
Chapter 3

An Accelerated

Forward-Backward Splitting

Algorithm for Solving Inclusion

Problems with Applications

The previous chapter is dedicated to develop accelerated fixed point technique, which

is further used to solve the monotone inclusion problem. In this chapter, we propose

a novel accelerated preconditioned forward-backward algorithm to obtain the van-

ishing point of the sum of two operators in which one is maximal monotone and the

other is M -cocoercive, where M is a linear bounded operator on underlying spaces.

This chapter is based on our published research work “Dixit, A., Sahu, D. R., Gautam, P.,
and Som, T. and Yao, J.C. (2021). An accelerated forward-backward splitting algorithm for solving
inclusion problems with applications to regression and link prediction problems, J. Nonlinear Var.
Anal. 5, 79-101.”

43

Section 3.1 is introductory while section 3.2 explains the results useful to this chap-

ter. In Section 3.3, we propose a preconditioned forward-backward algorithm and

study its convergence behavior under mild restrictions on operators and parameters.

We also discuss a numerical example in the support of our findings which shows

that in the same environment the proposed algorithm has better convergence speed

than the algorithm proposed by Lorenz and Pock [61]. In Section 3.4, we apply the

proposed algorithm to solve the saddle point problem. In the last section, we per-

form numerical experiments to show the practicability of the proposed algorithm and

compared its convergence speed with those of already known algorithms. We apply

the proposed algorithm to solve regression problems and link prediction problems.

3.1 Introduction

In 2015, Lorenz and Pock [61] used a variable metric (or preconditioning) approach

to solve the monotone inclusion problem (1.8). For a linear, bounded, self-adjoint

and positive definite operator M : H → H, the algorithm proposed by Lorenz and

Pock [61] can be written as follows:

 yn = xn + θn(xn − xn−1)

xn+1 = (Id+ λnM
−1A)−1(Id− λnM−1B)(yn), n ∈ N

(3.1)

where θn ∈ [0, 1) is an acceleration parameter and λn is a step size parameter. They

studied the convergence of the algorithm, which can be summarized in the following

theorem.

Theorem 3.1.1. ([61]) Let H be a real Hilbert space and A,B : H → 2H be maxi-

mally monotone operators. Further, assume that M,L : H → H are linear bounded

44

selfadjoint and positive definite operators and that B is single-valued and cocoercive

with respect to L−1. Moreover, let λn > 0, θ < 1, θn ∈ [0, θ], x0 = x1 ∈ H. If

(i) Sn = M − λn
2
L is positive definite for all n;

(ii)
∑∞

n=1 θn‖xn − xn−1‖2
M <∞,

then the sequence {xn} generated by Algorithm (3.1) converges weakly to a solution

of the inclusion problem (1.8).

The aim of this paper is in three folds. Our first aim is to propose a preconditioned

forward-backward algorithm to solve the monotone inclusion problem (1.8). Since

the second assumption in Theorem 3.1.1 is very strong, which is not easy to verify

and reduces its practical applicability, so our second aim is to study the convergence

behavior of the proposed algorithm with mild assumptions so that it can be useful

in practical applicability. Lastly, we aim to show the application of the proposed

algorithm to solve regression problems and link prediction problems.

3.2 Preliminary Results

This section is devoted to some important definitions and results from nonlinear

analysis and operator theory. Let M be a linear bounded operator on H. M is

said to be self-adjoint if M∗ = M , where M∗ denotes the adjoint of operator M .

A self-adjoint operator M on H is said to be positive definite if 〈M(x), x〉 > 0

for every nonzero x ∈ H ([59]). Define the M -inner product 〈·, ·〉M on H by

〈x, y〉M = 〈x,M(y)〉 for all x, y ∈ H. The corresponding M -norm is defined by

‖x‖2
M = 〈x,Mx〉 for all x ∈ H.

45

Definition 3.1. Let D be a nonempty subset of H, T : D → H be an operator and

M : H → H be a positive definite operator. Then T is said to be

(i) nonexpansive with respect to M -norm if

‖Tx1 − Tx2‖M ≤ ‖x1 − x2‖M ∀x1, x2 ∈ H;

(ii) M -cocoercive if

‖Tx1 − Tx2‖2
M−1 ≤ 〈x1 − x2, Bx1 −Bx2〉, for all x1, x2 ∈ H.

Example 3.1. Define B : R3 → R3 by (x1, x2, x3) 7→ (5x1, 4 sinx2, tan
−1(5x3)) and

M =

5 0 0

0 4 0

0 0 1

 .

For x = (x1, x2, x3) and y = (y1, y2, y3), we have

‖Bx−By‖2
M−1 = 5(x1 − y1)2 + 4(sin x2 − sin y2)2 + (tan−15x3 − tan−15y3)2

= 〈x− y,Bx−By〉.

Thus, B is M-cocoerceive.

Lemma 3.2.1. [9, Corollary 2.14] Let z1, z2 ∈ H. Then the following identities hold

for arbitrary a ∈ R:

(i) ‖z1 − z2‖2 = ‖z1‖2 + ‖z2‖2 − 2〈z1, z2〉,

(ii) ‖az1 + (1− a)z2‖2 = a‖z1‖2 + (1− a)‖z2‖2 − a(1− a)‖z1 − z2‖2.

46

Lemma 3.2.2. [37] Let ρ be positive and α be nonnegative real numbers. Then, for

each z1, z2 ∈ H,

‖z1 ± αz2‖2 ≥ (1− αρ)‖z1‖2 + α(α− 1

ρ
)‖z2‖2.

Lemma 3.2.3. [9, Corollary 4.18] Let C be a nonempty closed convex subset of H

and T : C → H be a nonexpansive mapping. Let {zn} be a sequence in C and z ∈ H

be such that zn ⇀ z and zn − Tzn → 0 as n→∞. Then z ∈ Fix(T).

Lemma 3.2.4. [5, Lemma 3] Consider sequences {yn}, {zn} and {θn} in [0,∞)

such that

yn+1 ≤ yn + θn(yn − yn−1) + zn for all n ∈ N,
∞∑
n=1

zn <∞

and there exists a real number θ with 0 ≤ θn ≤ θ < 1 for all n ∈ N. Then the

following hold:

(i)
∑∞

n=1[yn − yn−1]+ <∞, where [t]+ = max{t, 0},

(ii) there exists y∗ ∈ [0,∞) such that yn → y∗.

Lemma 3.2.5. [74] Consider a nonempty subset C of H. Let {φn} be a sequence in

H such that the following two conditions hold:

(i) for all φ ∈ C, limn→∞ ‖φn − φ‖ exists,

(ii) every sequential weak cluster point of {φn} is in C.

Then the sequence {φn} converges weakly to a point in C.

47

3.3 Main Results

Throughout this section, we study the monotone inclusion problem (1.8) where

A : H → 2H is a maximal monotone operator and B : H → H is M -cocoerecive. Let

M : H → H be a linear selfadjoint and positive definite operator. For λ ∈ (0,∞),

define an operator JA,Bλ,M by

JA,Bλ,M = (Id+ λM−1A)−1(Id− λM−1B). (3.2)

We now give some properties of the operator JA,Bλ,M .

Proposition 3.2. Let A : H → 2H be a maximal monotone operator and M : H →

H be a linear bounded selfadjoint and positive definite operator. Let B : H → H be

M-cocoerecive operator and λ ∈ (0, 1]. Then we have the following:

(a) Id− λM−1B is nonexpansive with respect to M-norm.

(b) (Id+ λM−1A)−1 is nonexpansive with respect to M-norm.

(c) The operator JA,Bλ,M defined by (3.2) is nonexpansive with respect to M-norm.

Proof. (a) Define S = Id−M−1B. We show that S is nonexpansive with respect to

M -norm. Let x, y ∈ H. Since B is M -cocoerecive, we have

‖Bx−By‖2
M−1 ≤ 〈x− y,Bx−By〉 ≤ 2〈x− y,Bx−By〉.

Thus,

‖M−1(Bx−By)‖2
M = ‖Bx−By‖2

M−1 ≤ 2〈x− y,Bx−By〉,

48

which implies that

λ2‖M−1(Bx−By)‖2
M ≤ 2〈x− y, λM−1(Bx−By)〉M .

Hence

‖x− y‖2
M + ‖λM−1(Bx−By)‖2

M − 2〈x− y, λM−1(Bx−By)〉M ≤ ‖x− y‖2
M ,

i.e,

‖(Id− λM−1B)x− (Id− λM−1B)y‖2
M ≤ ‖x− y‖2

M .

Therefore, S is nonexpansive with respect to M -norm.

(b) Define T = (Id+ λM−1A)−1. Note that

T = (Id+ λM−1A)−1 ⇔ T−1 − Id = λM−1A⇔ λA = M(T−1 − Id).

Let x, y ∈ H. Then M(x− T (x)) ∈ λA(T (x)) and M(y − T (y)) ∈ λA(T (y)). Since

A is monotone, we have

〈Tx− Ty,M(x− Tx)−M(y − Ty)〉 ≥ 0,

i.e.,

〈Tx− Ty,M(x− y)〉 ≥ 〈Tx− Ty,M(Tx− Ty)〉.

Then

〈Tx− Ty, (x− y)〉M ≥ ‖Tx− Ty‖2
M .

49

Thus, T is nonexpansive with respect to M -norm.

(c) From (a) and (b), we see that the operator T ◦ S = JA,Bλ,M is nonexpansive with

respect to M -norm.

Proposition 3.3. Let A : H → 2H be a maximal monotone operator, M : H → H

be a linear bounded selfadjoint and positive definite operator, and B : H → H be

an M-cocoerecive operator. Let λ ∈ (0,∞). Then x∗ ∈ H is a solution of inclusion

problem (1.8) if and only if x∗ is the fixed point of the operator JA,Bλ,M .

Proof. Suppose that 0 ∈ (A+B)(x∗). Then

0 ∈ λA(x∗) + λB(x∗) ⇔ 0 ∈ λM−1A(x∗) + λM−1B(x∗)

⇔ −λM−1B(x∗) ∈ λM−1A(x∗)

⇔ x∗ − λM−1B(x∗) ∈ x∗ + λM−1A(x∗)

⇔ x∗ = (Id+ λM−1A)−1(Id− λM−1B)(x∗).

From Proposition 3.3, we conclude that inclusion problem (1.8) can be solved by

finding fixed points of the operator JA,Bλ,M . In the light of this fact and motivated by

[37], we propose the following algorithm.

Algorithm 3.3.1. Let A : H → 2H be a maximal monotone operator, M : H → H

a linear selfadjoint and positive definite operator and B : H → H an M-cocoerecive

operator. Let x0, x1 ∈ H. The accelerated preconditioning forward-backward normal

50

S-iteration method (APFBNSM) is defined as follows:

yn = xn + αn(xn − xn−1)

xn+1 = JA,Bλ,M [(1− βn)yn + βnJ
A,B
λ,M (yn)], for all n ∈ N,

(3.3)

where βn ∈ (0, 1), λ ∈ (0, 1], αn ∈ [0, 1).

For αn = 0, ∀n ∈ N and M = Id, the accelerated preconditioning forward-backward

normal S-iteration method (3.3) is reduced to the normal S-iteration based forward-

backward splitting algorithm (nS-FBSA) ([89]):

 yn = xn + θn(xn − xn−1)

xn+1 = JA,Bλ [(1− βn)yn + βnJ
A,B
λ (yn)], for all n ∈ N.

Assumption 3.3.1.

Consider the parameters αn, βn, λ satisfying the following conditions:

(B1) {αn} ⊂ [0, α] is a non-decreasing sequence with α ∈ [0, 1);

(B2) {βn} ⊂ (0, 1) and λ ∈ (0, 1];

(B3) constants β, τ, δ > 0 satisfying

δ >
2γα(α(1 + α) + τ)

1− α2(1− β)
and 0 < β ≤ βn ≤

δ − α(2γα(1 + α) + αδ(1− β) + 2γτ)

δ[1 + 2γα(1 + α) + αδ(1− β) + 2γτ]
,

where γ = 1 + 1
β2 .

51

3.3.1 Convergence analysis of the APFBNSM

Proposition 3.3.1. Let M : H → H be a linear bounded selfadjoint and positive

definite operator. Let A : H → 2H be a maximally monotone and B : H → H

be M-cocoercive operator such that (A + B)−1(0) is nonempty. Assume that λ and

sequences {αn} and {βn} satisfy Assumption 3.3.1. Let x∗ ∈ (A+B)−1(0) and {xn}

be a sequence in H generated by Algorithm 3.3.1. Then

‖xn+1 − x∗‖2
M ≤ (1 + αn)‖xn − x∗‖2

M − αn‖xn−1 − x∗‖2
M + αn(1 + αn)‖xn − xn−1‖2

M

−βn(1− βn)‖yn − JA,Bλ,M (yn)‖2
M for all n ∈ N.

Proof. From Algorithm 3.3.1 and Lemma 3.2.1, we have

‖xn+1 − x∗‖2
M = ‖JA,Bλ,M [(1− βn)yn + βnJ

A,B
λ,M (yn)]− x∗‖2

M

≤ ‖(1− βn)yn + βnJ
A,B
λ,M (yn)− x∗‖2

M

= (1− βn)‖yn − x∗‖2
M + βn‖JA,Bλ,M (yn)− x∗‖2

M − βn(1− βn)‖yn − JA,Bλ,M (yn)‖2
M

≤ (1− βn)‖yn − x∗‖2
M + βn‖yn − x∗‖2

M − βn(1− βn)‖yn − JA,Bλ,M (yn)‖2
M

= ‖yn − x∗‖2
M − βn(1− βn)‖yn − JA,Bλ,M (yn)‖2

M . (3.4)

Again, from (3.3.1) and Lemma 3.2.1, we have

‖yn − x∗‖2
M = ‖xn + αn(xn − xn−1)− x∗‖2

M

= ‖(1 + αn)(xn − x∗)− αn(xn−1 − x∗)‖2
M

= (1 + αn)‖xn − x∗‖2
M − αn||xn−1 − x∗‖2

M + αn(1 + αn)‖xn − xn−1‖2
M .

(3.5)

52

Combining (3.4) and (3.5), we have

‖xn+1 − x∗‖2
M ≤ (1 + αn)‖xn − x∗‖2

M − αn‖xn−1 − x∗‖2
M + αn(1 + αn)‖xn − xn−1‖2

M

−βn(1− βn)‖yn − JA,Bλ,M (yn)‖2
M .

This completes the proof.

Define sequences {µn} and {ξn} by

µn = αn(1 + αn) +
αn(1− βn)(1− αnρn)

2γβnρn
and ξn =

(1− βn)(αnρn − 1)

2γβn
, (3.6)

where ρn = 1
αn+δβn

.

Proposition 3.3.2. Let M : H → H be a linear bounded selfadjoint and positive

definite operator. Let A : H → 2H be a maximally monotone and let B : H → H

be M-cocoercive operator such that (A + B)−1(0) is nonempty. Assume that λ and

sequences {αn} and {βn} satisfy Assumption 3.3.1. Let x∗ ∈ (A+B)−1(0) and {xn}

be a sequence in H generated by Algorithm 3.3.1. Then

φn+1 − (1 + αn)φn + αnφn−1 ≤ ξn‖xn+1 − xn‖2
M + µn‖xn − xn−1‖2

M , n ∈ N, (3.7)

where φn = ‖xn − x∗‖2
M .

Proof. Set zn = (1− βn)yn + βnJ
A,B
λ,M (yn). Then Algorithm 3.3.1 can be written as:

yn = xn + αn(xn − xn−1)

zn = (1− βn)yn + βnJ
A,B
λ,M (yn)

xn+1 = JA,Bλ,M (zn).

(3.8)

53

From (3.8), we have

‖yn − JA,Bλ,M (yn)‖2
M =

1

β2
n

‖zn − yn‖2
M

≥ 1

β2
n

‖JA,Bλ,M (zn)− JA,Bλ,M (yn)‖2
M

=
1

β2
n

‖xn+1 − JA,Bλ,M (yn)‖2
M

=
1

β2
n

‖xn+1 − yn + yn − JA,Bλ,M (yn)‖2
M .

Taking ρ = 1
2

and using Lemma 3.2.2, we obtain

‖yn − JA,Bλ,M (yn)‖2
M ≥ 1

β2
n

{
1

2
‖xn+1 − yn‖2

M − ‖yn − J
A,B
λ,M (yn)‖2

M

}
,

which implies that

(1 +
1

β2
n

)‖yn − JA,Bλ,M (yn)‖2
M ≥ 1

2β2
n

‖xn+1 − yn‖2
M .

Since βn is bounded below by β, we have

(1 +
1

β2
)‖yn − JA,Bλ,M (yn)‖2

M ≥ 1

2β2
n

‖xn+1 − yn‖2
M

=
1

2β2
n

‖xn+1 − xn − αn(xn − xn−1)‖2
M .

Again, using Lemma 3.2.2, we obtain

(1 +
1

β2
)‖yn − JA,Bλ,M (yn)‖2

M ≥ (1− αnρn)

2βn
2 ‖xn+1 − xn‖2

M +
αn
2β2

n

(
αn −

1

ρn

)
‖xn − xn−1‖2

M

=
(1− αnρn)

2β2
n

‖xn+1 − xn‖2
M −

αn(1− αnρn)

2β2
nρn

‖xn − xn−1‖2
M .

(3.9)

54

Multiplying (3.9) by −βn(1− βn), we obtain

−γβn(1− βn)‖yn − JA,Bλ,M (yn)‖2
M ≤ −(1− βn)(1− αnρn)

2βn
‖xn+1 − xn‖2

M

+
αn(1− βn)(1− αnρn)

2βnρn
‖xn − xn−1‖2

M .

(3.10)

From Proposition 3.3.1 and (3.10), we get

‖xn+1 − x∗‖2
M ≤ (1 + αn)‖xn − x∗‖2

M − αn‖xn−1 − x∗‖2
M + αn(1 + αn)‖xn − xn−1‖2

M

−(1− βn)(1− αnρn)

2γβn
‖xn+1 − xn‖2

M +
αn(1− βn)(1− αnρn)

2γβnρn
‖xn − xn−1‖2

M .

Hence

φn+1 ≤ (1 + αn)φn − αnφn−1 + αn(1 + αn)‖xn − xn−1‖2
M

−(1− βn)(1− αnρn)

2γβn
‖xn+1 − xn‖2

M +
αn(1− βn)(1− αnρn)

2γβnρn
‖xn − xn−1‖2

M ,

which can be written as

φn+1 − (1 + αn)φn + αnφn−1 ≤ ξn‖xn+1 − xn‖2
M + µn‖xn − xn−1‖2

M .

Proposition 3.3.3. Suppose that {αn} and {βn} are sequences in [0, 1) satisfying

Assumption 3.3.1. Let {ξn} and {µn} be sequences defined by (3.6). Then ξn +

µn+1 ≤ −τ for all n ∈ N.

55

Proof. Observe that

µn = αn(1 + αn) +
αn(1− βn)(1− αnρn)

2γβnρn
> 0,

since αnρn < 1 and βn ∈ (0, 1). Again, taking into account of choice of ρn, we have

δ =
1− αnρn
ρnβn

.

Note

µn = αn(1 + αn) +
αn(1− βn)δ

2γ
≤ α(1 + α) +

αδ(1− β)

2γ
for all n ∈ N. (3.11)

For all n ∈ N, we have

ξn + µn+1 ≤ −τ ⇔
(1− βn)(αnρn − 1)

2γβn
+ (µn+1 + τ) ≤ 0

⇔ (1− βn)(αnρn − 1) + 2γβn(µn+1 + τ) ≤ 0

⇔ −(1− βn)δρnβn + 2γβn(µn+1 + τ) ≤ 0

⇔ −(1− βn)δ

αn + δβn
+ 2γ(µn+1 + τ) ≤ 0

⇔ −(1− βn)δ + 2γ(µn+1 + τ)(αn + δβn) ≤ 0

⇔ 2γ(µn+1 + τ)(αn + δβn) + βnδ ≤ δ.

By using (3.11), we have

2γ(µn+1 + τ)(αn + δβn) + βnδ ≤ 2γ(α(1 + α) +
αδ(1− β)

2γ
+ τ)(α + δβn) + βnδ

≤ δ,

56

where the last inequality follows by using the upper bound of {βn} in Assumption

3.3.1. Hence

ξn + µn+1 ≤ −τ for all n ∈ N.

Now, we establish the weak convergence of the accelerated preconditioning forward-

backward normal S-iteration method (APFBNSM) defined by Algorithm 3.3.1 for

the computation of solutions of inclusion problem (1.8).

Theorem 3.3.1. Let M : H → H be a linear bounded selfadjoint and positive

definite operator. Let A : H → 2H be a maximally monotone and B : H → H be

M-cocoercive operator such that (A + B)−1(0) is nonempty. Let λ ∈ (0, 1] and let

{αn} and {βn} satisfy the Assumption 3.3.1 with α1 = 0. Then the sequence {xn}

generated by Algorithm 3.3.1 converges weakly to a point of (A+B)−1(0).

Proof. Let x∗ ∈ (A+B)−1(0). Set ψn = φn−αnφn−1 +µn‖xn−xn−1‖2
M . We proceed

with the following steps.

Step 1.
∑∞

n=1 ‖xn+1 − xn‖2
M <∞.

Consider

ψn+1 − ψn = φn+1 − αn+1φn + µn+1‖xn+1 − xn‖2
M − φn + αnφn−1 − µn‖xn − xn−1‖2

M

= φn+1 − (1 + αn+1)φn + αnφn−1 + µn+1‖xn+1 − xn‖2
M − µn‖xn − xn−1‖2

M .

57

Using Propositions 3.3.2 and 3.3.3, we have

ψn+1 − ψn ≤ ξn‖xn+1 − xn‖2
M + µn+1‖xn+1 − xn‖2

M

= (ξn + µn+1)‖xn+1 − xn‖2
M .

≤ −τ‖xn+1 − xn‖2
M for all n ∈ N, (3.12)

which implies that {ψn} is nonincreasing sequence. Since {αn} is bounded above by

α, we obtain

−αφn−1 ≤ φn − αφn−1 ≤ ψn ≤ ψ1.

Thus,

φn ≤ αφn−1 + ψ1

≤ α(αφn−2 + ψ1) + ψ1

...

≤ αnφ0 + ψ1

n−1∑
k=0

αk ≤ αnφ0 +
ψ1

1− α
.

From (3.12), we conclude that

τ
n∑
k=1

‖xk+1 − xk‖2
M ≤ ψ1 − ψn+1

≤ ψ1 + αφn

≤ ψ1 + α(αnφ0 +
ψ1

1− α
)

= αn+1φ0 +
ψ1

1− α
.

58

Since αn+1 → 0 as n→∞, we obtain that

∞∑
n=0

‖xn+1 − xn‖2
M <∞. (3.13)

Step 2. lim
n→∞

||xn − x∗||M exists.

From (3.7), (3.11), (3.13) and Lemma 3.2.4, we obtain that limn→∞ ‖xn − x∗‖M

exists.

Step 3. Every sequential weak cluster point of sequence {xn} is in Fix(JA,Bλ,M).

From (3.13), we have

lim
n→∞

‖xn − xn−1‖M = 0. (3.14)

From Algorithm 3.3.1, we have

‖yn − xn+1‖M ≤ ‖xn − xn+1‖M + α‖xn − xn−1‖M .

Using (3.14), we get that lim
n→∞

‖yn − xn+1‖M = 0. From (3.3), we have

‖JA,Bλ,Myn − yn‖M = ‖JA,Bλ,Myn − xn+1 + xn+1 − yn‖M

≤ ‖JA,Bλ,Myn − xn+1‖M + ‖xn+1 − yn‖M

= ‖JA,Bλ,Myn − J
A,B
λ,M zn‖M + ‖xn+1 − yn‖M

≤ ‖yn − zn‖M + ‖xn+1 − yn‖M

= ‖yn − (1− βn)yn − βnJA,Bλ,Myn‖M + ‖xn+1 − yn‖M

= βn‖yn − JA,Bλ,Myn‖M + ‖xn+1 − yn‖M ,

59

which implies that

(1− βn)‖JA,Bλ,Myn − yn‖M ≤ ‖xn+1 − yn‖M . (3.15)

From (3.15), we obtain

‖JA,Bλ,Myn − yn‖M → 0 as n→∞. (3.16)

Suppose that {xn} has a weak cluster point x ∈ H. From step 2, {xn} has a

subsequence {xnk}, which converges weakly to x. Using (3.16) and Lemma 3.2.3 for

{xnk}, we have x ∈ (A+B)−1(0). It follows from Lemma 3.2.5 that {xn} converges

weakly to a point in (A+B)−1(0).

Remark 3.3.1. In order to deal with the convergence of Algorithm 3.3.1, we assume

that α1 = 0 in Theorem 3.3.1. We can obtain the same conclusion of Theorem 3.3.1

if we assume x1 = x0.

3.3.2 Numerical comparison of Algorithms (3.1) and 3.3.1

The aim of numerical example is to study the convergence behavior of Algorithm

3.3.1 to solve the inclusion problem and compare its performance with Algorithm

(3.1).

Let H = R3 with Euclidean norm and A : R3 → R3 be an operator defined by

A(x1, x2, x3) = (x2 − x3, x3 − x1, x1 − x2) for all (x1, x2, x3) ∈ R3.

Then operator A is maximally monotone. Consider the operators B and M as in

Example 3.1. The operatorB isM -cocoerceive. Thus, we can apply Algorithms (3.1)

60

and 3.3.1 to find the zeros of A+B. We choose initial points x1 = x0 = (15, 15, 14),

αn = 1
20

and βn = 0.5. We perform the experiment for 70 iterations with difference

of norms of two consecutive values is taken to be less than 0.001 as the stopping

criterion. The graph is plotted between the Euclidean norm of xn and the number

of iterations.

0 10 20 30 40 50 60 70

Number of Iterations

0

2

4

6

8

10

12

14

16

18

20

||x
n
|| 2

Algorithm 1.7
Algorithm 3.1

(3.1)
 3.3.1

Figure 3.1: Behaviour of ‖xn‖2 with respect to number of iterations .

In Figure 3.1, we can observe that ‖xn‖2 corresponding to Algorithm 3.3.1 ap-

proaches towards 0 as the number of iterations increases, which supports the result

proved in Theorem 3.3.1. It can also observe that graph of Algorithm (3.1) also

converges to 0. From Figure 3.1, we can say that the convergence speed of Algo-

rithm 3.3.1 is faster than Algorithm (3.1). Table 3.1 shows that in order to get

value of ‖xn‖2 less than 3 decimal places, Algorithm (3.1) needs 53 iterations while

Algorithm 3.3.1 takes just 15 iterations to obtain the same goal. This observation

shows that the convergence speed of Algorithm 3.3.1 is faster than Algorithm (3.1).

61

Number of iteration. Algorithm (3.1) Algorithm 3.3.1
1 17.801304917618964 17.826809506966804
3 18.238459918161315 17.896347714673194
5 18.998465909761100 11.038168038343564
7 18.550509556843764 4.104266737615634
9 17.820863132624478 2.019351546352653
11 16.751374190962910 2.681677869669982
13 14.336675808934617 1.926464479485708
15 11.487166440018544 7.521568964188269e-04
17 9.510101400429985 0
19 6.199317809338941 0
21 4.524962881620460 0
23 2.637915932224955 0
25 1.302567649926143 0
27 1.653802630048002 0
29 1.820947035691583 0
31 1.819006839555166 0
37 0.892617910214436 0
39 0.598832844725429 0
41 0.405996149023377 0
43 0.268613850479600 0
45 0.161184227430202 0
50 0.012670530567700 0
52 0.002881426384463 0
53 0.001361524082377 0
54 6.428424686431453e-04 0
55 0 0
56 0 0
58 0 0
60 0 0
70 0 0

Table 3.1: The evaluation of ‖xn‖2 as number of iteration increases for Algo-
rithm (3.1) and Algorithm 3.3.1

3.4 Applications

62

3.4.1 Convex concave saddle point problem

Consider H1 and H2 are two Hilbert spaces. To define the saddle point problem, we

consider the following convex functions:

• f : H1 → R∞.

• g : H1 → R∞ is differentiable with Lg-Lipschitz gradient.

• h∗ : H2 → R∞.

• k∗ : H2 → R∞ is differentiable with Lk-Lipschitz gradient.

The saddle point problem is defined as follows:

min
x∈H1

max
y∈H2

f(x) + g(x) + 〈Lx, y〉 − h∗(y)− k∗(y), (3.17)

where L : H1 → H2 is a linear bounded operator. Let S denote the solution set of

saddle point problem (3.17).

Define operators A and B on H1 ×H2 by

A :=

∂f L∗

−L ∂h∗

 and B :=

∇g 0

0 ∇k∗

 .
Note that A and B are maximally monotone operators. Thus using the above

argument and KKT conditions, saddle point problem (3.17) can be formulated as

the following inclusion problem

0 ∈ (A+B)

x
y

 .

63

We show that saddle point problem can be solved by adapting our Algorithm 3.3.1.

For this, we consider the linear operator

M =

LgId 0

0 LkId

 .

The convergence analysis can be summarized in the following theorem.

Theorem 3.4.1. Suppose that solution set S is nonempty. Let λ ∈ (0, 1] and let the

parameters {αn} and {βn} satisfy Assumption 3.3.1. Let {(xn, yn)} be the sequence

in H1 ×H2 generated from initial points (x0, y0) = (x1, y1) ∈ H1 ×H2 and defined

by

µn = xn + αn(xn − xn−1)

νn = yn + αn(yn − yn−1)

un = (1− βn)µn + βnξ
−1{χ1(µn)− χ2(νn)}

vn = (1− βn)µn + βnξ
−1{ζ1(µn) + ζ2(νn)}

xn+1 = ξ−1{χ1(un)− χ2(vn)}

yn+1 = ξ−1{ζ1(un) + ζ2(vn)}, n ∈ N,

(3.18)

where χ1 ≡ (LgId− λ∇g)(LkId+ λ∂h∗), χ2 ≡ λL∗(LkId− λ∇k∗), ζ1 ≡ λL(LgId−

λ∇g), ζ2 ≡ (λ∂f+LgId)(LkId−λ∇k∗) and ξ ≡ (λ∂f+LgId)(LkId+λ∂h∗)+λ2LL∗.

Then sequence {(xn, yn)} converges weakly to a point in the solution set S.

Proof. Since g is convex with Lg-Lipschitz continuous gradient, it follows from

Baillon-Hadded Theorem [9] that ∇g is cocoercive with respect to L−1
g . Similarly,

64

∇k∗ is cocoercive with respect to Lk
−1. For (x, y), (ξ, ζ) ∈ H1 ×H2, we have

〈B(x, y)−B(ξ, ζ), (x, y)− (ξ, ζ)〉H1×H2

= 〈∇g(x)−∇g(ξ), x− ξ〉H1 + 〈∇k∗(y)−∇k∗(ζ), y − ζ〉H2

≥ L−1
g ‖∇g(x)−∇g(ξ)‖2

H1
+ L−1

k ‖∇k
∗(y)−∇k∗(ζ)‖2

H2
.

Thus, B is M -cocoercive. With the above choice of A, B and M , Algorithm 3.3.1

reduces to Algorithm (3.18). Since parameters {αn} and {βn} satisfy conditions

(B1), (B2) and (B3), Algorithm (3.18) converges weakly to a point in the solution

set S.

Remark 3.4.1. In order to solve saddle point problem (3.17), when B is M-

cocoercive, the Algorithm (3.1) proposed by Lorenz and Pock [61] can be written

as follows:

µn = xn + αn(xn − xn−1)

νn = yn + αn(yn − yn−1)

xn+1 = ξ−1{χ1(µn)− χ2(νn)}

yn+1 = ξ−1{ζ1(µn) + ζ2(νn)}, n ∈ N,

(3.19)

where operators ξ, χ1, χ2, ζ1and ζ2 are as in Theorem 3.4.1. If parameters αn and λ

satisfy the assumptions as in Theorem 3.1.1, then the sequence {(xn, yn)} generated

by Algorithm (3.19) converges weakly to a point in solution set S.

3.4.2 Lasso problem

The Lasso problem is extensively used in the field of signal processing, image pro-

cessing and machine learning (see [14, 27, 71]). Many problems arising in these fields

65

can be expressed as Lasso problem. For the choice of f = ρ‖x‖1, g = 1
2m
‖Ax− b‖2

and h∗ = k∗ = L = 0, Lasso problem (2.24) can be framed as saddle point problem

(3.17). Thus, we have the following result.

Corollary 3.4.1. Suppose that the solution set of Lasso problem (2.24) is nonempty.

Let the parameter {αn}, {βn} and λ satisfy Assumption 3.3.1. Consider the sequence

{xn} generated by the following algorithm with the initial point x0=x1 and defined

by,

µn = xn + αn(xn − xn−1)

un = (1− βn)µn + βn(Id+ λL−1
g ρ∂‖ · ‖1)−1

(
µn − λL−1

g AT (Aµn−b)
m

)
xn+1 = (Id+ λL−1

g ρ∂‖ · ‖1)−1
(
un − λL−1

g AT (Aun−b)
m

)
.

(3.20)

Then {xn} converges weakly to an optimal point of Lasso problem.

Proof. Using Theorem 3.4.1, we can obtain that Algorithm (3.20) converges weakly

to an optimal point of Lasso problem (2.24).

Remark 3.4.2. Algorithm (3.19) can be used to solve Lasso problem (2.24). For

the choice of f = ρ‖x‖1, g = 1
2m
‖Ax − b‖2 and h∗ = k∗ = L = 0, the algorithm

reduces to the following

 µn = xn + αn(xn − xn−1)

xn+1 = (Id+ λL−1
g ρ∂‖ · ‖1)−1

(
µn − λL−1

g AT (Aµn−b)
m

)
.

(3.21)

With the assumptions as in Remark 3.4.1, the sequences {xn} generated by Algorithm

(3.21) converges weakly to a solution of the Lasso problem.

66

3.5 Numerical Experiments

In this section, we perform numerical experiments to demonstrate the realworld ap-

plicability of the proposed algorithm. All the numerical experiments are performed

in the MATLAB 2018a environment on Intel(R)core(TM)i5 processor with 8GB

RAM and 64-bit operating system.

3.5.1 Regression problems

In this subsection, we compare the performance of Algorithms (3.18) and (3.19)

for a regression problem on high dimensional datasets. The objective function we

consider is the loss function with l1-regularization, i.e., Lasso problem (2.24). We

employ both the Algorithms (3.18) and (3.19) to solve the Lasso problem (2.24) and

compare their performance on the basis of their convergence speed and accuracy.

For our experiment, we consider the Lasso problem with data (Ai, bi), i = 1, 2, ...,m,

where Ai = (Ai1, Ai2, ..., Aid)
T are predictor variables and bi are responses. The

description of the datasets1 is summarized in Table 3.2. Here, the total number of

Datasets |V | |E| 〈D〉 〈K〉 〈C〉
Dolphin 62 159 3.302 5.129 0.258
Football 115 613 2.486 10.660 0.403

Jazz 198 2742 2.235 27.697 0.620
Celegansneural 297 2148 2.447 14.465 0.308

Usair97 332 2126 2.738 12.807 0.749
Netscience (NS) 379 914 6.042 4.823 0.798

Political blogs (PB) 1222 16714 2.738 27.355 0.360

Table 3.2: Topological information of real-world network datasets

vertices and edges in a network is represented by the symbols |V | and |E|, respec-

tively. 〈D〉 represents the average shortest path length, 〈K〉, the average degree, and

1http://www-personal.umich.edu/ mejn/netdata/

67

〈C〉, the average clustering coefficient of the network. For experimental purpose, we

select the inertial parameter αn = n−1
14n+2.5

and βn = 0.5 + 1
200n

which satisfy the

conditions (B1), (B2) and (B3). A bias column is added to dataset and we run

algorithms for maximum 1000 iteration. We select α × ‖AbT‖∞ as a regularization

parameter and vary α between 10−10 to 10−3 in the multiple of 0.1. The best results

are shown here.

In the first experiment, we compare the performances of Algorithm (3.18) and Al-

gorithm (3.19) on the basis of their convergence speed. We compute the difference

between objective function value F (x) and optimized value F (x∗) at each iteration

for both Algorithms (3.18) and (3.19). We initialize the experiment with point

x0 = x1 = 0 ∈ Rd . The numerical results are reported in Figure 3.8 for 1000

iterations.

In Figure 3.8, we plot the graph between F (x)−F (x∗) and the number of iterations.

From Figure 3.8, we can observe that Algorithm (3.18) has better convergence speed

than Algorithm (3.19) for all datasets.

In the second experiment, we compare both the Algorithms (3.18) and (3.19) on

the basis of their accuracy. We calculate the root mean square error (RMSE) of

Algorithms (3.18) and (3.19) at each iteration. We take the initial points x0 = x1 =

0 ∈ Rd and plot the graph between RMSE and the number of iterations, which is

shown in Figure 3.15.

From Figure 3.15, we can observe that at each iteration the RMSE value of Algorithm

(3.18) is less than RMSE value of Algorithm (3.19) for all datasets. Thus, Algorithm

(3.19) is more accurate than Algorithm (3.18).

Remark 3.5.1. From experiments, we observe that Algorithm (3.18) not only have

higher convergence speed but it also gives more accurate results than Algorithm (3.19)

68

0 100 200 300 400 500 600 700 800 900 1000

Number of Interations

2.5

3

3.5

4

4.5

5

5.5

6

F
(x

)-
F

(x
*)

10-3 Dolphin

Algorithm 4.3
Algorithm 4.2

(3.19)
(3.18)

Figure 3.2: Dolphin.

0 100 200 300 400 500 600 700 800 900 1000

Number of Interations

3

3.5

4

4.5

5

5.5

F
(x

)-
F

(x
*)

10-4 Football

Algorithm 4.3
Algorithm 4.2

Algorithm (3.19)

Algorithm (3.18)

Figure 3.3: Football.

0 100 200 300 400 500 600 700 800 900 1000

Number of Interations

1.68

1.7

1.72

1.74

1.76

1.78

1.8

1.82

F
(x

)-
F

(x
*)

10-3 Jazz

Algorithm 4.3
Algorithm 4.2

Algorithm (3.19)

Algorithm (3.18)

Figure 3.4: Jazz.

0 100 200 300 400 500 600 700 800 900 1000

Number of Iteration

3.45

3.5

3.55

3.6

3.65

3.7

3.75

F
(x

)-
F

(x
*)

10-4 Celegansneural

Algorithm 4.3
Algorithm 4.2

Algorithm (3.19)
Algorithm (3.18)

Figure 3.5: Celegansneural

0 100 200 300 400 500 600 700 800 900 1000

Number of Interations

1.71

1.72

1.73

1.74

1.75

1.76

1.77

1.78

1.79

1.8

1.81

F
(x

)-
F

(x
*)

10-4 Usair97

Algorithm 4.3
Algorithm 4.2

Algorithm (3.19)

Algorithm (3.18)

Figure 3.6: Usair97

0 100 200 300 400 500 600 700 800 900 1000

Number of Interations

6.1

6.15

6.2

6.25

6.3

6.35

6.4

6.45

F
(x

)-
F

(x
*)

10-6 Netscience

Algorithm 4.3
Algorithm 4.2

Algorithm (3.19)

Algorithm (3.18)

Figure 3.7: Netscience.

Figure 3.8: Value of F (xn)− F (x∗) for 1000 iterations with different datasets.

69

0 100 200 300 400 500 600 700 800 900 1000

Number of Interations

0.278

0.28

0.282

0.284

0.286

0.288

0.29

R
M

S
E

Dolphin

Algorithm 4.3
Algorithm 4.2

(3.19)Algorithm (3.19)
Algorithm (3.18)

Figure 3.9: Dolphin.

0 100 200 300 400 500 600 700 800 900 1000

Number of Interations

0.3

0.301

0.302

0.303

0.304

0.305

0.306

R
M

S
E

Football

Algorithm 4.3
Algorithm 4.2

Algorithm (3.19)

Algorithm (3.18)

Figure 3.10: Football.

0 100 200 300 400 500 600 700 800 900 1000

Number of Interations

0.2637

0.2638

0.2639

0.264

0.2641

0.2642

0.2643

0.2644

0.2645

R
M

S
E

Jazz

Algorithm 4.3
Algorithm 4.2

Algorithm (3.19)
Algorithm (3.18)

Figure 3.11: Jazz.

0 100 200 300 400 500 600 700 800 900 1000

Number of Interations

0.2208

0.22085

0.2209

0.22095

0.221

0.22105

0.2211

R
M

S
E

Celegansneural

Algorithm 4.3
Algorithm 4.2

Algorithm (3.19)
Algorithm (3.18)

Figure 3.12: Celegansneural

0 100 200 300 400 500 600 700 800 900 1000

Number of Interations

0.19658

0.1966

0.19662

0.19664

0.19666

0.19668

0.1967

0.19672

R
M

S
E

Usair97

Algorithm 4.3
Algorithm 4.2

Algorithm (3.19)

Algorithm (3.18)

Figure 3.13: Usair97

0 100 200 300 400 500 600 700 800 900 1000

Number of Interations

0.11295

0.112951

0.112952

0.112953

0.112954

0.112955

0.112956

0.112957

0.112958

0.112959

0.11296

R
M

S
E

Netscience

Algorithm 4.3
Algorithm 4.2
Algorithm (3.19)

Algorithm (3.18)

Figure 3.14: Netscience.

Figure 3.15: Behavior of root mean square error (RMSE) for different datasets.

70

for high dimensional datasets also. Thus, we observe that Algorithm (3.18) is equally

important over Algorithm (3.19) for high dimensional datasets also, as we have

obtained in numerical example 3.3.2.

3.5.2 Link prediction problems

To further analyze the proposed algorithm, we depict the practical application of the

proposed Algorithm (3.18) to solve a link prediction problem. The Algorithm (3.18)

is applied to predict missing links in networks (popularly known as link prediction

[54, 57]). The link prediction is considered as the binary classification problem where

the two classes are the link existence and link absence between two nodes. Logistic

model [48] is used to classify the different links, which can be formulated as convex

minimization problem, given by

min
Θ∈Rn

− 1

m

[
m∑
i=1

bilog hΘ(xi) + (1− bi)log(1− hΘ(xi))

]
+ ρ‖Θ‖1, (3.22)

where hΘ(u) = (1 + exp−ΘTu)−1 is a sigmoid function, ρ is a regularization param-

eter, m is the total number of node pairs, xi’s are feature vectors and bi’s indicate

the existence of link between nodes. Minimization problem (3.22) reduces to sad-

dle point problem (3.17) by assuming f = ρ‖Θ‖1, g = 1
m

[
∑m

i=1 b
ilog hΘ(xi) + (1 −

bi) log(1 − hΘ(xi))] and h∗ = k∗ = L = 0. The experiment of the link prediction is

carried out in two phases, viz., feature extraction phase and regression phase. Fea-

tures are automatically extracted using the autoencoder framework of deep learning

[52] with two hidden layers. Each node of the network is represented using 16 fea-

tures. Once the node features are extracted, edge features are computed using the

binary operator. Further, the regression is applied for the best estimation of the

71

Datasets Accuracy Logistic Error
Dolphin 0.915918 0.084082
Football 0.906484 0.093516

Celegansneural 0.951133 0.048867
Usair97 0.961307 0.038693

Political blogs 0.734417 0.265583

Table 3.3: Result

decision boundary and accuracy is computed based on this decision boundary. The

experiment is carried out on real network datasets tabulated in Table 3.2.

Accuracy. Accuracy and logistic error corresponding to seven realworld network

datasets are shown in Table 3.3. The proposed method shows errors of less than

10% on all datasets except the political blogs where the error reaches up to a higher

level of 26.5%. It shows the best accuracy result on coauthorship data (Netscience)

compared to others.

We also compare the accuracy results of the proposed methods with some well

known existing approaches (viz., common neighbors (CN) [57], Adamic/Adar (AA)

[2], Resource allocation (RA) [75], Preferential attachment (PA) [7], and CAR [28].

These results are tabulated in Table 3.4, where the best value against each dataset

is shown in bold-face. From Table 3.4, we observe that the proposed method shows

best results on Dolphin, Football, Jazz, Celegansneural, and Usair97 datasets with

significant margins. CAR is the best performing method on Netscience and Political

blogs datasets. One thing to note that the accuracy of all the methods in the table

is almost similar on Netscience except the PA.

72

Accuracy
Datasets Algorithm (3.18) CN AA RA PA CAR
Dolphin 0.915918 0.767566 0759134 0.773187 0.603709 0.682928
Football 0.906484 0.658252 0.658417 0.663202 0.526189 0.846447

Jazz 0.930058 0.688999 0.698540 0.719959 0.618850 0.861920
Celegansneural 0.951133 0.539677 0.715186 0.752523 0.684004 0.842770

Usair97 0.961307 0.660190 0.782063 0.820363 0.780785 0.939876
Netscience 0.986668 0.996769 0.996824 0.996742 0.719727 0.999697

Political blogs 0.734417 0.765682 0.777344 0.853749 0.816781 0.964388

Table 3.4: Result Comparison

3.6 Conclusion

In this chapter, we have proposed a preconditioned forward-backward algorithm to

solve the monotone inclusion problem and studied its convergence behavior. The

proposed algorithm is applied to solve saddle point problem. We have conducted

numerical experiments to solve the regression and Link prediction problems. Nu-

merical experiments show that the proposed algorithm has better convergence speed

and accuracy than the algorithm proposed by Lorenz and Pock [61]. The proposed

algorithm is also compared with some well-known existing methods to solve link pre-

diction problems. In most of cases, the proposed algorithm outperforms the methods

under consideration.

73

