| <∞.

Then the sequence {yn} converges strongly to projFix (R1)∩Fix(R2)(0).

5.4 Forward-Backward type Algorithms

In this section, we propose a forward-backward algorithm based on Algorithm 5.3.1

to simultaneously solve the monotone inclusion problems of the sum of two maxi-

mally monotone operators in which one is single-valued. Further, we also propose

an Algorithm 5.3.1 based forward-backward-type primal-dual algorithm to solve a

complexly structured monotone inclusion problem containing composition with lin-

ear operators and parallel-sum operators.

5.4.1 Forward-Backward Algorithm

Let A1, A2 : H → 2H be maximally monotone operators and B1, B2 : H → H be

α1, α2-cocoerceive operators. We consider the monotone inclusion problem

Find x ∈ H such that 0 ∈ (A1 +B1)x ∩ (A2 +B2)x. (5.13)

We propose a forward-backward algorithm to solve the monotone inclusion problem

(5.13) such that generated sequence converges strongly to the solution set of the

problem (5.13).
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Theorem 5.4.1. Suppose zer(A1+B1)∩zer(A2+B2) 6= ∅ and γ1 ∈ (0, 2α1) and γ2 ∈

(0, 2α2). For y1 ∈ H, consider the forward-backward algorithm defined as follows:

yn+1 = Jγ2A2(Id− γ2B2) {(1− θn)enyn + θnJγ1A1(enyn − γ1B1(enyn))} ∀n ∈ N.

(5.14)

where {θn} and {en} are real sequences satisfy the condition (i) given in Theorem

5.3.1 and the condition: 0 < Θ ≤ 2α1

4α1−γ1 θn ≤ Θ < 1 for all n ∈ N and
∑∞

n=1 |θn −

θn−1| <∞. Then {yn} converges strongly to projzer(A1+B1)∩zer(A2+B2)(0).

Proof. Set T1 = Jγ1A1(Id− γ1B1) and T2 = Jγ2A2(Id− γ2B2), then algorithm (5.14)

can be rewritten as:

yn+1 = T2{(1− θn)enyn + α1θn(T1(enyn)− enyn)}∀n ∈ N. (5.15)

Since Jγ1A1 is 1
2
-cocoerceive and Id − γ1B1 is γ1

2α1
-averaged, T1 is 2α1

4α1−γ1 -averaged.

Therefore, Theorem 5.4.1 follows from Corollary 5.3.1.

Further, we consider the following minimization problem and propose a new proximal-

point algorithm based on Algorithm (5.14) to solve it.

Problem 5.4.1. Consider strictly positive real numbers β1, β2. Let f1, f2 : H →

R ∪ {∞} be proper convex lower semicontinuous functions and g1, g2 : H → R be

convex and Frechet-differentiable functions with 1
β1
, 1
β2

-Lipschitz continuous gradient,

respectively. The problem is to find a point y ∈ H such that

y ∈ argmin(f1 + g1) ∩ argmin(f2 + g2). (5.16)

Corollary 5.4.1. Consider the functions f1, f2, g1 and g2 are as in Problem 5.4.1.

Let argmin(f1 + g1) ∩ argmin(f2 + g2) 6= ∅. For γ1 ∈ (0, 2β1] and γ2 ∈ (0, 2β2],
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consider an algorithm with initial point y1 ∈ H,

yn+1 = proxγ2f2o(Id−γ2∇g2){(1−θn)enyn+θnproxγ1f1(enyn−γ1∇g(enyn))} ∀n ∈ N,

(5.17)

where θn ∈ (0, 1] and en ∈ (0, 4β1−γ1
2β1

) are real sequences satisfy the condition (i)

given in Theorem 5.3.1 and the condition:

0 < Θ ≤ 2β1

4β1 − γ1

θn ≤ Θ < 1,
∞∑
n=1

|θn − θn−1| <∞

Then {yn} converges weakly to optimization problem (5.16).

Proof. Consider A1 = ∂f1, A2 = ∂f2, B1 = ∇g1, B1 = ∇g2. Since zer(∂fi +

∇gi) = argmin(fi + gi), i = 1, 2. Note ∇g1,∇g1 are β1, β2-cocoerceive, respec-

tively. Thus, by Theorem 5.4.1, {yn} converges strongly to a point in argmin(f1 +

g1) ∩ argmin(f2 + g2).

5.4.2 Forward-backward type Primal-Dual algorithm with

Tikhonov regularization terms

Problem 5.4.2. Let m be a positive integer. Suppose Ω1, . . . ,Ωm are real Hilbert

spaces. Consider the following operators

(a) A,B : H → 2H are maximally monotone operators,

(b) C,D : H → H are µ1, µ2-cocoerceive operators, respectively,
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(c) Pi, Qi, Ri, Si : Ωi → 2Ωi are maximally monotone operators such that Qi, Si

are νi, δi-cocoerceive, respectively, i = 1, . . . ,m,

(d) nonzero continuous linear operators Li : H → Ωi, i = 1, . . . ,m.

The primal inclusion problem is to find ȳ ∈ H satisfying

0 ∈ Aȳ +
∑m

i=1 L
∗
i (Pi�Qi)(Liȳ) + Cȳ

and

0 ∈ Bȳ +
∑k

i=1 L
∗
i (Ri�Si)(Liȳ) +Dȳ

together with dual inclusion problem

find v̄1 ∈ Ω1, . . . , v̄m ∈ Ωm such that



−
∑m

i=1 L
∗
i v̄i ∈ Ay + Cy

v̄i ∈ (Pi�Qi)(Lix)

and

−
∑m

i=1 L
∗
i v̄i ∈ By +Dy

v̄i ∈ (Ri�Si)(Liy)

(5.18)

i = 1, 2 . . .m.

A point (ȳ, v̄1, . . . , v̄m) ∈ H × Ω1 × · · · × Ωm be a primal-dual solution of Problem

5.4.2 if it satisfies the following:



−
∑m

i=1 L
∗
i v̄i ∈ Aȳ + Cȳ,

−
∑m

i=1 L
∗
i v̄i ∈ Bȳ +Dȳ,

v̄i ∈ (Pi�Qi)(Liȳ),

v̄i ∈ (Ri�Si)(Liȳ)

(5.19)
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i = 1, 2, . . . ,m.

Theorem 5.4.2. Consider the operators as in Problem 5.4.2. Assume

0 ∈ ran

(
A+

m∑
i=1

L∗i ◦ (Pi�Qi) ◦ Li + C

)⋂
ran

(
B +

m∑
i=1

L∗i ◦ (Ri�Si) ◦ Li +D

)
.

(5.20)

Let τ, σ1, . . . , σm > 0 such that

2ρmin{β1, β2} ≥ 1,

where ρ = min{ 1
τ
, 1
σ1
, . . . , 1

σm
}
(

1−
√
τ
∑m

i=1 σi‖Li‖2
)

, β1 = min{µ1, ν1, . . . , νm}

and β2 = min{µ2, δ1, . . . , δm}. Consider the algorithm with intial point (y1, v1,1, . . . , vm,1) ∈

H ×Ω1 × · · · ×Ωm and defined by

Algorithm 5.4.1: To optimize the complexly structured Problem 5.4.2

Input:

1. initial points (y1, v1,1, . . . , vm,1) ∈ H ×Ω1 × · · · ×Ωm

2. Real numbers τ, σi > 0, i = 1, 2, ...,m be such that τ
∑m

i=1 σi‖Li‖2 < 4.

3. θn ∈ (0, 4β1ρ−1
2β1ρ

], en ∈ (0, 1) .

For k = 1, . . . , n;

pn = JτA [enyn − τ (en
∑m

i=1 L
∗
i vi,n + C(enyn))]

rn = enyn + θn(pn − enyn)

For i = 1, . . . ,m;

qi,n = JσiP−1
i

[
envi,n + σi(Li(2pn − enyn)−Q−1

i (envi,n))
]

ui,n = envi,n + θn(qi,n − envi,n)
yn+1 = JτB [rn − τ (

∑m
i=1 L

∗
iui,n +D(un))]

vi,n+1 = JσiR−1
i

[
ui,n + σi(Li(2yn+1 − rn)− S−1

i (ui,n))
]

Output: (yn+1, ζ1,n+1, . . . , ζm,n+1)
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where, sequences {θn} and {en} are real sequences satisfy the condition (i) given in

Theorem 5.3.1 and the condition:

0 < Θ ≤ 2β1ρ

4β1ρ− 1
θn < Θ < 1,

∞∑
n=1

|θn − θn−1| ≤ ∞

Then there exists (ȳ, v̄1, . . . , v̄m) ∈ H×Ω1×· · ·×Ωm such that sequence {(yn, v1,n, . . . , vm,n)}

converges strongly to (ȳ, v̄1, . . . , v̄m) and satisfies the Problem 5.4.2.

Proof. Consider the real Hilbert space K ≡ H×Ω1×· · ·×Ωm endowed with innner

product

〈(x, u1, . . . , um), (y, v1, . . . , vm)〉K = 〈x, y〉H +
m∑
i=1

〈ui, vi〉Ωi

and corresponding norm

‖(x, u1, . . . , um)‖K =

√√√√‖x‖2
H +

m∑
i=1

‖ui‖2
Ωi
, ∀(x, u1, . . . um), (y, v1, . . . , vm) ∈ K.

Further we consider following operators on real Hilbert space K

1. φ1 : K → 2K, defined by (x, u1, . . . , um)→ (Ax, P−1
1 u1, . . . , P

−1
m um),

2. φ2 : K → 2K, defined by (x, u1, . . . , um)→ (Bx,R−1
1 u1, . . . , R

−1
m um),

3. ξ : K → K, defined by (x, u1, . . . , um)→ (
∑m

i=1 L
∗
iui,−L1x, . . . ,−Lmx) ,

4. ψ1 : K → K, defined by (x, u1, . . . , um)→
(
Cx,Q−1

1 u1, . . . , Q
−1
m um

)
,

5. ψ2 : K → K, defined by (x, u1, . . . , um)→
(
Dx, S−1

1 u1, . . . , S
−1
m um

)
.
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These operators are maximally monotone as A,B, Pi, Ri, Qi, Si, i = 1, 2, . . . ,m are

maximally monotone and ξ is skew-symmetric, i.e., ξ∗i = ξi. Now, define the contin-

uous linear operator V : K → K by,

(x, u1, . . . , um)→

(
x

τ
−

m∑
i=1

L∗iui,
u1

σ1

− L1x, . . . ,
um
σm
− Lmx

)
,

which is selfadjoint and ρ-strongly positive, i.e., 〈x,Vx〉K ≥ ρ‖x‖2
K ∀x ∈ K. There-

fore inverse of operator V exists and satisfy ‖V−1‖ ≤ 1
ρ
.

Using the definition of resolvent operator, the Algorithm 5.4.1 can be rewritten as



en (τ−1xn −
∑m

i=1 L
∗
i vi,n)− τ−1pn +

∑m
i=1 L

∗
i qi,n − C(enxn) ∈ Apn +

∑m
i=1 L

∗
i qi,n

rn = enxn + θn(pn − enxn)

For i = 1, . . . ,m en(σ−1
i vi,n − Lixn)− σ−1

i qi,n + Lipn −Q−1
i (envi,n) ∈ P−1

i (qi,n)− Lipn

ui,n = envi,n + θn(qi,n − envi,n)

τ−1rn −
∑m

i=1 L
∗
iui,n − τ−1xn+1 +

∑m
i=1 L

∗
i vi,n+1 −D(xn) ∈ Bxn+1 +

∑m
i=1 L

∗
i vi,n+1

For i = 1, 2 . . . ,m

σ−1
i ui,n − Lirn − σ−1

i xn+1 + Livi,n+1 − S−1
i vi,n ∈ R−1

i vi,n+1 − Lixn+1.

(5.21)

Now, consider the sequences xn=(xn, v1,n, . . . , vm,n),un=(un, u1,n, . . . , um,n) and yn =

(pn, q1,n, . . . , qm,n) ∀n ∈ N. By taking into account the sequences {xn},{yn} and

{un} and operator V, Algorithm 5.4.1 can be rewritten as


enV(xn)−V(yn)− ψ1(enxn) ∈ (φ1 + ξ)(yn)

un = enxn + θn(yn − enxn)

Vun-Vxn − ψ2un ∈ (φ2 + ξ)xn+1.

(5.22)
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On further analysing Algorithm 5.4.1, we get


yn = JA1(enxn −B1(enxn))

un = enxn + θn(yn − enxn)

xn+1 = JA2(un −B2un),

(5.23)

where A1 = V−1(φ1 + ξ) , B1 = V−1ψ1, A2 = V−1(φ2 + ξ) and B2 = V−1ψ2.

Now, we define the real Hilbert space KV ≡ H × Ω1 × · · · × Ωm endowed with

inner product 〈x,y〉KV
= 〈x,Vy〉K and corresponding norm is given by, ‖x‖KV

=√
〈x,Vx〉K ∀x,y ∈ KV.

In view of real Hilbert space KV and Algorithm 5.4.1, we observe the following:

1. Ai and Bi are maximally monotone on KV as φi + ξ and ψi are maximally

monotone on K, for i = 1, 2.

2. Bi are βiρ-cocoerceive on KV as ψi are βi-cocoerceive in K, for i = 1, 2.

3. zer(Ai+Bi)=zer(V−1(φi+ξ+ψi))=zer(φi+ξ+ψi), i = 1, 2 and from condition

(5.20), we can easily obtain that zer(A1 +B1)∩zer(A2 +B2) 6= ∅. Assume that

Ai = Ai and Bi = Bi, i = 1, 2 thus Ai,Bi, i = 1, 2 and sequences {θn}, {en}

satisfy the assumptions in Theorem 5.4.1. Thus, according to Theorem 5.4.1,

{xn} converges strongly to (ȳn, v̄1, . . . , v̄m) ∈ projzer(A1+B1)∩zer(A2+B2)(0, . . . , 0)

in the space KV as n→∞. Thus, we obtain the conclusion as (ȳn, v̄1, . . . , v̄m) ∈

zer(φ1 + ξ+ψ1)∩ zer(φ2 + ξ+ψ2), will also satisfy primal-dual problem 5.4.2.

Next, we define a complexly structured convex optimization problem and their

Fenchel duals. Further, we propose an algorithm to solve the considered prob-

lem and study the convergence property of the algorithm to find simultaneously the
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common solutions of optimiztion problems and common solutions of their Fenchel

duals. The considered problem is as follows:

Problem 5.4.3. Let f1, f2 ∈ Γ (H) and h1, h2 be convex differentiable function with

µ−1
1 , µ−1

2 - Lipschitz continuous gradient, for some µ1, µ2 > 0. Let Ωi be real Hilbert

spaces and gi, li, si, ti ∈ Γ (Ωi) such that li, ti are νi, δi(> 0)-strongly convex, respec-

tively, and Li : H → Ωi be non-zero linear continuous operator ∀i = 1, 2, . . . ,m,

where m > 0 is an integer. The opmization problem under consideration is

inf
x∈H

{
f1(x) +

m∑
i=1

(gi�li)(Lix) + h1(x)

}⋂
inf
x∈H

{
f2(x) +

m∑
i=1

(si�ti)(Lix) + h2(x)

}
(5.24)

with its Fenchel-dual problem

sup
vi∈Ω,i∈1,...,m

{
−(f ∗1�h

∗
1)(−

m∑
i=1

L∗i vi)−
m∑
i=1

(g∗i (vi) + l∗i (vi))

}

∩ sup
vi∈Ω,i∈1,...,m

{
−(f ∗2�h

∗
2)(−

m∑
i=1

L∗i vi)−
m∑
i=1

(s∗i (vi) + t∗i (vi))

}
. (5.25)

In following corollary, we propose an algorithm and study its convergence behavior.

The point of convergence will be the solution of Problem 5.4.3.

Corollary 5.4.2. Assume in Problem 5.4.3

0 ∈ ran

(
∂f1 +

m∑
i=1

L∗i ◦ (∂gi�∂li) ◦ Li +∇h1

)⋂
ran

(
∂f2 +

m∑
i=1

L∗i ◦ (∂si�∂ti) ◦ Li +∇h2

)
.

(5.26)

Consider τ > 0, σi > 0 i = 1, 2, . . . ,m such that

2ρmin{β1, β2} ≥ 1,
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where ρ = min{τ−1, σ−1
1 , . . . , σ−1

m }
(

1−
√
τ
∑m

i=1 σi‖Li‖2
)

, β1 = min{µ1, ν1, . . . , νm}

and β2 = min{µ2, δ1, . . . , δm}. Consider the iterative scheme with intial point (x1, v1,1, . . . , vm,1) ∈

H ×Ω1 × · · · ×Ωm and defined by



pn = proxτf1 [enxn − τ (en
∑m

i=1 L
∗
i vi,n +∇h1(enxn))]

rn = enxn + θn(pn − enxn)

For i = 1, 2, . . . ,m

qi,n = proxσig∗i [envi,n + σi(Li(2pn − enxn)−∇l∗i (enxn))]

ui,n = enxn + θn(qi,n − enxn)

xn+1 = proxτf2 [rn − τ (
∑m

i=1 L
∗
iui,n +∇h2(un))]

vi,n+1 = proxσis∗i [ui,n + σi(Li(2xn+1 − rn)−∇t∗i (ui,n))]

(5.27)

where sequences {θn} and {en} are real sequences satisfy the condition (i) given in

Theorem 5.3.1 and the condition:

0 < Θ ≤ 2β1ρ

4β1ρ− 1
θnΘ < 1,

∞∑
n=1

|θn − θn−1| <∞.

Then, there exists (x̄n, v̄1, . . . , v̄m) ∈ H×Ω1×· · ·×Ωm such that sequence (xn, v1,n, . . . , vm,n)

converges strongly to (x̄n, v̄1, . . . , v̄m) as n → ∞ and (x̄n, v̄1, . . . , v̄m) satisfies Prob-

lem 5.4.3.

5.5 Douglas-Rachford type Algorithms

In this section, using Algorithm 5.3.1 we propose a new Douglas-Rachford algorithm

to solve monotone inclusion problem of sum of two maximally monotone operators.
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Further, using Algorithm 5.3.1 we propose a Douglas-Rachford type primal-dual al-

gorithm to solve complexly structured monotone inclusion problem containing com-

posite and parallel-sum operators.

5.5.1 Douglas-Rachford Algorithm

Let A,B : H → 2H be maximally monotone operators. In this section, we consider

the following monotone inclusion problem:

Find x ∈ H such that 0 ∈ (A+B)x. (5.28)

We propose a Douglas-Rachford algorithm based on Algorithm 5.3.1 such that the

generated sequence converges strongly to a point in the solution set.

Theorem 5.5.1. Consider x1 ∈ H and γ > 0, then algorithm is given by:

n ∈ N



yn = JγB(enxn)

zn = JγA(2yn − enxn)

un = enxn + θn(zn − yn)

xn+1 = (2JγA − Id)(2JγB − Id)un.

(5.29)

Let zer(A + B) 6= ∅ and sequences en ∈ (0, 1) and θn ∈ (0, 2] are real sequences

satisfy the condition (i) given in Theorem 5.3.1 and the condition:

0 < Θ ≤ θn ≤ Θ < 2,
∞∑
n=1

|θn − θn−1| <∞.

Then the following statements are true:

(a) {xn} converges strongly to x̄ = projFixRγARγB(0) as n→∞.
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(b) {yn} and {zn} converges strongly to JγB(x̄) ∈ zer(A+B) as n→∞.

Proof. Consider the operator T ≡ RγA ◦ RγB : H → 2H. From the definition of

reflected resolvent, and definitions of operator T , algorithm (5.29) can be rewritten

as

xn+1 = RγARγB{enxn +
θn
2

(RγARγB)(enxn)− enxn}

= T{enxn +
θn
2

(T (enxn)− enxn)}. (5.30)

Since resolvent operator is nonexpansive [9], T is nonexpansive. Suppose x∗ ∈

zer(A+B) and results from [9], we have zer(A+B) = JγB Fix(T ), which collectively

implies that Fix (T ) 6= ∅. Applying Theorem 5.3.1 with A1 = A2 = A,B1 = B2 = B,

we conclude that {xn} conveges strongly to x̄ = projFix(T )(0) as n→∞.

The continuity of resolvent operator forces the sequence {yn} to converge strongly

to JγBx̄ ∈ zer(A+ B). Finally, since zn − yn = 1
2
(T (enxn)− enxn), which converges

strongly to 0, concludes (b) of Theorem 5.5.1.

Problem 5.5.1. Let f, g : H → R∪{∞} be convex proper and lower semicontinuous

functions. Consider the minimization problem

min
x∈H

f(x) + g(x). (5.31)

Using Karush-Kuhn-Tucker condition, (5.31) is equivalent to solve the inclusion

problem

find x ∈ H 0 ∈ ∂f(x) + ∂g(x). (5.32)
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In order to solve such type of problem, we propose an iterative scheme and study

its convergence behavior which can be summarized in the following corollary.

Corollary 5.5.1. Let f, g be as in Problem 5.5.1 with argminx∈H{f(x) + g(x)} 6= ∅

and 0 ∈ sqri(dom f − dom g). Consider the following iterative scheme with x1 ∈ H:



yn = proxγg(enxn)

zn = Jγf (2yn − enxn)

un = enxn + θn(zn − yn)

xn+1 = (2proxγf − Id)(2proxγg − Id)un, n ∈ N,

(5.33)

where γ > 0 and sequences {θn} ⊆ (0, 2] and {en} are real sequences satisfy the

condition (i) given in Theorem 5.3.1 and the condition:

0 < Θ ≤ θn ≤ Θ < 2,
∞∑
n=1

|θn − θn−1| <∞.

Then we have the following:

(a) converges strongly to x̄ = projFix(T ) where T = (2proxγf − Id)(2proxγg − Id).

(b) {yn} and {zn} converge strongly to proxγg(x̄) ∈ argminx∈H{f(x) + g(x)} as

n→∞.

Proof. Since argminx∈H{f(x) + g(x)} 6= ∅ and 0 ∈ sqri(dom f − dom g) ensures

that zer(A+B) = argminx∈H{f(x)+g(x)}. The results can be obtained by choosing

A = ∂f,B = ∂g in Theorem 5.5.1.
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5.5.2 Douglas-Rachford type Primal-Dual algorithm with

Tikhonov regularization terms

In this section, we propose a Douglas-Rachford type primal-dual algorithm to solve

the comple structured monotone inclusion problem having mixture of composite and

parallel-sum operators. We consider the monotone inclusion problem is as follows:

Problem 5.5.2. Let A : H → 2H be a maximally monotone operator. Consider

for each i = 1, . . . ,m, Ωi is a real Hilbert space, Pi, Qi : Ωi → 2Ωi are maximally

monotone operators and Li : H → Ωi are nonzero linear continuous operator. The

problem is to find x̄ ∈ H satisfying the primal inclusion problem

0 ∈ Ax̄+
m∑
i=1

L∗i (Pi�Qi)(Lix̄)

together with dual inclusion problem

find v̄1 ∈ Ω1, . . . , v̄m ∈ Ωm such that (∃x ∈ H)

 −
∑m

i=1 L
∗
i v̄i ∈ Ax

v̄i ∈ (Pi�Qi)(Lix) i = 1, . . . ,m.
(5.34)

Here, operators Pi, Qi, i = 1, . . . ,m are not cocoerceive, thus to solve the Problem

5.5.2, we have to evaluate the resolvent of each operator, which makes the Douglas-

Rachford algorithm based primal-dual algorithm is more appropriate to solve the

problem.

Theorem 5.5.2. In addition to assumption in Problem 5.5.2, we assume that

0 ∈ ran

(
A+

m∑
i=1

L∗i ◦ (Pi�Qi) ◦ Li

)
. (5.35)
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Consider the strictly positive integers τ, σi, i = 1, . . . ,m satisfying

τ
m∑
i=1

σi‖Li‖2 < 4. (5.36)

Consider the initial point (x1, v1,1, . . . , vm,1) ∈ H×Ωi × · · · ×Ωm. The primal- dual

algorithm to solve Problem 5.5.2 is given by
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Algorithm 5.5.1: To optimize the complexly structured monotone inclusion

problem 5.5.2

Input:

1. initial points (x1, v1,1, . . . , vm,1) ∈ H ×Ωi × · · · ×Ωm.

2. Positive real numbers τ, σi, i = 1, 2, ...,m be such that τ
∑m

i=1 σi‖Li‖2 < 4.

3. The sequences en ∈ (0, 1), θn ∈ (0, 2]

For k = 1, . . . , n;

p1,n = JτA(enxn − τ
2
en
∑m

i=1 L
∗
i vi,n)

w1,n = 2p1,n − enxn

For i = 1, . . . ,m;

p2,i,n = JσiP−1
i

(envi,n + σi
2
Liw1,n)

w2,i,n = 2p2,i,n − envi,n
z1,n = w1,n − τ

2

∑m
i=1 L

∗
iw2,i,n

ξ1,n = enxn + θn(z1,n − p1,n)

For i = 1, . . . ,m;

z2,i,n = JσiQ−1
i

(w2,i,n + σi
2
Li(2z1,n − w1,n))

ξ2,i,n = envi,n + θn(z2,i,n − p2,i,n)
q1,n = JτA(ξ1,n − τ

2

∑m
i=1 L

∗
i (ξ2,i,n))

s1,n = 2q1,n − ξ1,n

For i = 1, . . . ,m;

q2,i,n = JσiP−1
i

(ξ2,i,n + σi
2
Lis1,n)

s2,i,n = 2q2,i,n − ξ2,i,n

t1,n = s1,n − τ
2

∑m
i=1 L

∗
i (s2,i,n)

xn+1 = 2t1,n − s1,n

For i = 1, . . . ,m;

t2,i,n = JσiQ−1
i

(s2,i,n + σi
2
Li(xn+1))

v2,i,n = 2t2,i,n − s2,i,n

Output: (ξn+1, ζ1,n+1, . . . , ζm,n+1)
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where sequences {θn} and {en} are real sequences satisfy the condition (i) given in

Theorem 5.3.1 and the condition:

0 < Θ ≤ θn ≤ Θ < 2,
∞∑
n=1

|θn − θn−1| <∞.

Then there exists an element (x̄, v̄1, . . . , x̄m) ∈ H×Ω1×· · ·×Ωm such that following

statements are true:

1. Denote

p̄1 = JτA
(
x̄− τ

2

∑m
i=1 L

∗
i v̄i
)

p̄2,i = JσiP−1
i

(
v̄i + σi

2
Li(2p̄1 − x̄)

)
, i = 1, . . . ,m. Then the point (p̄1, p̄2,1, . . . , p̄2,m) ∈

H ×Ω1 × · · · ×Ωm is a primal-dual solution to Problem 5.5.2.

2. (xn, v1,n, . . . , vm,n) converges strongly to (x̄, v̄1, . . . , v̄m).

3. (p1,n, p2,1,n, . . . , p2,m,n) and (z1,n, z2,1,n, . . . , z2,m,n) converges strongly to (p̄1, p̄2,1, . . . , p̄2,m).

Proof. Consider the real Hilbert space K and operators φ, ξ as in the Theorem 5.4.2.

Now define the operator ψ : K → K, defined by

ψ(x, u1, . . . , um) =
(
0, Q−1

1 u1, . . . , Q
−1
m um

)
. We can observe the following

1. operator 1
2
ξ + ψ and 1

2
ξ + φ are maximally monotone as dom ξ = K,

2. condition (5.35) implies zer(φ+ ξ + ψ) 6= ∅,

3. every point in zer(φ+ ξ + ψ) will solve Problem 5.5.2.

Define the linear continuous operator W : K → K, defined by

W(x, u1, . . . , um) =

(
x

τ
− 1

2

m∑
i=1

L∗iui,
u1

σ1

− 1

2
L1x, . . . ,

um
σm
− 1

2
Lmx

)
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which is selfadjoint. Consider

ρ =

1− 1

2

√√√√τ

m∑
i=1

σi‖Li‖2

min

{
1

τ
,

1

σ1

, . . . ,
1

σm

}
> 0

. The operator V is ρ- strongly positive and satisfies the following inequality

〈x,Wx〉K ≥ ‖x‖2
K ∀x ∈ K.

Thus the inverse of W exits and satisfies ‖W−1‖ ≤ 1
ρ
. Consider the sequences

∀n ∈ N



xn = (xn, v1,n, . . . , vm,n)

yn = (p1,n, p2,1,n, . . . , p2,m,n)

zn = (z1,n, z2,1,n, . . . , z2,m,n)

un = (u1,n, u2,1,n, . . . , u2,m,n)

cn = (c1,n, c2,1,n, . . . , c2,m,n)

dn = (d1,n, d2,1,n, . . . , d2,m,n).

(5.37)

Using the definition of operators φ, ξ, ψ and W, Algorithm 5.5.1 can be written

equivalently as

∀n ∈ N



W(xn − yn) ∈ (1
2
ξ + φ)yn

W(2yn − xn − zn) ∈ (1
2
ξ + ψ)zn

un = xn + θn(zn − yn)

W(un − cn) ∈ (1
2
ξ + φ)zn

W(2cn − un − dn) ∈ (1
2
ξ + ψ)(2cn − un)

xn+1 = 2dn − cn,

(5.38)
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which is further equivalent to

∀n ∈ N



yn = (Id+ W−1(1
2
ξ + φ))−1(xn)

zn = (Id+ W−1(1
2
ξ + ψ))−1(2yn − xn)

un = xn + θn(zn − yn)

cn = (Id+ W−1(1
2
ξ + φ))−1(un)

dn = (Id+ W−1(1
2
ξ + ψ))−1(2cn − un)

xn+1 = 2dn − cn.

(5.39)

Now, consider the real Hilbert space KW = H×Ω1 × · · · ×Ωm with inner product

and norm defined as

〈x,y〉KW
= 〈x,Wy〉 and ‖x‖KW

=
√
〈x,Wx〉K respectively.

Now, define the operators A ≡ W−1(1
2
ξ + ψ) and B ≡ W−1(1

2
ξ + φ), which are

maximally monotone on KW as 1
2
ξ + φ and 1

2
ξ + ψ are maximally monotone on K.

The Algorithm 5.5.1 can be written in the form of Douglas-Rachford algorithm as

∀n ∈ N


yn = JB(enxn)

zn = JA(2yn − enxn)

xn+1 = (2JA − Id)(2JB − Id)zn,

(5.40)

which is of the form Algorithm (5.29) for γ = 1. From assumption (5.35), we have

zer(A + B) = zer(W−1(M + S + Q)) = zer(M + S + Q).

Applying Theorem 5.5.1, we can find x̄ ∈ Fix(RARB) such that JBx̄ ∈ zer(A +

B).

At the end of this section, we study iterative technique to solve the following convex

optimization problem
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Problem 5.5.3. Let f ∈ Γ(H) and m ∈ N. Consider for each i = 1, . . . ,m, Ωi are

real Hilbert spaces, gi, li ∈ Γ(Ωi) and Li : H → Ωi are linear continuous operators.

The optimization problem is given by

inf
x∈H

[
f(x) +

m∑
i=1

(gi�li)(Lix)

]
(5.41)

with conjugate-dual problem is given by

sup
vi∈Ω,i=1,2,...,m

{
−f ∗1 (−

m∑
i=1

L∗i vi)−
m∑
i=1

(g∗i (vi) + l∗i (vi))

}
. (5.42)

Consider stricly positive integers τ, σi, i = 1, . . . ,m and initial point (x1, v1,1, . . . , vm,1) ∈

H ×Ωi × · · · ×Ωm. The primal-dual algorithm to solve Problem 5.5.3 is given by
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Algorithm 5.5.2: To optimize the complexly structured monotone inclusion

Problem 5.5.3
Input:

1. initial points (x1, v1,1, . . . , vm,1) ∈ H ×Ωi × · · · ×Ωm.

2. Positive real numbers τ, σi, i = 1, 2, ...,m be such that τ
∑m

i=1 σi‖Li‖2 < 4.

3. The sequences {θn}, {en} satisfying the assumptions in Theorem 5.5.2.

For k = 1, . . . , n;

p1,n = proxτf (enxn − τ
2
en
∑m

i=1 L
∗
i vi,n)

w1,n = 2p1,n − enxn

For i = 1, . . . ,m;

p2,i,n = proxσig∗i (envi,n + σi
2
Liw1,n)

w2,i,n = 2p2,i,n − envi,n
z1,n = w1,n − τ

2

∑m
i=1 L

∗
iw2,i,n

ξ1,n = enxn + θn(z1,n − p1,n)

For i = 1, . . . ,m;

z2,i,n = proxσil∗i (w2,i,n + σi
2
Li(2z1,n − w1,n))

ξ2,i,n = envi,n + θn(z2,i,n − p2,i,n)
q1,n = proxτf2(ξ1,n − τ

2

∑m
i=1 L

∗
i (ξ2,i,n))

s1,n = 2q1,n − ξ1,n

For i = 1, . . . ,m;

q2,i,n = proxσig∗i (ξ2,i,n + σi
2
Lis1,n)

s2,i,n = 2q2,i,n − ξ2,i,n

t1,n = s1,n − τ
2

∑m
i=1 L

∗
i (s2,i,n)

xn+1 = 2t1,n − s1,n

For i = 1, . . . ,m;

t2,i,n = proxσil∗i (s2,i,n + σi
2
Li(xn+1))

v2,i,n = 2t2,i,n − s2,i,n

Output: (ξn+1, ζ1,n+1, . . . , ζm,n+1)

where {θn} and {en} are real sequences.
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Corollary 5.5.2. In addition to assumptions in Problem 5.5.3, consider

0 ∈ ran(∂f +
m∑
i=1

L∗i ◦ (∂gi�∂li) ◦ Li). (5.43)

Then, there exists an element (x̄, v̄1, . . . , x̄m) ∈ H×Ω1×· · ·×Ωm such that sequence

{(ξn, ζ1,n, . . . , ζm,n} generated by Algorithm 5.5.2 satisfy the following:

1. Denote

p̄1 = proxτf
(
x̄− τ

2

∑m
i=1 L

∗
i v̄i
)

p̄2,i = proxσig∗i
(
v̄i + σi

2
Li(2p̄i − x̄)

)
, i = 1, . . . ,m. Then the point (p̄1, p̄2,1, . . . , p̄2,m) ∈

H ×Ω1 × · · · ×Ωm is a primal-dual solution to Problem 5.5.3.

2. (xn, v1,n, . . . , vm,n) converges strongly to (x̄, v̄1, . . . , v̄m).

3. (p1,n, p2,1,n, . . . , p2,m,n) and (z1,n, z2,1,n, . . . , z2,m,n) converges strongly to (p̄1, p̄2,1, . . . , p̄2,m).

5.6 Numerical Experiment

In this section, we make an experimental setup to solve the wavelet based image de-

blurring problem. In image deblurring, we develop mathematical methods to recover

the original, sharp image from the blurred image. The mathematical formulation of

the blurring process can be written as a linear inverse problem,

find x ∈ Rd such that Ax = b+ w (5.44)

where A ∈ Rm×d is blurring operator, b ∈ Rm is blurred image and w is an unknown

noise. A classical approach to solve problem (5.44) is to minimize the least-square

term ‖Ax−b‖2. In the deblurring case, the problem is ill-conditioned as the solution
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has huge norm. To remove the difficulty, the ill-conditioned problem is replaced by

a nearly well-conditioned problem. In the wavelet domain, most images are sparse

in nature, thats why we choose l1 regularization. For l1 regularization, the image

processing problem becomes

min
x∈R2

F (x) = ‖Ax− b‖2 + λ‖x‖1 (5.45)

where λ is a sparsity controlling parameter and provides a tradeoff between fidelity

to the measurements and noise sensitivity. The l1 regularization produces sparse

images having sharp edges since it is less sensitive to outliers. Using subdifferential

characterization of the minimum of a convex function, a point x∗ minimizes F (x) if

and only if

0 ∈ AT (Ax∗ − b) + ∂λ‖x∗‖1

Thus we can apply the forward-backward Algorithm (5.14) to solve the deblurring

problem (5.45).

For Numerical experiment purposes, we have chosen images from publically available

domain and assumed reflexive (Neumann) boundary conditions. We blurred the

images using gaussian blur of size 9×9 and standard deviation 4. We have compared

the algorithm (5.14) with [17, Algorithm 8]. The operator A = RW , where W is

the three stage Haar wavelet transform and R is the blur operator. The original

and corresponding blurred images were shown in Figure 5.5. The regularization

parameter was chosen to be λ = 2 × 10−5, and the initial image was the blurred

image. The objective function value is denoted by F (x∗) and function value at nth

iteration is denoted by F (xn). Sequences {λn} and {βn} are chosen as {1 − 1
n+1
}

and {0.9} respectively. The images recovered by the algorithms for 1000 iterations

are shown in figure. The graphical representation of convergence of F (xn)− F (x∗)

143



Figure 5.1: Original. Figure 5.2: Blurred

Figure 5.3: Original Figure 5.4: Blurred

Figure 5.5: The original and blurred images of Lenna and crowd.

is depicted in Figure 5.8. For deblurring methods, lower the value of F (xn)−F (x∗)

higher the quality of recovered images.

It can be observed from Figure 5.8 and 5.13 that the proposed Algorithm (5.14)

outperforms [17, Algorithm 8].
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Figure 5.6: Lenna.
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Figure 5.7: Crowd

Figure 5.8: The variation of F (xn)−F (x∗) with respect to number of iteration
for different images.

5.7 Conclusion

In this chapter, we have proposed the normal-S iteration method based fixed point

algorithm to find common fixed point of nonexpansive operators which converges

strongly to minimal norm solutions of common fixed point problem of the considered

operators. Based on the proposed fixed point algorithm, we develop a new forward-

backward algorithm and a Doughlas-Rachford algorithm containing Tikhonov regu-

larization term to solve the monotone inclusion problems. We have also proposed a

forward-backward type primal-dual algorithm and a Doughlas-Rachford type primal-

dual algorithm having Tikhonov regularization term to find the common solution of

the complexly structured monotone inclusion problems containing mixtures of com-

posite and parallel sum monotone operators. In the last, we have conducted a nu-

merical experiment to solve the image deblurring problem using proposed methods.

The numerical experiment shows that the proposed Algorithm (5.14) outperforms

[17, Algorithm 8].

***********
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Figure 5.9: Algorithm (5.14). Figure 5.10: [17, Algorithm 8]

Figure 5.11: Algorithm (5.14). Figure 5.12: [17, Algorithm 8].

Figure 5.13: The recovered images using different algorithms for 1000 iterations.
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