
Chapter 2

New accelareted algorithm and its

Application to regression problems

The purpose of this chapter is to investigate a new inertial iterative algorithm for

finding the fixed points of a nonexpansive operator in the framework of Hilbert

spaces. The first two sections of this chapter address the background and results

related to this research work. We propose a novel accelerated iterative algorithm for

finding fixed points of a nonexpansive mapping in Section 2.3. Since the presence

of inertial terms in an iteration method increase its convergence rate, we use iner-

tial terms to define the algorithm. We investigate the convergence behavior of the

proposed algorithm and support it with a numerical example. Further in Section

2.4, we use the proposed algorithm to design a new accelerated proximal gradient

algorithm. We also conduct the numerical experiments for regression problem and

This chapter is based on our published research work “Dixit, A., Sahu, D. R., Singh, A.
K., and Som, T. (2020). Application of a new accelerated algorithm to regression problems. Soft
Computing, 24(2), 1539-1552.”
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compare the performances of the proposed algorithm with other already existing

algorithms on the basis of their objective function values and accuracy.

2.1 Introduction

In 2008, Mainge [63] has combined the inertial type extrapolation algorithm with

the classical Mann algorithm and has named it as inertial Mann iteration method for

finding the fixed points of a nonexpansive mapping in a real Hilbert space. Inertial

Mann algorithm is defined as follows:

 yn = xn + αn(xn − xn−1),

xn+1 = (1− λn)yn + λnTyn for all n ∈ N.
(2.1)

Mainge [63] has studied weak convergence of inertial Mann algorithm (2.1) under

the following conditions:

(C0) αn ∈ [0, α] for all n ∈ N and α ∈ [0, 1);

(C1)
∑∞

n=1 αn‖xn − xn−1‖2 <∞;

(C2) inf
n≥1

λn ≥ 0 and sup
n≥1

λn ≤ 1.

The second condition (C1) is very strong. It is not easy to verify the condition (C1)

in practical situations. In 2015, Bot and Csetneck [16] have proposed a modification

in algorithm (2.1) for finding fixed points of nonexpansive mappings. They have

proved the following weak convergence theorem for the sequence generated by the

algorithm (2.1) by replacing the condition (C1) with another condition.

Theorem 2.1.1. ([16], Theorem 5) Let C be nonempty closed affine subset of a real

Hilbert space H and T : C → C be a nonexpansive mapping such that Fix(T ) 6= ∅.
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Consider the following iterative method:

 yn = xn + αn(xn − xn−1),

xn+1 = (1− λn)yn + λnTyn for all n ∈ N,

where x0, x1 are chosen arbitrarily from C, sequence {αn} ∈ [0, α) is nondecreasing

with α1 = 0 and α ∈ [0, 1) and λ, δ, σ > 0 such that

δ >
α2(1 + α) + ασ

1− α2
, 0 < λ ≤ λn ≤

δ − α[α(1 + α) + αδ + σ]

δ[1 + α(1 + α) + αδ + σ]
for all n ∈ N.

Then the sequence {xn} converges weakly to a fixed point of T .

In this chapter, we propose a novel iterative algorithm to solve the fixed point

problem of a nonexpansive mapping. Our work is inspired by iterative methods

developed by Bot and Csetnek [16] and Sahu [82].

2.2 Preliminary Results

In this section, we present some definitions and basic results useful for the chapter.

Let D be a nonempty subset of a real Hilbert space H and let T : D → H be a

mapping. Then T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ D.

Let f : H → (−∞,∞] be a function. f is said to be proper if −∞ /∈ f(H) and

dom f 6= ∅. f is said to be lower semicontinuous at x ∈ H if, for every sequence

{xn} ⊆ H,

xn → x→ f(x) ≤ limf(xn).
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The subdifferential of f is the set-valued operator ∂f : H → 2H defined by

∂f(x) = {u ∈ H : 〈y − x, u〉+ f(x) ≤ f(y) for all y ∈ H}.

f is subdifferentiable at x ∈ H if ∂f(x) 6= ∅. The elements of ∂f(x) are the

subgradients of f at x.

Let Γ0(H) denotes the set of all proper lower semicontinuous convex functions from

H to (−∞,+∞].

Definition 2.2.1. ([9]) Let f ∈ Γ0(H) and let x ∈ H. Then proxf (x) is the unique

point in H that satisfies

f(x) = min
y∈H

(f(y) +
1

2
‖x− y‖2) = f(proxf (x)) +

1

2
‖x− proxf (x)‖2.

The operator proxf : H → H is the proximity operator or proximal mapping of f .

Remark 2.2.1. The proximity operator for `1-norm is given by

proxλ‖·‖1(x) = (x− λ)+ − (−x− λ)+ =


xi − λ if xi ≥ λ,

0 if |xi| ≤ λ,

xi + λ if xi ≤ −λ.

Lemma 2.2.1. [9, Corollary 2.14] Let z1, z2 ∈ H. Then the following identities hold

for arbitrary a ∈ R:

(i) ‖z1 − z2‖2 = ‖z1‖2 + ‖z2‖2 − 2〈z1, z2〉,

(ii) ‖az1 + (1− a)z2‖2 = a‖z1‖2 + (1− a)‖z2‖2 − a(1− a)‖z1 − z2‖2.
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Lemma 2.2.2. [37] Let ρ be a positive and α be a nonnegative real numbers. Then,

for each z1, z2 ∈ H,

‖z1 ± αz2‖2 ≥ (1− αρ)‖z1‖2 + α(α− 1

ρ
)‖z2‖2.

Lemma 2.2.3. [9, Corollary 4.18] Let C be a nonempty closed convex subset of H

and consider a nonexpansive mapping T : C → H. Let {zn} be a sequence in C and

z ∈ H be such that zn ⇀ z and zn − Tzn → 0 as n→∞. Then z ∈ Fix(T ).

Lemma 2.2.4. [5, Lemma 3] Consider sequences {yn}, {zn} and {θn} in [0,∞)

such that

yn+1 ≤ yn + θn(yn − yn−1) + zn for all n ∈ N,
∞∑
n=1

zn <∞

and let there exist a real number θ with 0 ≤ θn ≤ θ < 1 for all n ∈ N. Then the

following hold:

(i)
∑∞

n=1[yn − yn−1]+ <∞, where [t]+ = max{t, 0},

(ii) there exists y∗ ∈ [0,∞) such that yn → y∗.

Lemma 2.2.5. [74] Consider a nonempty subset C of H. Let {φn} be a sequence in

H such that the following two conditions hold:

(i) for all φ ∈ C, limn→∞ ‖φn − φ‖ exists,

(ii) every sequential weak cluster point of {φn} is in C.

Then the sequence {φn} converges weakly to a point in C.
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2.3 Accelerated normal S-iteration method and

its convergence analysis

In this section, we introduce a new accelerated fixed point iteration method and

study the weak convergence analysis for finding fixed points of a nonexpansive map-

ping in the framework of real Hilbert spaces.

First, we introduce our accelerated iterative algorithm.

Algorithm 2.3.1. Let C be a nonempty closed affine subset of a real Hilbert space

H and T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅.

(1) Initialization: Select x0, x1 ∈ C arbitrarily.

(2) Iterative step: Select {αn} and {βn} as iteration parameters in [0, 1) and compute

the (n+ 1)th iteration as follows:

 yn = xn + αn(xn − xn−1),

xn+1 = T [(1− βn)yn + βnT (yn)] for all n ∈ N.
(2.2)

If αn = 0, then iteration method (2.2) reduces to the normal S-iteration method

defined in (1.21). Thus, the iteration method (2.2) is an inertial form of normal

S-iteration method. We call it inertial normal S-iteration method.

We assume that {αn} and {βn} satisfy the following conditions:

(A1) {αn} ⊂ [0, α] is non-decreasing sequence with α ∈ [0, 1);
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(A2) there exist constants β, σ, δ > 0 satisfying

δ >
2qα(α(1 + α) + σ)

1− α2(1− β)
, 0 < β ≤ βn ≤

δ − α(2qα(1 + α) + αδ(1− β) + 2qσ)

δ[1 + 2qα(1 + α) + αδ(1− β) + 2qσ]
,(2.3)

where q = 1 + 1
β2 ;

(A3) Define sequences {ξn} and {µn} by

µn = αn(1+αn)+
αn(1− βn)(1− αnρn)

2qβnρn
, ξn = −(1− βn)(1− αnρn)

2qβn
, (2.4)

where ρn = 1
αn+δβn

.

Before presenting our main convergence theorem, we need the following:

Proposition 2.3.1. Let C be a nonempty closed affine subset of a real Hilbert space

H and T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅. Let {xn} be a

sequence generated by Algorithm 2.3.1. Then

‖xn+1 − p‖2 ≤ (1 + αn)‖xn − p‖2 − αn‖xn−1 − p‖2 + αn(1 + αn)‖xn − xn−1‖2

−βn(1− βn)‖yn − T (yn)‖2 for all p ∈ Fix(T ).

Proof. From Algorithm 2.3.1 and Lemma 2.2.1, we have

‖xn+1 − p‖2 = ‖T [(1− βn)yn + βnT (yn)]− p‖2

≤ ‖(1− βn)yn + βnT (yn)− p‖2

= (1− βn)‖yn − p‖2 + βn‖T (yn)− p‖2 − βn(1− βn)‖yn − T (yn)‖2

≤ (1− βn)‖yn − p‖2 + βn‖yn − p‖2 − βn(1− βn)‖yn − T (yn)‖2

= ‖yn − p‖2 − βn(1− βn)‖yn − T (yn)‖2. (2.5)
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Again, from (2.2) and Lemma 2.2.1, we have

‖yn − p‖2 = ‖xn + αn(xn − xn−1)− p‖2

= ‖(1 + αn)(xn − p)− αn(xn−1 − p)‖2

= (1 + αn)‖xn − p‖2 − αn||xn−1 − p‖2 + αn(1 + αn)‖xn − xn−1‖2.

(2.6)

Combining (2.5) and (2.6), we get

‖xn+1 − p‖2 ≤ (1 + αn)‖xn − p‖2 − αn‖xn−1 − p‖2 + αn(1 + αn)‖xn − xn−1‖2

−βn(1− βn)‖yn − T (yn)‖2. (2.7)

Proposition 2.3.2. Let C be a nonempty closed affine subset of a real Hibert space

H and T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅. Let {αn} and {βn}

be sequences in [0, 1) satisfying the conditions (A1) and (A2). Then the sequence

{xn} generated by the Algorithm (2.2) satisfies the following inequality:

φn+1 − (1 + αn)φn + αnφn−1 ≤ ξn‖xn+1 − xn‖2 + µn‖xn − xn−1‖2, (2.8)

where φn = ‖xn − p‖2.

Proof. Set zn = (1− βn)yn + βnT (yn). Then the Algorithm (2.2) can be written as:


xn+1 = T (zn),

zn = (1− βn)yn + βnT (yn),

yn = xn + αn(xn − xn−1).

(2.9)
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From (2.9), we have

‖yn − T (yn)‖2 =
1

β2
n

‖zn − yn‖2

≥ 1

β2
n

‖T (zn)− T (yn)‖2

=
1

β2
n

‖xn+1 − T (yn)‖2

=
1

β2
n

‖xn+1 − yn + yn − T (yn)‖2.

Taking ρ = 1
2

and using Lemma 2.2.2, we obtain

‖yn − T (yn)‖2 ≥ 1

β2
n

{
1

2
‖xn+1 − yn‖2 − ‖yn − T (yn)‖2

}
,

which implies that

(1 +
1

β2
n

)‖yn − T (yn)‖2 ≥ 1

2β2
n

‖xn+1 − yn‖2.

Note 0 < β ≤ βn for all n ∈ N, hence

(1 +
1

β2
)‖yn − T (yn)‖2 ≥ 1

2β2
n

‖xn+1 − yn‖2

=
1

2β2
n

‖xn+1 − xn − αn(xn − xn−1)‖2.

Again using Lemma 2.2.2, we obtain

(1 +
1

β2
)‖yn − T (yn)‖2 ≥ (1− αnρn)

2βn
2 ‖xn+1 − xn‖2 +

αn
2β2

n

(αn −
1

ρn
)‖xn − xn−1‖2

=
(1− αnρn)

2β2
n

‖xn+1 − xn‖2 − αn(1− αnρn)

2β2
nρn

‖xn − xn−1‖2.

(2.10)
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Multiplying (2.10) by −βn(1− βn), we obtain

−qβn(1− βn)‖yn − T (yn)‖2 ≤ −(1− βn)(1− αnρn)

2βn
‖xn+1 − xn‖2

+
αn(1− βn)(1− αnρn)

2βnρn
‖xn − xn−1‖2. (2.11)

From Proposition 2.3.1 and equation (2.11), we get

‖xn+1 − p‖2 ≤ (1 + αn)‖xn − p‖2 − αn‖xn−1 − p‖2 + αn(1 + αn)‖xn − xn−1‖2

−(1− βn)(1− αnρn)

2qβn
‖xn+1 − xn‖2 +

αn(1− βn)(1− αnρn)

2qβnρn
‖xn − xn−1‖2.

Hence

φn+1 ≤ (1 + αn)φn − αnφn−1 + αn(1 + αn)‖xn − xn−1‖2

−(1− βn)(1− αnρn)

2qβn
‖xn+1 − xn‖2 +

αn(1− βn)(1− αnρn)

2qβnρn
‖xn − xn−1‖2,

which can be written as

φn+1 − (1 + αn)φn + αnφn−1 ≤ ξn‖xn+1 − xn‖2 + µn‖xn − xn−1‖2.

Proposition 2.3.3. Suppose {αn} and {βn} are sequences in [0, 1) satisfying the

condition (A1) and (A2). Let {ξn} and {µn} be sequences defined by (2.4). Then

ξn + µn+1 ≤ −σ for all n ∈ N.
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Proof. Note that µn = αn(1 + αn) + αn(1−βn)(1−αnρn)
2qβnρn

> 0, since αnρn < 1 and

βn ∈ (0, 1). Again, taking into account of choice of ρn, we have

δ =
1− αnρn
ρnβn

.

Note

µn = αn(1 + αn) +
αn(1− βn)δ

2q
≤ α(1 + α) +

αδ(1− β)

2q
for all n ∈ N. (2.12)

For n ∈ N, we have

ξn + µn+1 ≤ −σ ⇔ (1− βn)(αnρn − 1)

2qβn
+ (µn+1 + σ) ≤ 0

⇔ (1− βn)(αnρn − 1) + 2qβn(µn+1 + σ) ≤ 0

⇔ −(1− βn)δρnβn + 2qβn(µn+1 + σ) ≤ 0

⇔ −(1− βn)δ

αn + δβn
+ 2q(µn+1 + σ) ≤ 0

⇔ −(1− βn)δ + 2q(µn+1 + σ)(αn + δβn) ≤ 0

⇔ 2q(µn+1 + σ)(αn + δβn) + βnδ ≤ δ.

By using (2.12), we obtain

2q(µn+1 + σ)(αn + δβn) + βnδ ≤ 2q(α(1 + α) +
αδ(1− β)

2q
+ σ)(α+ δβn) + βnδ ≤ δ,

where the last inequality follows from the upper bound for {βn} in (2.3). Hence

ξn + µn+1 ≤ −σ for all n ∈ N.
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Now, we are ready to establish weak convergence of inertial normal S-iteration

method defined by (2.2) for computation of fixed points of a nonexpansive map-

ping.

Theorem 2.3.1. Let C be a nonempty closed affine subset of a real Hilbert space H

and T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅. Let {αn} with α1 = 0

and {βn} be sequences in [0, 1) satisfying the conditions (A1) and (A2). Then the

sequence {xn} generated by Algorithm 2.2 converges weakly to a fixed point of T .

Proof. Let p ∈ Fix(T ) and set ψn = φn − αnφn−1 + µn‖xn − xn−1‖2. We proceed

with the following steps:

Step 1. First we show that {ψn} is a nonincreasing sequence. Note

ψn+1 − ψn = φn+1 − αn+1φn + µn+1‖xn+1 − xn‖2 − φn + αnφn−1 − µn‖xn − xn−1‖2

= φn+1 − (1 + αn+1)φn + αnφn−1 + µn+1‖xn+1 − xn‖2 − µn‖xn − xn−1‖2.

(2.13)

Using Proposition 2.3.2, we get

ψn+1 − ψn ≤ ξn‖xn+1 − xn‖2 + µn+1‖xn+1 − xn‖2

= (ξn + µn+1)‖xn+1 − xn‖2. (2.14)

Using Proposition 2.3.3, we have

ψn+1 − ψn ≤ −σ‖xn+1 − xn‖2 for all n ∈ N, (2.15)
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{ψn} is nonincreasing sequence.

Step 2. Now, we show that
∑∞

n=1 ‖xn+1 − xn‖2 <∞.

Since {ψn} is nonincreasing and {αn} is bounded, we get

−αφn−1 ≤ φn − αφn−1 ≤ ψn ≤ ψ1.

Thus, we obtain

φn ≤ αφn−1 + ψ1,

≤ α(αφn−2 + ψ1) + ψ1,

...

≤ αnφ0 + ψ1

n−1∑
k=0

αk ≤ αnφ0 +
ψ1

1− α
.

From (2.15), we conclude that

σ

n∑
k=1

‖xk+1 − xk‖2 ≤ ψ1 − ψn+1

≤ ψ1 + αφn

≤ ψ1 + α(αnφ0 +
ψ1

1− α
)

= αn+1φ0 +
ψ1

1− α
. (2.16)

Since αn+1 → 0 as n→∞, we obtain that

∞∑
n=1

‖xn+1 − xn‖2 <∞. (2.17)
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Step 3. Next, we show that limn→∞ ||xn − p|| exists.

From (2.8), (2.12), (2.17) and Lemma 2.2.4, we obtain limn→∞ ||xn − p|| exists.

Step 4. Finally to show that every sequential weak cluster point of sequence {xn}

is in Fix(T ).

From (2.17), we have

lim
n→∞

‖xn − xn−1‖ = 0. (2.18)

From Algorithm 2.3.1, we have

‖yn − xn+1‖ ≤ ‖xn − xn+1‖+ αn‖xn − xn−1‖

≤ ‖xn − xn+1‖+ α‖xn − xn−1‖,

using (2.18), we get that limn→∞ ‖yn − xn+1‖ = 0. From (2.2), we have

‖Tyn − yn‖ = ‖Tyn − xn+1 + xn+1 − yn‖

≤ ‖Tyn − xn+1‖+ ‖xn+1 − yn‖

= ‖Tyn − Tzn‖+ ‖xn+1 − yn‖

≤ ‖yn − zn‖+ ‖xn+1 − yn‖

= ‖yn − (1− βn)yn − βnTyn‖+ ‖xn+1 − yn‖

= βn‖yn − Tyn‖+ ‖xn+1 − yn‖,
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which implies that

(1− βn)‖Tyn − yn‖ ≤ ‖xn+1 − yn‖. (2.19)

From (2.19), we obtain

‖Tyn − yn‖ → 0 as n→∞. (2.20)

Let x be an arbitrary weak cluster point of sequence {xn}. Then there exists a

subsequence {xnk} of sequence {xn} such that xnk ⇀ x ∈ C. Using (2.20) and

Lemma 2.2.3, we conclude that x ∈ Fix(T ). It follows from Lemma 2.2.5 that {xn}

converges weakly to a point in Fix(T ).

Remark 2.3.1. In order to proof Theorem 2.3.1, we need the nonnegativity of µ,

which is accomplished by the condition α1 = 0. This condition can be removed by

taking x0 = x1 in Algorithm 2.3.1.

2.4 Numerical Example

In this section, we have to demonstrate behavior of the inertial normal S-iteration

method (2.2), Mann iteration method (1.19), normal S-iteration method (1.21) and

inertial Mann iteration method (2.1) by the following example.

Example 2.4.1. Let H = R2 with usual norm and T : R2 → R2 be a mapping

defined by

T (u, v) =

(
sin

u+ v

2
, sin

u− v
2

)
for all (u, v) ∈ R2.
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Thus, finding the fixed point of T implies a solution to the following system:


u = sinu+v

2
,

v = sinu−v
2
.
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Figure 2.1: log u vs number of
iteration.
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Figure 2.3: Coordinatewise graph for different iteration methods.

First, we show that T is a nonexpansive mapping. Let x = (u1, v1), y = (u2, v2) ∈

R2, then

‖T (x)− T (y)‖2 =

∥∥∥∥(sinu1 + v1

2
, sin

u1 − v1

2

)
−
(
sin

u2 + v2

2
, sin

u2 − y2

2

)∥∥∥∥2

=

∣∣∣∣sinu1 + v1

2
− sinu2 + v2

2

∣∣∣∣2 +

∣∣∣∣sinu1 − v1

2
− sinu2 − v2

2

∣∣∣∣2
≤

∣∣∣∣u1 + v1

2
− u2 + v2

2

∣∣∣∣2 +

∣∣∣∣u1 − v1

2
− u2 − v2

2

∣∣∣∣2
≤

∣∣∣∣u1 − u2

2
+
v1 − v2

2

∣∣∣∣2 +

∣∣∣∣u1 − u2

2
+
v2 − v1

2

∣∣∣∣2. (2.21)
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Note (a+ b)2 ≤ 2(a2 + b2) for any a, b ∈ R. Hence, from (2.21), we get

‖T (x)− T (y)‖2 ≤ 2

∣∣∣∣u1 − u2

2

∣∣∣∣2 + 2

∣∣∣∣v1 − v2

2

∣∣∣∣2 + 2

∣∣∣∣u1 − u2

2

∣∣∣∣2 + 2

∣∣∣∣v1 − v2

2

∣∣∣∣2
= |u1 − u2|2 + |v1 − v2|2

= ‖x− y‖2. (2.22)

From (2.22), we get that T is a nonexpansive map. It is easy to see that (0, 0)

is a fixed point of T . Hence Theorem 2.1.1 and Theorem 2.3.1 can be applied for

computation of fixed point of T .

For numerical results, the initial values are taken as (x0, y0) = (5, 1) and we have

taken iteration parameter βn = 0.50, inertial parameter αn = 1
20

for Mann iteration

method (1.19), inertial Mann iteration method (2.1), normal-S iteration method

(1.21) and inertial normal S-iteration method (2.2). A graph is plotted between

number of iteration versus the first coordinate in Figure 2.1 and versus second co-

ordinate in Figure 2.2. From Figure 2.3, we observe the following:

� Convergence rate of inertial normal S-iteration method is faster than Mann

iteration method (1.19), inertial Mann iteration method (2.1) and normal S-

iteration method (1.21).

� Normal-S iteration method (1.21) converges rapidly than inertial Mann itera-

tion method (2.1).

� Convergence rate of inertial Mann iteration method (2.1) is greater than Mann

iteration method (1.19).
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2.5 Numerical Experiment with Data Sets

In this section, we have conducted numerical experiments to compare the proposed

algorithm with already existing algorithms on the basis of their efficiency. We used

the Intel(R) Core(TM)i5-7200U CPU @2.50GHZ, 2.70GHZ processor with 8.0 GB

RAM and 64-bit operating system in Matlab R2017a circumstance.

Let us consider the minimization problem with objective function as a sum of two

convex function

min
x∈Rd

F (x) = f(x) + g(x), (2.23)

where f : Rd → R is a smooth function but g : Rd → R is a subdifferentiable

function. A point x∗ is a solution of minimization problem (2.23) if and only if

0 ∈ ∇f(x∗) + ∂g(x∗),

where ∇f and ∂g are gradient and subgradient of f and g respectively. From [76],

for any λ > 0, we have

0 ∈ λ∇f(x∗) + λ∂g(x∗) ⇔ 0 ∈ λ∇f(x∗)− x∗ + x∗ + λ∂g(x∗)

⇔ (Id− λ∇f)(x∗) ∈ (Id+ λ∂g)(x∗)

⇔ x∗ = (Id+ λ∂g)−1(Id− λ∇f)(x∗)

⇔ x∗ = proxλg(x
∗ − λ∇f)(x∗).

Thus, x∗ minimizes (f + g) if and only if x∗ is a fixed point of proxλg(Id − λ∇f).

Note that proxλg is nonexpansive mapping for proper lower semicontinuous convex

functions g [9].
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Consider the Lasso problem

min
x∈Rd

F (x) =
1

2m
‖Ax− b‖2 + ρ‖x‖1, (2.24)

with A ≡ [A1, A2, · · · , Ai, · · · , Ad] ∈ Rm×d data matrix having d-features and m-

samples, each Ai is an m-dimensional vector i = 1, 2, 3, · · · , d, b is the vector con-

taining m responses and ρ is the sparsity controlling parameter. Note that x∗ is the

solution of minimization problem (2.24) if and only if it is the fixed point of the

operator T , where T : Rd → Rd is nonexpansive operator defined by

T (x) = proxρλ‖.‖1(x− λ∂(
1

2m
{‖Ax− b‖2}2)) for some λ > 0, x ∈ Rd. (2.25)

Proximal gradient algorithms based on Mann iteration method (1.19), inertial Mann

iteration method (2.1), normal S-iteration method (1.21) and Algorithm 2.3.1 for

finding solution of minimization problem (2.24) are the following:

1. Mann proximal gradient (MPG) algorithm:

xn+1 = (1−αn)xn +αnproxλρ‖.‖1(xn−
λ

m
At(Axn− b)) for all n ∈ N, (2.26)

2. Inertial Mann proximal gradient (IMPG) algorithm:

 yn = xn + αn(xn − xn−1),

xn+1 = (1− βn)yn + βnproxλρ‖.‖1(yn − λ
m
At(Ayn − b))) for all n ∈ N,

(2.27)

3. Normal S proximal gradient (NSPG) algorithm:

 vn = (1− βn)xn + βnproxλρ‖.‖1(xn − λ
m
At(Axn − b)),

xn+1 = proxλρ‖.‖1(vn − λ
m
At(Avn − b)) for all n ∈ N,

(2.28)
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4. Inertial normal S proximal gradient (INSPG) algorithm:



yn = xn + αn(xn − xn−1),

un = proxλρ‖.‖1(yn − λ
m
At(Ayn − b)),

zn = (1− βn)yn + βnun,

xn+1 = proxλρ‖.‖1(zn − λ
m
At(Azn − b)) for all n ∈ N.

(2.29)

DATA SETS:

We have conducted our experiments on publicly available datasets 1. We provide

the description of the data sets as follows:

(i) Colon-cancer dataset: Colon cancer is the cancer of the large intestine

(colon), which occurs due to the existence of anomalous cells in the last part of

the digestive system i.e. large intestine or colon. This dataset is collected from

62 patients having 2000 gene expressions with the highest minimal intensity

in decreasing order. It contains 40 tumor biopsies from tumors and 22 normal

biopsies from healthy parts of the large intestine of a patient.

(ii) Allaml dataset: A molecular classification of cancer disease can be done

on the basis of gene expressions. Gene expressions can be monitored by DNA

chips and can be applied to human acute leukemias for test purposes. Using an

automatically derived class predictor, we are able to classify into acute myeloid

leukemia (AML) and acute lymphoblastic leukemia (ALL). This dataset col-

lected has gene expressions of 7129 genes from 72 samples.

(iii) Carcinom dataset: Carcinoma is a cancer type, which occurs due to the

damaged DNA of a cell and cell starts to grow uncontrollably. It begins in

1http://featureselection.asu.edu/datasets.php
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The above information about datasets can be summerized as follows:

serial no. dataset samples features classes
1 colon 62 2000 2
2 Allaml 72 7129 2
3 Carcinom 174 9182 11
4 Lymphoma 96 4026 9
5 Nci9 60 9712 9
6 Lung discrete 73 325 7

Table 2.1: Information about datasets

a tissue that lines the inner or outer surfaces of the body. This dataset is

collected from 174 samples having 9182 features.

(iv) Lymphoma dataset: Lymphoma is a broad term encompassing a variety

of cancers of the lymphatic system. Total number of genes to be tested is

4026 and the number of samples to be tested is 96. There are 9 classes of

Lymphoma.

(v) Nci9 dataset: A gene expression dataset with 9712 genes, 60 samples and 9

classes.

(vi) Lung discrete dataset: This dataset is of 73 instances for 325 features

having 7 classes.

We use the proposed algorithm INSPG (2.29) to solve minimization problem (2.24)

and compare it with already existing algorithms MPG (2.26), IMPG (2.27) and

NSPG (2.28). To normalize the datasets, we applied z -score as a pre-processing

and a column vector containing all entries 1 is added to the data-matrix A. We

choose sequences {αn} = { n−1
14n+a

} with a = 2.5, similar to inertial term in [29] and

{βn} = {0.5 + 1
200n
}.
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Clearly sequence {αn} and {βn} satisfying the conditions (A1) and (A2) for the

convergence of the Algorithm 2.3.1. The sparsity controlling parameter ρ is taken as

θ×‖AT b‖∞. We have tuned the parameter θ in the range [1,10e-10] in the multiple

of 0.1. The maximum number of iteration is set to 1000 and to stop the procedure,

we set the difference between consecutive iterations to be less than 0.001.

In the first experiment, we compare the proximal gradient algorithms on the basis of

their convergence speed. We calculate the objective function value F (x) defined in

the minimization problems (2.24) at each iteration for all the datasets using different

proximal gradient iterative methods. Figure 2.10 represents the graph between the

number of iterations and corresponding function values. From Figure 2.10 we observe

the following:

� For the initial iteration values, function value corresponding to INSPG algo-

rithm (2.29) and NSPG algorithm (2.28) are nearly the same but as number

of iteration increases difference between their function value increases.

� We can observe a similar pattern between MPG (2.26) and IMPG algorithm

(2.27).

� For each data set, INSPG algorithm (2.29) has faster convergence rate than

all other algorithms.

� In comparison to MPG algorithm (2.26) and IMPG algorithm (2.27), the per-

formance of INSPG algorithm (2.29) is outstanding. For each dataset, the

difference in their objective function value with INSPG algorithm (2.29) is sig-

nificantly large. In the case of carcinom, lymphoma, Nci9 and Lung discrete

dataset statement are more prominent.

� The objective function value corresponding to INSPG algorithm (2.29) is al-

ways less than NSPG algorithm (2.28). For carcinom, lymphoma, Nci9 and
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Figure 2.4: Colon.
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Figure 2.5: Allaml
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Figure 2.6: Carcinom.
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Figure 2.7: Lymphoma.
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Figure 2.8: Nci9.
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Figure 2.9: Lung discrete.

Figure 2.10: The graph is plotted between number of iteration vs corresponding
objective Function value for different datasets.

lung discrete datasets the difference in their objective value is significantly
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large, which is 15.8 for cacinom, 13.4546 for lung discrete and 4.1947 for lym-

phoma datasets. It marks the applicability of INSPG algorithm (2.29) over

NSPG algorithm (2.28).

� It is interesting to note that NSPG algorithm (2.28) has greater convergence

rate than IMPG algorithm (2.27) in each data set.

� Convergence rate of IMPG algorithm (2.27) is better than MPG algorithm

(2.26).

In experiment 2, we compare the algorithms on the basis of their regression accuracy.

To compare regression accuracy, we consider the standard root mean square error

(RMSE) using different iteration methods for all six datasets. Figure 2.17 represents

the graph between the number of iteration and corresponding RMSE. From Figure

2.17, we can observe the following:

� For each dataset, RMSE value of INSPG algorithm (2.29) is less than those of

all other algorithms which show INSPG algorithm (2.29) has better accuracy

than MPG algorithm (2.26), IMPG algorithm (2.27) and NSPG algorithm

(2.28).

� For each dataset, as the number of iteration increases, difference in the RMSE

value of INSPG algorithm (2.29) with MPG algorithm (2.26), IMPG algorithm

(2.27) and NSPG algorithm (2.28) increases. For MPG algorithm (2.26) and

IMPG algorithm (2.27) this difference is large.

� INSPG algorithm (2.29) has better accuracy than NSPG algorithm (2.28) for

each dataset which is more dominant in case of colon datasets and lung dis-

crete datasets. For these datasets, difference in their accuracy is up to second

decimal digit.
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Figure 2.11: Colon.
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Figure 2.12: Allaml.
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Figure 2.13: Carcinom.
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Figure 2.14: Lymphoma.
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Figure 2.15: Nci9.
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Figure 2.16: Lung discrete.

Figure 2.17: The graph is between number of iteration and corresponding root
mean square error of the function.

� NSPG algorithm (2.28) is better than MPG algorithm (2.26) and IMPG algo-

rithm (2.27) in terms of accuracy i.e. have less RMSE.
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Datasets MPG IMPG NSPG INSPG
Colon Obj fun 19.3569 18.8526 12.3988 12.0180

RMSE 0.1391 0.1373 0.1113 0.1096
Allaml Obj fun 66.9087 66.7423 64.6575 64.5047

RMSE 0.1370 01368 0.1347 0.1345
Carcinom Obj fun 3100.1 3081.9 2831.6 2815.8

RMSE 0.8217 0.8193 0.7853 0.7831
Lymphoma Obj fun 471.7750 468.1944 412.4782 408.2835

RMSE 0.4840 0.4822 0.4525 0.4502
Nci9 Obj fun 661.1548 657.0767 601.5727 598.0643

RMSE 0.3690 0.3678 0.3520 0.3509
Lung discrete Obj fun 848.0305 840.8554 702.7026 689.2480

RMSE 2.2809 2.2713 2.0763 2.0563

Table 2.2: Detailed analysis of proximal gradient algorithms. Objective function
value and RMSE corresponding to different datasets at 1000 iteration. Best results

are in bold letters.

� IMPG algorithm (2.27) has better accuracy than MPG algorithm (2.26) which

is more effective in carcinom and lung discrete dataset.

Table 2.2 depicts objective function value and root mean square error at 1000th

iteration for all four algorithms and the best values are displayed in bold letters.

Since all the bold letters are in the column of INSPG algorithm (2.29), clearly

it explains the importance of the proposed algorithm over MPG algorithm (2.26),

NSPG algorithm (2.28) and INSPG algorithm (2.29). NSPG algorithm (2.28) has

better values than MPG algorithm (2.26) and IMPG algorithm (2.27) while MPG

algorithm (2.26) performs worst for all datasets.
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2.6 Conclusion

In this chapter, we have considered solving effectively the convex optimization prob-

lems which are frequently used in machine learning problems. First, we have pro-

posed an accelerated iterative algorithm to solve fixed point problem of nonexpansive

mappings and examined its detailed convergence behavior under mild conditions.

Further, we have introduced a proximal gradient algorithm to solve the Lasso prob-

lem. Numerical experiments are conducted for the task of regression problem with

high-dimensional datasets and we have compared the proposed proximal gradient

algorithm with pre-existing algorithms on the basis of their convergence speed and

accuracy. Numerical results have shown that the proposed algorithm surpasses the

other algorithms in respect of performance.

In the future, we plan to study on different variants of S-iteration method and to

apply it in various directions like image deblurring, signal processing and clustering

problems etc.

***********
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