
Chapter 4

Convergence Analysis of Two-Step

Inertial Douglas-Rachford

Algorithm and Application

The last two chapters of the thesis are focused to develop the methods to solve

the monotone inclusion problem of the sum of two monotone operators in which

one operator is necessarily single-valued. In this chapter, we are dedicated to solve

the inclusion problem for the sum of two set-valued monotone operators. We pro-

pose the normal S-iteration based inertial Douglas-Rachford splitting algorithm and

study its convergence behavior in Section 4.3. In Section 4.4, we propose an inertial

primal-dual algorithm based on Algorithm 4.3.1 to solve monotone inclusion prob-

lems involving composition and parallel-sum operators. In Section 4.5, we discuss

the applicability of the proposed inertial primal-dual algorithm to solve the convex

This chapter is based on our published research work “Dixit, A., Sahu, D. R., Gautam, P.,
and Som, T. (2021). Convergence analysis of two-step inertial Douglas-Rachford algorithm and
application. Journal of Applied Mathematics and Computing, 1-25.”
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optimization problem. We also apply the proposed inertial primal-dual algorithm

to solve the generalized Heron problem.

4.1 Introduction

As explained in the first chapter, the Douglas-Rachford algorithm was introduced

by Lions and Mercier [60] which is given as below:

xn+1 =
1

2
(Id+RA ◦RB)xn, (4.1)

where A and B are set-valued maximal monotone operators. In [16], Bot et al.

proposed an inertial Douglas-Rachford algorithm, which contains the inertial term

xn + θn(xn − xn−1) as follows:


yn = JλB[xn + θn(xn − xn−1)],

zn = JλA[2yn − xn − θn(xn − xn−1)],

xn+1 = xn + θn(xn − xn−1) + βn(zn − yn) ∀n ≥ 1,

(4.2)

where A,B : H → 2H are maximal monotone operators and sequences {θn}, {βn}

satisfy some suitable assumptions. Inspired by the Douglas-Rachford algorithm

(4.2) and normal S-iteration method (1.21), we propose a new Douglas-Rachford

algorithm to solve the monotone inclusion problem (1.8) and study its convergence

behavior. Further, we consider the highly structured monotone inclusion problems

containing composition with linear operators and parallel sum operators. Since the

resolvent of composition and resolvent of parallel sum operators is generally not

present in closed form, the classical Douglas-Rachford algorithm is unable to solve

such types of problems. In order to solve the problems, we propose an inertial
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primal-dual algorithm based on the proposed Algorithm 4.3.1. Further, we have

study the convergence behavior of the proposed primal-dual algorithm and we apply

the proposed primal-dual algorithm to solve a highly structured convex optimization

problem. At the end, we conduct a numerical experiment to show the performance of

the proposed algorithm and compare the algorithm with already known algorithms.

4.2 Preliminary Results

In this section, we present some basic results and definitions related to the study

made in this chapter.

Let A : H → 2H be an operator. Domain of A is dom (A) = {x ∈ H : Ax 6= ∅}.

Range of A is denoted by ran (A) = ∪x∈H Ax. A is said to be uniformly monotone

with modulus wA : [0,∞)→ [0,∞], where wA is increasing, vanishes only at 0, and

satisfies

〈x− y, u− v〉 ≥ wA(‖x− y‖), ∀(x, u), (y, v) ∈ GrA.

The resolvent of A is defined by JA = (Id + A)−1. The reflected resolvent of A is

RA = 2JA − Id. Consider f : H → [−∞,∞]. The conjugate of f is defined by

f ∗ : H → [−∞,∞] as

u 7→ sup
x∈H

(〈x, u〉 − f(x)) , ∀u ∈ H.

If f ∈ Γ(H), then ∂f is maximally monotone and resolvent of ∂f is proxf .
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Let C be a nonempty subset of H. The indicator function iC : H → [−∞,∞] is

defined by

iC(x) =

 0, if x ∈ C,

∞, otherwise.

The projection of a point x ∈ H on C is denoted and defined by

PC(x) = {u ∈ C : u ∈ argminz∈C‖x− z‖} .

If C is convex, then the normal cone to C at x is defined by

NC(x) =

 {u ∈ H : 〈y − x, u〉 ≤ 0, ∀y ∈ C}, if x ∈ C

∅, otherwise.

Definition 4.2.1. [9] Consider the operators T1, T2 : H → 2H. The parallel sum of

T1 and T2 is denoted by T1�T2 : H → 2H and is defined by T1�T2 = (T−1
1 + T−1

2 )−1.

Lemma 4.2.1. [9, Proposition 25.1(ii)] If T1, T2 : H → 2H are monotone operators,

then zer(T1 + T2) = JλT2(Fix(RλT1 ◦RλT2)), ∀λ > 0.

Lemma 4.2.2. [9, Corollary 2.14] Let z1, z2 ∈ H. Then the following identities hold

for arbitrary a ∈ R:

(i) ‖z1 − z2‖2 = ‖z1‖2 + ‖z2‖2 − 2〈z1, z2〉,

(ii) ‖az1 + (1− a)z2‖2 = a‖z1‖2 + (1− a)‖z2‖2 − a(1− a)‖z1 − z2‖2.

Lemma 4.2.3. [37] Let ρ be positive and α be nonnegative real numbers. Then, for

each z1, z2 ∈ H,

‖z1 ± αz2‖2 ≥ (1− αρ)‖z1‖2 + α(α− 1

ρ
)‖z2‖2.
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Lemma 4.2.4. [9, Corollary 4.18] Let C be a nonempty closed convex subset of H

and T : C → H be a nonexpansive mapping. Let {zn} be a sequence in C and z ∈ H

be such that zn ⇀ z and zn − Tzn → 0 as n→∞. Then z ∈ Fix(T ).

Lemma 4.2.5. [9, Corollary 25.5] Consider maximal monotone operators T1, T2 : H →

2H. Let {(xn, un)} ⊆ GrT1, {(yn, vn)} ⊆ GrT2 be sequences such that xn ⇀ x, un ⇀

u, yn ⇀ y, vn ⇀ v and un + vn → 0 and xn − yn → 0 as n → ∞. Then

x = y ∈ zer(T1 + T2), (x, u) ∈ GrT1 and (y, v) ∈ GrT2.

Lemma 4.2.6. [5, Lemma 3] Consider sequences {yn}, {zn} and {θn} in [0,∞)

such that

yn+1 ≤ yn + θn(yn − yn−1) + zn for all n ∈ N,
∞∑
n=1

zn <∞

and there exists a real number θ with 0 ≤ θn ≤ θ < 1 for all n ∈ N. Then the

following hold:

(i)
∑∞

n=1[yn − yn−1]+ <∞, where [t]+ = max{t, 0},

(ii) there exists y∗ ∈ [0,∞) such that yn → y∗.

Lemma 4.2.7. [74] Consider a nonempty subset C of H. Let {φn} be a sequence in

H such that the following two conditions hold:

(i) for all φ ∈ C, limn→∞ ‖φn − φ‖ exists,

(ii) every sequential weak cluster point of {φn} is in C.

Then the sequence {φn} converges weakly to a point in C.
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4.3 Douglas-Rachford Algorithm

In this section, we propose an inertial Douglas-Rachford algorithm based on the

normal S-iteration method [82] to solve the monotone inclusion problem (1.8) and

study its convergence behavior in the real Hilbert space framework.

In what follows first we introduce the Douglas-Rachford like algorithm:

Algorithm 4.3.1. Suppose that A,B : H → 2H are maximally monotone operators

with nonempty set zer(A + B). Choose λ > 0, initial points x0, x1 ∈ H and param-

eters {θn}, {βn} in [0,1]. Then the (n + 1)th term of the algorithm is obtained as

follows:



yn = JλB[xn + θn(xn − xn−1)],

zn = JλA[2yn − xn − θn(xn − xn−1)],

un = xn + θn(xn − xn−1) + βn(zn − yn),

xn+1 = (2JλA − Id)(2JλB − Id)(un), ∀n ∈ N.

(4.3)

Remark 4.3.1. Set wn := xn + θn(xn − xn−1). Using the definition of the reflected

resolvent, Algorithm 4.3.1 can be written as

xn+1 = (2JλA − Id)(2JλB − Id){wn + βn[JλA(2JλB − Id)wn − JλBwn]}

= (RλA ◦RλB)

{
wn + βn

[(
Id+RλA

2
◦RλB

)
wn −

Id+RλB

2
wn

]}
= (RλA ◦RλB)

{
(1− βn

2
)wn +

βn
2

(RλA ◦RλB)wn

}
. (4.4)

In view of (4.4) and (1.21), we say Algorithm 4.3.1 is normal S-iteration based

inertial Douglas-Rachford splitting method (InS-DRSM).
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For convergence analysis of Algorithm 4.3.1, we assume that {θn} and {βn} satisfy

the following conditions:

(A1) {θn} ⊂ [0, θ] is a nondecreasing sequence, where 0 < θ < 1,

(A2) βn ∈ (0, 1),

(A3) the constants β, τ, δ > 0 satisfy

δ > γθ(θ(1+θ)+τ)
1−θ2(1−β/2)

, 0 < β ≤ βn ≤
δ − θ(γθ(1 + θ) + θδ(1− β

2
) + γτ)

δ[1
2

+ γθ(1 + θ) + θδ(1− β
2
) + γτ ]

,

where γ = 1 + 4
β2 .

The convergence behavior of Algorithm 4.3.1 is summarized in the following theorem:

Theorem 4.3.1. Consider A,B : H → 2H are maximally monotone operators such

that zer(A+B) is non-empty. Let {xn} be an orbit of InS-DRSM (4.3) with param-

eters {θn}, {βn} satisfying assumption (A1)-(A3) with θ1 = 0. Then, there exists

x ∈ Fix(RλA ◦RλB) such that the following are true:

(a) JλBx ∈ zer(A+B),

(b)
∑∞

n=1 ‖xn − xn−1‖2 <∞,

(c) {xn} converges weakly to x,

(d) yn − zn → 0 ∈ H,

(e) {yn} converges weakly to JλBx,

(f) {zn} converges weakly to JλBx,

(g) If A or B is uniformly monotone, then {yn} and {zn} converge strongly to a

unique point in zer(A+B).
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Proof. (a) Note that the operators A and B are monotone. Using Remark 4.2.1, we

obtain zer(A+B) = JλB(Fix(RλA ◦RλB)). Since zer(A+B) is non-empty, it follows

that Fix(RλA ◦RλB) is non-empty.

(b)-(c) Let x̄ ∈ Fix(RλA ◦ RλB). Using Algorithm 4.3.1, Lemma 4.2.2, and nonex-

pansitivity of reflected resolvent, we obtain

‖xn+1 − x̄‖2 = ‖RλA ◦RλB[(1− βn
2

)wn +
βn
2
RλA ◦RλB(wn)]− x̄‖2

≤ (1− βn
2

)‖wn − x̄‖2 +
βn
2
‖RλA ◦RλB(wn)− x̄‖2

−βn
2

(1− βn
2

)‖wn −RλA ◦RλB(wn)‖2

≤ ‖wn − x̄‖2 − βn
2

(1− βn
2

)‖wn −RλA ◦RλB(wn)‖2.

By Lemma 4.2.2, we have

‖xn+1 − x̄‖2 ≤ (1 + θn)‖xn − x̄‖2 − θn‖xn−1 − x̄‖2 + θn(1 + θn)‖xn − xn−1‖2

−βn
2

(1− βn
2

)‖wn −RλA ◦RλB(wn)‖2. (4.5)

Since un = (1− βn
2

)wn + βn
2
RλA ◦RλB(wn), we get

‖wn −RλA ◦RλB(wn)‖2 =
4

β2
n

‖un − wn‖2

≥ 4

β2
n

‖xn+1 −RλA ◦RλB(wn)‖2

=
4

β2
n

‖xn+1 − wn + wn −RλA ◦RλB(wn)‖2.
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Taking α = 1 and ρ = 1
2

in Lemma 4.2.3, we obtain

‖wn −RλA ◦RλB(wn)‖2 ≥ 4

β2
n

{1

2
‖xn+1 − wn‖2 − ‖wn −RλA ◦RλB(wn)‖2},

which implies that

(1 +
4

β2
n

)‖wn −RλA ◦RλB(wn)‖2 ≥ 2

β2
n

‖xn+1 − wn‖2.

Since {βn} is bounded below by β, we have

(1 +
4

β2
)‖wn −RλA ◦RλB(wn)‖2 ≥ 2

β2
n

‖xn+1 − wn‖2

=
2

β2
n

‖xn+1 − xn − θn(xn − xn−1)‖2.

Using Lemma 4.2.3 for α = θn and ρ = ρn = 1
θn+δβn

, we have

(1 +
4

β2
)‖wn −RλA ◦RλB(wn)‖2 ≥ 2(1− θnρn)

βn
2 ‖xn+1 − xn‖2 +

2θn
β2
n

(θn −
1

ρn
)‖xn − xn−1‖2

=
2(1− θnρn)

β2
n

‖xn+1 − xn‖2

−2θn(1− θnρn)

β2
nρn

‖xn − xn−1‖2. (4.6)

Thus using (4.6) in (4.5), we obtain

‖xn+1 − x̄‖2 ≤ (1 + θn)‖xn − x̄‖2 − θn‖xn−1 − x̄‖2 + θn(1 + θn)‖xn − xn−1‖2

−
(1− βn

2
)(1− θnρn)

γβn
‖xn+1 − xn‖2 +

θn(1− βn
2

)(1− θnρn)

γβnρn
‖xn − xn−1‖2.
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Set φn = ‖xn − x̄‖2. Then, we have

φn+1 ≤ (1 + θn)φn − θnφn−1 + θn(1 + θn)‖xn − xn−1‖2 −
(1− βn

2
)(1− θnρn)

γβn
‖xn+1 − xn‖2

+
θn(1− βn

2
)(1− θnρn)

γβnρn
‖xn − xn−1‖2,

which can be written as

φn+1 − (1 + θn)φn + θnφn−1 ≤ −ξn‖xn+1 − xn‖2 + µn‖xn − xn−1‖2, (4.7)

where ξn =
(1−βn

2
)(1−θnρn)

γβn
and µn = θn(1 + θn) +

θn(1−βn
2

)(1−θnρn)

γβnρn
.

Denote ψn ≡ ‖xn−x̄‖2−θn‖xn−1−x̄‖2+µn‖xn−xn−1‖2. Since {θn} is non-decreasing,

from (4.7), we obtain

ψn+1 − ψn = φn+1 − (1 + θn+1)φn + θnφn−1 + µn+1‖xn+1 − xn‖2 − µn‖xn − xn−1‖2

≤ φn+1 − (1 + θn)φn + θnφn−1 + µn+1‖xn+1 − xn‖2 − µn‖xn − xn−1‖2

≤ (−ξn + µn+1)‖xn+1 − xn‖2. (4.8)

Note that µn = θn(1 + θn) +
θn(1−βn

2
)(1−θnρn)

γβnρn
> 0, since θnρn < 1 and βn ∈ (0, 1).

Again, taking into account the choice of ρn, we have

δ =
1− θnρn
ρnβn

.

Note

µn = θn(1 + θn) +
θn(1− βn

2
)δ

γ
≤ θ(1 + θ) +

θδ(1− β
2
)

γ
for all n ∈ N. (4.9)
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Suppose that

− ξn + µn+1 ≤ −τ, ∀n ∈ N, (4.10)

where τ > 0 is a real number. Inequality (4.8) along with (4.10) implies that {ψn}

is nonincreasing. Since {θn} is bounded above by θ, we get

−θφn−1 ≤ φn − θφn−1 ≤ ψn ≤ ψ1.

Thus, we obtain

φn ≤ θφn−1 + ψ1

≤ θ(θφn−2 + ψ1) + ψ1

...

≤ θnφ0 + ψ1

n−1∑
k=0

θk ≤ θnφ0 +
ψ1

1− θ
.

From (4.8) and (4.10), we have

τ
n∑
k=1

‖xk+1 − xk‖2 ≤
n∑
k=1

ψk − ψk+1

= ψ1 − ψn+1

≤ ψ1 + θφn

≤ ψ1 + θ(θnφ0 +
ψ1

1− θ
)

= θn+1φ0 +
ψ1

1− θ
.

Since θn+1 → 0 as n→∞, we obtain that

∞∑
n=0

‖xn+1 − xn‖2 <∞. (4.11)
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The proof will be complete if we show that −ξn + µn+1 ≤ −τ, ∀n ∈ N. For n ∈ N,

we have

−ξn + µn+1 ≤ −τ ⇔
(1− βn

2
)(θnρn − 1)

γβn
+ (µn+1 + τ) ≤ 0

⇔ (1− βn
2

)(θnρn − 1) + γβn(µn+1 + τ) ≤ 0

⇔ −(1− βn
2

)δρnβn + γβn(µn+1 + τ) ≤ 0

⇔ −
(1− βn

2
)δ

θn + δβn
+ γ(µn+1 + τ) ≤ 0

⇔ −(1− βn
2

)δ + γ(µn+1 + τ)(θn + δβn) ≤ 0

⇔ γ(µn+1 + τ)(θn + δβn) +
βn
2
δ ≤ δ.

By using (4.9), we have

γ(µn+1 + τ)(θn + δβn) +
βn
2
δ ≤ γ

(
θ(1 + θ) +

θδ(1− β
2
)

γ
+ τ

)
(θ + δβn) +

βn
2
δ

≤ δ, (4.12)

which follows from the upper bound on βn as in assumption (A3). Hence

−ξn + µn+1 ≤ −τ, ∀ n ∈ N.

Applying inequality (4.7), (4.9) and claim (b) to Lemma 4.2.6, we get that

limn→∞ ‖xn − x̄‖ exists.

Suppose that the sequence {xn} has a sequential weak cluster point x∗∈ H. Then

there exists a subsequence {xnk} of {xn} such that xnk ⇀ x∗ ∈ H.
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From Algorithm 4.3.1, we have

‖wn − xn+1‖ ≤ ‖xn − xn+1‖+ θn‖xn − xn−1‖

≤ ‖xn − xn+1‖+ θ‖xn − xn−1‖,

which implies that

‖wn − xn+1‖ → 0 as n →∞. (4.13)

Thus, the sequential weak cluster points of {xn} and {wn} are the same.

Now,

‖RλA ◦RλBwn − wn‖ ≤ ‖RλA ◦RλBwn − xn+1‖+ ‖xn+1 − wn‖

= ‖RλA ◦RλBwn −RλA ◦RλBun‖+ ‖xn+1 − wn‖

≤ ‖wn − un‖+ ‖xn+1 − wn‖

= ‖wn − (1− βn
2

)wn −
βn
2
RλA ◦RλBwn‖+ ‖xn+1 − wn‖

=
βn
2
‖wn −RλA ◦RλBwn‖+ ‖xn+1 − wn‖

≤ 1

2
‖wn −RλA ◦RλBwn‖+ ‖xn+1 − wn‖,

thus, we obtain

1

2
‖RλA ◦RλBwn − wn‖ ≤ ‖xn+1 − wn‖. (4.14)

Using (4.13) and (4.14), we get

RλA ◦RλBwnk − wnk → 0 as k →∞. (4.15)

Applying Lemma 4.2.4 for subsequence {xnk}, we conclude that x∗∈ Fix(RλA◦RλB).
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Since limn→∞ ‖xn− x̄‖ exists for each x̄ ∈ Fix(RλA ◦RλB) and each sequential weak

cluster point of {xn} is in Fix(RλA ◦ RλB), Lemma 4.2.7 implies that there exists

x ∈ Fix(RλA ◦RλB) such that {xn} converges weakly to x.

(d) From Algorithm 4.3.1, we have that zn − yn = 1
2
(RλA ◦ RλBwn − wn), for all

n ∈ N. From (4.14), we have that {(RλA ◦RλBwn −wn)} converges strongly to 0 as

n→∞. Thus, the conclusion follows.

(e) Using nonexpansiveness of JλB, we have

‖yn − y1‖ = ‖JλBwn − JλBw1‖

≤ ‖wn − w1‖

= ‖xn − x1 + θn(xn − xn−1)‖.

This shows that {yn} is bounded as {xn} is bounded. Set

an := 2yn − wn − zn and bn := wn − yn.

Using the definition of resolvent, (zn, an) ∈ Gr(λA), (yn, bn) ∈ Gr(λB) and an+bn =

yn − zn. Let y be a sequential weak cluster point of {yn}. Then, there exists a

subsequence {ynk} ⊆ {yn} such that ynk ⇀ y. From (c) and (d), we have znk ⇀ y,

wnk ⇀ x, ank ⇀ y−x and bnk ⇀ x− y as k →∞. Using Lemma 4.2.5, we conclude

that y ∈ zer(λA+ λB) = zer(A+B), (y, y− x) ∈ Gr(λA) and (y, x− y) ∈ Gr(λB).

Thus, in turn, we have y = JλBx.

(f) From (d) and (e), {yn} converges weakly to JλBx and {yn − zn} converges to 0,

thus {zn} converges weakly to JλBx.

(g) Without any loss of generality, we assume that A is uniformly monotone (in case

B is uniformly monotone, the proof follows in a similar pattern). Thus an increasing
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function wA : [0,∞)→ [0,∞] exists which vanishes only at 0 and satisfies

λwA(‖zn − y‖) ≤ 〈zn − y, an − y + x〉, ∀n ∈ N. (4.16)

Using monotonicity of B, we have

0 ≤ 〈yn − y, bn − x+ y〉 = 〈yn − y, yn − zn − an − x+ y〉, ∀n ∈ N. (4.17)

Adding (4.16) and (4.17), we have

λwA(‖zn − y‖) ≤ 〈zn − yn, an − yn + x〉

= 〈zn − yn, yn − zn − wn + x〉, ∀n ∈ N.

From (c), (d) and (4.13) we get limn→∞wA(‖zn − yn‖) = 0, hence zn → y, which in

turn implies that yn → y as n→∞.

Remark 4.3.2. In the proof of Theorem 4.3.1, we required the nonnegativity of µ1

which is assured by assuming θ1 = 0. The condition can also be satisfied by choosing

the same initial points x0 and x1, i.e., x0 = x1.

Example 4.3.1. Let H = R2 with Euclidean norm. Consider a circular disk C :=

{(h, k) ∈ R2 : (h− 5)2 + k2 ≤ 2} and a box D = {(h, k) ∈ R2 : 2 ≤ h ≤ 4, 0.5 ≤ k ≤

2.5}. Consider the minimization problem:

min
x∈R2

F (x) = iC(x) + iD(x). (4.18)

Note that minimization problem (4.18) is equivalent to the following inclusion prob-

lem:

find x ∈ R2 such that 0 ∈ NCx+NDx.
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Set A = NC, B = ND in Algorithm 4.3.1 and apply Theorem 4.3.1 to solve the

minimization problem (4.18), we obtain that sequence {xn} generated by Algorithm

4.3.1 converges to a solution of minimization problem (4.18). Here in the numerical

example, we choose θn = n−1
14n+2.5

, which is similar to the inertial parameter in [29],

βn = 0.5+ 1
200n

with initial points x0 = x1 = (10,−20) and x0 = x1 = (20,−53). We

take ‖PC(xn)− xn‖2 + ‖PD(xn)− xn‖2 < 10−5 as a stopping criterion. We plot the

semilog graph between ‖PC(xn)−xn‖2 +‖PD(xn)−xn‖2 and the number of iterations

for two different initial points.
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Figure 4.1: Initial points x0 =
x1 = (10,−20).
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Figure 4.2: Initial points x0 =
x1 = (20,−53).

Figure 4.3: Semilog graph between number of iterations and sum of distance of
iterative points to sets C and D for different initial points.

From Fig 4.3, we can observe that the sum of the distances of iterative values to

the sets C and D by our Algorithm 4.3.1 are less than that obtained by the clas-

sical Douglas-Rachford algorithm (4.1), which is also less than that by Algorithm

(4.2). Thus, we can conclude that Algorithm 4.3.1 has a better convergence speed in

particular for optimization problem (4.18).
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4.4 Accelerated normal-S primal-dual algorithm

This section is devoted to obtain a solution to the highly structured monotone in-

clusion problem containing set-valued operators, composition with linear operator

and parallel-sum operators. Since in general resolvent of the composition of opera-

tors and resolvent of parallel sum operators are not present in closed form, classical

Douglas-Rachford algorithm is not applicable to solve the structured monotone in-

clusion problem.

Let m be a strictly positive integer and I denote the set {1, 2, . . . ,m}. For i ∈ I, let

Ωi be a real Hilbert space. For i ∈ I, let P : H → 2H, Qi : Ωi → 2Ωi , Ri : Ωi → 2Ωi

be maximally monotone operators and Ti : H → Ωi be a non-zero linear continuous

operator. Construct the Hilbert space X = H × Ω1 × · · · × Ωm with inner product

and induced norm defined by,

〈(ξ, ξ1, · · · , ξm), (ζ, ζ1, · · · , ζm)〉X = 〈ξ, ζ〉H +
m∑
i=1

〈ξi, ζi〉Ωi

and

‖(ξ, ξ1, · · · , ξm)‖X =

(
‖ξ‖2

H +
m∑
i=1

‖ξi‖2
Ωi

) 1
2

,

respectively, for (ξ, ξ1, · · · , ξm), (ζ, ζ1, · · · , ζm) ∈ H × Ω1 × · · · × Ωm.

Suppose (ξ, ξ1, . . . , ξm) and (w, h1, h2, . . . , hm) ∈ H×Ω1×· · ·×Ωm. Define operators

(a) M : X → 2X : (ξ, ξ1, . . . , ξm) 7→ (−w + Pξ, h1 +Q−1
1 ξ1, . . . , hm +Q−1

m ξm).

(b) S : X → X : (ξ, ξ1, . . . , ξm) 7→ (
∑m

i=1 T
∗
i ξi,−T1ξ, . . . ,−Tmξ).

(c) Q : X → X : (ξ, ξ1, . . . , ξm) 7→ (0, R−1
1 ξ1, . . . , R

−1
m ξm).

(e) F : X → X : F = 1
2
S +Q.
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(f) G : X → 2X : G = 1
2
S +M.

Remark 4.4.1. (a) The operators M and Q are maximally monotone as P , Q

and R are maximally monotone ([9, Proposition 20.22, and Proposition 20.23]).

(b) S is maximally monotone as S is skew-symmetric ([9, Proposition 20.30]).

(c) The operators F and G are maximally monotone as dom(S) = X ([9, Corollary

24.4(i)]) .

We now consider the following problem:

Problem 4.4.1. For i ∈ I, let w ∈ H and hi ∈ Ωi. The monotone inclusion

problem is to find ξ̄ ∈ H such that

w ∈ P ξ̄ +
m∑
i=1

T ∗i (Qi�Ri)(Tiξ̄ − hi) (4.19)

and the dual-inclusion problem is to find ζ̄i ∈ Ωi, ∀i ∈ I such that ∃ ξ ∈ H satisfying

∀n ∈ N

 w −
∑m

i=1 T
∗
i ζ̄i ∈ Pξ

ζ̄i ∈ (Qi�Ri)(Tiξ − hi), i ∈ I.
(4.20)

Remark 4.4.2. [16]

(a) (ξ̄, ζ̄1, · · · , ζ̄m) ∈ H×Ω1× · · · ×Ωm is a primal-dual solution to Problem 4.4.1

then ξ̄ solves (4.19) and (ζ̄1, · · · , ζ̄m) solves (4.20).

(b) ξ̄ ∈ H solves (4.19) if and only if there exists (ζ̄1, · · · , ζ̄m) ∈ Ω1 × · · · × Ωm

such that (ζ̄1, · · · , ζ̄m) solves (4.20) and (ξ̄, ζ̄1, · · · , ζ̄m) solves Problem 4.4.1.

(c) (ζ̄1, · · · , ζ̄m) ∈ Ω1 × · · · × Ωm solves (4.20) if and only if there exists ξ̄ ∈ H

such that ξ̄ solves (4.19) and (ξ̄, ζ̄1, · · · , ζ̄m) solves Problem 4.4.1.
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(d) If (ξ̄, ζ̄1, · · · , ζ̄m) ∈ zer(M+S+Q) then (ξ̄, ζ̄1, · · · , ζ̄m) is a primal-dual solution

of Problem 4.4.1.

In order to solve Problem 4.4.1, we propose the following inertial primal-dual algo-

rithm based on Algorithm 4.3.1, as follows:
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Algorithm 4.4.1:

Input:

1. initial points (ξ0, ζ1,0, . . . , ζm,0), (ξ1, ζ1,1, . . . , ζm,1) ∈ H × Ω1 × · · · × Ωm.

2. 0 ≤ τ, σi ∈ R, i ∈ I such that τ
∑m

i=1 σi‖Ti‖2 < 4.

Procedure :

x1,n = JτP (ξn + θn(ξn − ξn−1)− τ
2

∑m
i=1 T

∗
i (ζi,n + θn(ζi,n − ζi,n−1)) + τw)

y1,n = 2x1,n − ξ1,n − θn(ξn − ξn−1)

For i = 1, . . . ,m;

x2,i,n = JσiQ−1
i

(ζi,n + θn(ζi,n − ζi,n−1) + σi
2
Tiy1,n − σihi)

y2,i,n = 2x2,i,n − ζi,n − θn(ζi,n − ζi,n−1)
u1,n = y1,n − τ

2

∑m
i=1 T

∗
i y2,i,n

v1,n = ξn + θn(ξn − ξn−1) + βn(u1,n − x1,n)

For i = 1, . . . ,m;

u2,i,n = JσiR−1
i

(y2,i,n + σi
2
Ti(2u1,n − y1,n))

v2,i,n = ζi,n + θn(ζi,n − ζi,n−1) + βn(u2,i,n − x2,i,n)
s1,n = JτP (v1,n − τ

2

∑m
i=1 T

∗
i (v2,i,n) + τw)

t1,n = 2s1,n − v1,n

For i = 1, . . . ,m;

s2,i,n = JσiQ−1
i

(v2,i,n + σi
2
Tit1,n − σihi))

t2,i,n = 2s2,i,n − v2,i,n

q1,n = t1,n − τ
2

∑m
i=1 T

∗
i (t2,i,n)

ξn+1 = 2q1,n − t1,n

For i = 1, . . . ,m;

q2,i,n = JσiR−1
i

(t2,i,n + σi
2
Ti(ξn+1))

ζi,n+1 = 2q2,i,n − t2,i,n
Output: (ξn+1, ζ1,n+1, . . . , ζm,n+1).

We say Algorithm 4.4.1 is normal S-iteration based inertial primal-dual (InS-PD)

algorithm. We now establish the convergence theory of Algorithm 4.4.1.
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Theorem 4.4.1. Consider the Problem 4.4.1 with the point

w ∈ ran

(
P +

m∑
i=1

T ∗i (Qi�Ri)(Ti(·)− hi)

)
. (4.21)

Let {θn} and {βn} be sequences satisfying the assumptions as in Theorem 4.3.1.

Then ∃ ā = (ξ̄, ζ̄1, . . . , ζ̄m) ∈ H×Ω1×· · ·×Ωm and the sequence {(ξn, ζ1,n, . . . , ζm,n)}

generated by Algorithm 4.4.1 satisfies the following:

(a) If x̄1 = JτP (ξ̄ − τ
2

∑m
i=1 T

∗
i ζ̄i + τw) and

x̄2,i = JσiQ−1
i

(ζ̄i + σi
2
Ti(2x̄1 − ξ̄)− σihi), i ∈ I,

then (x̄1, x̄2,1, · · · , x̄2,m) ∈ H × Ω1 × · · · × Ωm solves Problem 4.4.1.

(b)
∑∞

n=1 ‖ξn+1 − ξn‖2 <∞ and
∑∞

n=1 ‖ζi,n+1 − ζi,n‖2 <∞, i ∈ I.

(c) {(ξn, ζ1,n, · · · , ζm,n)}⇀ (ξ̄, ζ̄1, · · · , ζ̄m).

(d) {(x1,n − u1,n, x2,1,n − u2,1,n, · · · , x2,m,n − u2,m,n)} → 0.

(e) {(x1,n, x2,1,n, · · · , x2,m,n)}⇀ (x̄1, x̄2,1, · · · , x̄2,m).

(f) {(u1,n, u2,1,n, · · · , u2,m,n)}⇀ (x̄1, x̄2,1, · · · , x̄2,m).

(g) {(x1,n, x2,1,n, · · · , x2,m,n)} and {(u1,n, u2,1,n, · · · , u2,m,n)} converge strongly to

unique primal-dual solution (x̄1, x̄2,1, · · · , x̄2,m) to Problem 4.4.1, when P and

Q−1
i are uniformly monotone, for i ∈ I.

Proof. The idea of the proof is inspired by [16]. From (4.21), we have zer(M+S+Q)

is nonempty. Define a linear continuous operator V : X → X by

(ξ, ζ1, · · · , ζm) 7→

(
ξ

τ
− 1

2

m∑
i=1

T ∗i ζi,
ζ1

σ1

− 1

2
T1ξ, · · · ,

ζm
σm
− 1

2
Tmξ

)
.
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Then V is selfadjoint and ρ-strongly (see [18]) positive for

ρ =

1− 1

2

√√√√τ
m∑
i=1

σi‖Ti‖2

min

{
1

τ
,

1

σ1

, · · · , 1

σm

}
> 0.

Observe that the following inequality holds:

〈ξ, V ξ〉X ≥ ρ‖ξ‖2
X , ∀ξ ∈ X .

This ensures the existence of inverse operator, V −1 such that ‖V −1‖ ≤ 1
ρ

.

Consider the sequences



an = (ξn, ζ1,n, . . . , ζm,n)

bn = (x1,n, x2,1,n, . . . , x2,m,n)

cn = (u1,n, u2,1,n, . . . , u2,m,n)

dn = (v1,n, v2,1,n, . . . , v2,m,n)

pn = (s1,n, s2,1,n, . . . , s2,m,n)

qn = (q1,n, q2,1,n, . . . , q2,m,n).

Then Algorithm 4.4.1 reduces to



V (an − bn + θn(an − an−1)) = (1
2
S +M)bn

V (2bn − an − cn − θn(an − an−1)) = (1
2
S +Q)cn

dn = an + θn(an − an−1) + βn(cn − bn)

V (dn − pn) ∈ (1
2
S +M)pn

V (2pn − dn − qn) ∈ (1
2
S +Q)qn

an+1 = 2qn − pn, ∀n ∈ N,
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which is equivalent to



bn =
(
Id+ V −1(1

2
S +M)

)−1
(an + θn(an − an−1))

cn = (Id+ V −1(1
2
S +Q))−1(2bn − an − θn(an − an−1))

dn = an + θn(an − an−1) + βn(cn − bn)

pn ∈ (Id+ V −1(1
2
S +M))−1dn

qn ∈ (Id+ V −1(1
2
S +Q))−1(2pn − dn)

an+1 = 2qn − pn, ∀n ∈ N.

(4.22)

Consider the Hilbert space XV = H × Ω1 × · · · × Ωm equipped with inner product

and norm 〈ξ, ζ〉XV = 〈ξ, V ζ〉X and ‖ξ‖XV =
√
〈ξ, V ξ〉X , ∀ξ, ζ ∈ XV , respectively.

Define the operators A = V −1F and B = V −1G. Then A and B are maximally

monotone on XV as F and G are maximally monotone on X . Since V is selfadjoint

and ρ-strongly positive, this implies that weak and strong convergence is equivalent

in both the Hilbert spaces X and XV .

Using the definition of resolvent of A and B in (4.22), Algorithm 4.4.1 becomes,



bn = JB(an + θn(an − an−1))

cn = JA(2bn − an − θn(an − an−1))

dn = an + θn(an − an−1) + βn(cn − bn)

an+1 = (2JA − Id)(2JB − Id)dn, ∀n ∈ N,

(4.23)

which is in the form of InS-DRSM (4.3) in the space XV for λ = 1. Note that

zer(A + B) = zer(V −1(M+ S +Q)) = zer(M+ S +Q). Thus, (4.21) implies that

zer(A + B) is non-empty.

(a) By applying Theorem 4.3.1(a) to Algorithm 4.4.1, we get a point ā=(ξ̄, ζ̄1, · · · , ζ̄m) ∈

Fix(RA ◦RB) satisfying JBā ∈ zer(A + B) = zer(M+ S +Q). From Remark
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4.4.2 (d), JBā solves inclusion Problem 4.4.1 and the claim follows by identi-

fying JBā.

(b) From Theorem 4.3.1(b),
∑∞

n=1 ‖an+1 − an‖2
XV < ∞ . Since V is ρ-strongly

positive,

ρ
∞∑
n=1

‖an+1 − an‖2
X ≤

∞∑
n=1

‖an+1 − an‖2
XV .

Thus,
∑∞

n=1 ‖an+1−an‖2
X is finite. Using the definition of ‖·‖X ,

∑∞
n=1 ‖ξn+1−

ξn‖2 <∞ and
∑∞

n=1 ‖ζi,n+1 − ζi,n‖2 <∞, i ∈ I.

(c) From Theorem 4.3.1(c), the sequence {an} = {(ξn, ζ1,n, · · · , ζm,n)} converges

weakly to ā = (ξ̄, ζ̄1, . . . , ζ̄m).

(d) From Theorem 4.3.1 (d), the sequence {bn − cn} = {(x1,n − u1,n, x2,1,n −

u2,1,n, · · · , x2,m,n − u2,m,n)} converges strongly to 0.

(e) From Theorem 4.3.1 (e), the sequence {bn} = {(x1,n, x2,1,n, · · · , x2,m,n)} con-

verges weakly to JBā and the result follows by identifying JBā.

(f) From (d) and (e), we have sequence {cn} converges weakly to (x̄1, x̄2,1, · · · , x̄2,m).

(g) Since P and Q−1
i are uniformly monotone,M is uniformly monotone on X ([18,

Theorem 2.1]). Since V is ρ-strongly positive, B is uniformly monotone on X .

From Theorem 4.3.1 (g), sequences {bn} = {(x1,n, x2,1,n, · · · , x2,m,n)} and {cn}

= (u1,n, u2,1,n, · · · , u2,m,n) converges strongly to unique JBā= (x̄1, x̄2,1, · · · , x̄2,m).
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4.5 Applications to solve convex optimization prob-

lem

In this section, we aim to solve a highly structured convex optimization problem

with the help of InS-PD Algorithm 4.4.1. We have also conducted a numerical

experiment to solve the generalized Heron problem and compare the performance of

InS-PD Algorithm 4.4.1 with already known algorithms. Let m be a strictly positive

integer and I denote the set {1, 2, . . . ,m}. The optimization problem we consider

is as follows:

Problem 4.5.1. Consider f ∈ Γ(H) and gi, li ∈ Γ(Ωi), where Ωi, i ∈ I are real

Hilbert spaces. Let Ti : H → Ωi be nonzero bounded linear operators and hi ∈ Ωi,

for each i ∈ I. For w ∈ H, we define the convex optimization problem.

inf
ξ∈H

{
f(ξ) +

m∑
i=1

(gi�li)(Tiξ − hi)− 〈ξ, w〉

}
(4.24)

and its conjugate dual problem

sup
(ζ1,··· ,ζm)∈Ω1×···×Ωm

{
−f ∗

(
w −

m∑
i=1

T ∗i ζi

)
−

m∑
i=1

(g∗i (ζi) + l∗i (ζi) + 〈ζi, hi〉)

}
. (4.25)

Suppose P = ∂f , Qi = ∂gi and Ri = ∂li, ∀i ∈ I in Problem 4.4.1, then primal

inclusion problem (4.19) is to find ξ̄ ∈ H such that

w ∈ ∂f(ξ̄) +
m∑
i=1

T ∗i (∂gi�∂li)(Tiξ̄ − hi) (4.26)

99



and corresponding dual inclusion problem (4.20) becomes find (ζ̄1, · · · , ζ̄m) ∈ Ω1 ×

· · · × Ωm such that (∃ξ ∈ H) satisfying

 w −
∑m

i=1 T
∗
i ζ̄i ∈ ∂f(ξ)

ζ̄i ∈ (∂gi�∂li)(Tiξ − hi), ∀i ∈ I.
(4.27)

A point x̄ ∈ H solves the primal inclusion problem (4.26) and (ζ̄1, · · · , ζ̄m) ∈ Ω1 ×

· · · × Ωm solves its dual problem (4.27) then x̄ optimizes the primal optimization

problem (4.24) and (ζ̄1, · · · , ζ̄m) optimizes dual optimization problem (4.25), i.e.,

(ξ̄, ζ̄1, · · · , ζ̄m) is the solution of primal-dual optimization Problem 4.5.1 .

We apply Algorithm 4.4.1 to solve Problem 4.5.1. For the choice of P = ∂f , Qi =

∂gi and Ri = ∂li, ∀i ∈ I, Algorithm 4.4.1 can be reformulated as the following

algorithm:
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Algorithm 4.5.1:

Input:

1. Initial points (ξ0, ζ1,0, . . . , ζm,0), (ξ1, ζ1,1, . . . , ζm,1) ∈ H × Ω1 × · · · × Ωm.

2. 0 ≤ τ, σi ∈ R, i ∈ I, such that τ
∑m

i=1 σi‖Ti‖2 < 4.

Procedure :

x1,n = proxτf (ξn + θn(ξn − ξn−1)− τ
2

∑m
i=1 T

∗
i (ζi,n + θn(ζi,n − ζi,n−1)) + τw)

y1,n = 2x1,n − ξ1,n − θn(ξn − ξn−1)

For i = 1, . . . ,m;

x2,i,n = proxσig∗i (ζi,n + θn(ζi,n − ζi,n−1) + σi
2
Tiy1,n − σihi)

y2,i,n = 2x2,i,n − ζi,n − θn(ζi,n − ζi,n−1)
u1,n = y1,n − τ

2

∑m
i=1 T

∗
i y2,i,n

v1,n = ξn + θn(ξn − ξn−1) + βn(u1,n − x1,n)

For i = 1, . . . ,m;

u2,i,n = proxσil∗i (y2,i,n + σi
2
Ti(2u1,n − y1,n))

v2,i,n = ζi,n + θn(ζi,n − ζi,n−1) + βn(u2,i,n − x2,i,n)
s1,n = proxτf (v1,n − τ

2

∑m
i=1 T

∗
i (v2,i,n) + τw)

t1,n = 2s1,n − v1,n

For i = 1, . . . ,m;

s2,i,n = proxσig∗i (v2,i,n + σi
2
Tit1,n − σihi))

t2,i,n = 2s2,i,n − v2,i,n

ξn+1 = 2{t1,n − τ
2

∑m
i=1 T

∗
i (t2,i,n)} − t1,n

For i = 1, . . . ,m;

ζi,n+1 = 2proxσil∗i (t2,i,n + σi
2
Ti(ξn+1))− t2,i,n

Output: (ξn+1, ζ1,n+1, · · · , ζm,n+1)

We establish the convergence behavior of Algorithm 4.5.1.

Theorem 4.5.1. In Problem 4.5.1, consider

w ∈ ran

(
∂f +

m∑
i=1

T ∗i (∂gi�∂li)(Ti(·)− hi)

)
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and {(ξn, ζ1,n, . . . , ζm,n)} be the sequence generated by Algorithm 4.5.1. Let se-

quences {θn}, {βn} satisfy the assumption as in Theorem 4.4.1, Then there exists

ā = (ξ̄, ζ̄1, . . . , ζ̄m) ∈ H × Ω1 × · · · × Ωm such that following holds:

(a) (x̄1, x̄2,1, · · · , x̄2,m) ∈ H × Ω1 × · · · × Ωm solves Problem 4.5.1, where

x̄1 = proxτf

(
ξ̄ − τ

2

m∑
i=1

T ∗i ζ̄i + τw

)
and

x̄2,i = proxσig∗i

(
ζ̄i +

σi
2
Ti(2x̄1 − ξ̄)− σihi

)
, i ∈ I.

(b)
∑∞

n=1 ‖ξn+1 − ξn‖2 <∞ and
∑∞

n=1 ‖ζi,n+1 − ζi,n‖2 <∞, i ∈ I.

(c) {(ξn, ζ1,n, · · · , ζm,n)}⇀ (ξ̄, ζ̄1, · · · , ζ̄m).

(d) {(x1,n − u1,n, x2,1,n − u2,1,n, · · · , x2,m,n − u2,m,n)} → 0 as n→∞.

(e) {(x1,n, x2,1,n, · · · , x2,m,n)}⇀ (x̄1, x̄2,1, · · · , x̄2,m).

(f) {(u1,n, u2,1,n, · · · , u2,m,n)}⇀ (x̄1, x̄2,1, · · · , x̄2,m).

(g) {(x1,n, x2,1,n, · · · , x2,m,n)} and {(u1,n, u2,1,n, · · · , u2,m,n)} converge strongly to

a unique solution (x̄1, x̄2,1, · · · , x̄2,m) of Problem 4.5.1, when f and g∗i are

uniformly convex, i ∈ I.

Numerical Experiment 4.5.1. In this section, we perform a numerical experiment

to solve the generalized Heron problem using Algorithm 4.5.1. In the classical Heron

problem, we search for a point on a given straight line such that the sum of its

distances to two given points is minimum. The generalized Heron problem was

examined in [69, 70] by replacing the points and straight line with non-empty closed

convex sets. Thus, in the generalized Heron problem, we search a point on a given

nonempty closed convex set Ω ⊂ Rn such that sum of its distances to given non-

empty closed convex sets Ωi ⊂ Rn is minimal, i ∈ I. Mathematically, generalized
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Heron problem can be written as

inf
x∈Ω

m∑
i=1

d(x,Ωi),

where the distance of a point x to a non-empty set Ω is defined as inf{‖x− y‖ : y ∈

Ω}. The generalized Heron problem can be reduced into the framework of optimiza-

tion Problem 4.5.1 by setting f = δΩ, gi = ‖ · ‖ and li = δΩi , i ∈ I.

For numerical experiment in R2, we take a ball of radius 1 centered at (−2, 4) as

Ω and choose constraints from balls having radius 1 with centers C1 = (−10, 0),

C2 = (−1, 8), C3 = (2,−4), C4 = (7, 6), C5 = (7, 1), and C6 = (8,−3) (Fig 4.4).

For numerical experiment in R3, we take ball with radii 1 and center (0, 2, 0) as

Ω and choose constraints from balls having radii 1 with centers C1 = (0,−4, 0),

C2 = (−4, 2,−3), C3 = (−3,−4, 2), C4 = (−5, 4, 4), and C5 = (−1, 8, 1) (Fig 4.5).

-15 -10 -5 0 5 10

-5

0

5

10

Figure 4.4: Circle with circle
constraints.

Figure 4.5: Sphere with sphere
constraints.

Figure 4.6: Generalized Heron problem for different convex set and contraints.

We solve the generalized Heron problem using Douglas-Rachford algorithm ([18,

Algorithm 3.1]), inertial Douglas-Rachford algorithm ([16, Algorithm 15]), and pro-

posed Algorithm 4.5.1 and we compare on the basis of the number of iterations
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required to achieve the root mean square error (RMSE) less than 0.001 and 0.00001.

The performance of algorithms is depicted in Table 4.1. We have also plotted the

graph between the number of iterations and RMSE to have a clear visualization of

the experiment (Fig 4.15). In R2, we initialize with points x0 = x1 = (−1, 4) and

with x0 = x1 = (0, 2, 0) in R3. We set θn = n−1
14n+2.5

which is similar to the inertial

parameter in [29], βn = 0.5 + 1
200n

, σi = 0.15 and τ = 5/3.

RMSE < 0.001 RMSE < 0.00001

Dimension Algo 4.5.1 [16, Algo 15] [18, Algo 3.1] Algo 4.5.1 [16, Algo 15] [18, Algo 3.1]

m=3,n=2 11 28 30 24 38 41

m=5,n=2 12 26 28 29 47 51

m=6,n=2 21 28 30 32 48 52

m=3,n=3 16 21 23 26 40 43

m=5,n=3 12 26 28 19 47 50

Table 4.1: Number of iterations required to have different accuracy for different
algorithms. The best results are presented in bold letters.
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Figure 4.7: m = 3, n = 2.
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Figure 4.8: m = 3, n = 2
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Figure 4.9: m = 5, n = 2
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Figure 4.10: m = 5, n = 2

From Table 4.1, we can observe that proposed Algorithm 4.5.1 takes the least num-

ber of iterations to achieve the RMSE less than 0.001 as well as 0.00001 while inertial

Douglas-Rachford algorithm ([16, Algorithm 15]) remains the second fastest algo-

rithm in terms of the number of iterations to achieve the RMSE less than 0.001 as

well as 0.00001. Number of iterations taken by inertial Douglas-Rachford algorithm

([16, Algorithm 15]) and Douglas-Rachford algorithm ([18, Algorithm 15]) are very

close.
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Figure 4.10: m = 6, n = 2
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Figure 4.11: m = 6, n = 2
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Figure 4.12: m = 3, n = 3
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Figure 4.13: m = 3, n = 3
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Figure 4.13: m = 5, n = 3
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Figure 4.14: m = 5, n = 3

Figure 4.15: The semilog graph between number of iterations and RMSE for
different choices of m and n as in Table 4.1. Figure 4.7, 4.9, 4.11, 4.13 are plotted
for RMSE < 0.001 and Figure 4.8, 4.10, 4.12, 4.14 are plotted for RMSE < 0.00001.
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4.6 Conclusion

In this chapter, we have introduced an InS-DRSM (4.3) to solve the inclusion prob-

lem of the sum of set-valued operators. The sequence generated by Algorithm 4.3.1

converges weakly to the solution set of inclusion problem. We have presented an

example in support of Theorem 4.3.1. We have also introduced normal-S based iner-

tial primal-dual (InS-PD) algorithm to solve a highly structured monotone inclusion

problem having linearly composed and parallel-sum type operators and studied its

convergence behavior. Further, we have applied InS-PD algorithm to solve a highly

structured minimization problem. Numerical experiment shows that proposed al-

gorithm takes fewer iterations than inertial Douglas-Rachford algorithm [16, Algo-

rithm 15] and Douglas-Rachford algorithm [18, Algorithm 3.1]. In future work, we

will study the theoretical convergence rate analysis of Algorithm 4.3.1 and evaluate

the performance on some large scale real datasets.

***********
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