
Chapter 1

Introduction

Any mathematical representation associated with a real-life problems can be cate-

gorized as either an equation or an equality or an inclusion depending on the na-

ture of representation. The present thesis is concentrated to solve inclusion prob-

lems. Monotone inclusion problems have attracted the attention of mathematics

researchers over the globe because of their importance in solving optimization prob-

lems for the last three decades. In fact, these are highly used in engineering prob-

lems, economic problems and problems arising in different branches of basic sciences.

Consider a d-dimentional vector x = (x1, . . . , xd) and functions f0, . . . , fm defined

on nonempty convex set S ⊆ Rd where fi is a finite convex function, i = 1 . . . r

and fi is an affine function on S, i = r + 1, . . . ,m. Then the general form of the

minimization problem can be defined as follows:
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
minx∈S f0(x),

subject to f1(x) ≤ 0, . . . , fr(x) ≤ 0,

fr+1(x) = 0, . . . , fm(x) = 0,

(1.1)

where S is the basic feasible set. The optimization problems can be categorized into

following:

� Constrained problems: S ⊂ Rd.

� Unconstrained problem: S ≡ Rd.

� Smooth problems: all fi are differentiable, i=1,. . . ,m .

� Nonsmooth problems: there is a nondifferentiable function component fj(x),

j ∈ {1, . . . ,m}.

Definition 1.0.1. (Karush-Kuhn-Tucker (KKT) Optimality Conditions)

A point x̄ be the solution of the minimization problem if there exist λ1, . . . , λm ≥ 0

and x̄ satisfy the following conditions

(i) fi(x̄) ≤ 0 and λifi(x̄) = 0, i = 1, . . . , r.

(ii) fi(x̄) = 0 for i = r + 1, . . . ,m,

(iii) 0 ∈ ∂f0(x̄) + λ1∂f1(x̄) + · · ·+ λm∂fm(x̄).

In case of optimization problem (1.1) having no constraints, the abstract form of

the above KKT optimality conditions can be seen as a problem to search a point

x in the Hilbert space H such that y ∈ T (x) for a given y ∈ H and an operator

T : H → 2H. This is called the inclusion problem. In this thesis, the author has
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focussed to solve the inclusion problem of monotone operators for y = 0, then the

inclusion problem can be written as follows:

Problem 1.0.1. Find x ∈ H such that 0 ∈ T(x).

The evolution equation associated with Problem 1.0.1 is given as

 0 ∈ ∂x
∂t

+ T (x)

x(0) = x0.
(1.2)

Suppose T = ∇f , where f : Rd → R∞ is a convex function and differentiable on Rd.

The simplest method to solve the Problem 1.0.1 is given by

xn+1 = (Id− λn∇f)(xn), (1.3)

where λn > 0 is the step-size parameter and the operator (Id − λnT ) is called the

forward operator. This method is known as the gradient descent method. In case,

f is nondifferentiable, algorithm (1.3) is generalized into the subgradient method,

which is given by

xn+1 = (Id− λn∂f)(xn), (1.4)

where ∂f is the subdifferential of f . Gradient and subgradient methods are consid-

ered as the methods of finding zeros of gradient or subgradient of a function f . The

monotone inclusion problems deal with a general class of operators, the monotone

operators.
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1.1 Proximal Point Algorithm

Monotone operator was first defined by Kachurosvkii in [49]. It plays an important

role in functional analysis. It has significant history, the initial contribution can be

found in the works [22, 23, 24, 50, 67, 66, 68, 80]. Consider the Hilbert space H

equipped with inner product 〈·, ·〉 and induced norm ‖ · ‖.

Definition 1.1.1. Consider a set-valued function T : H → 2H. T is said to be

monotone if satisfies ∀x, y ∈ H

〈x− y, u− v〉 ≥ 0 whenever u ∈ T (x), v ∈ T (y). (1.5)

T is said to be maximally monotone if there does not exist any monotone operator

S : H → 2H such that graph of S contains the graph of T . In the last almost 40

years, the monotone operators have turned out to be an important tool in the study

of various problems arising in the domain of optimization, nonlinear analysis, differ-

ential equations and other related fields. Among those operators, it seems that the

class of maximal monotone ones contains the mappings that possess the most desir-

able properties, such as, for example, local boundedness, perturbation surjectivity

in reflexive spaces, generic single-valuedness and continuity in appropriate classes of

Banach spaces, and others. In case of monotone operators, Proximal Point Algo-

rithm (PPA) [81] is proposed to solve the inclusion Problem 1.0.1, which is given

by,

xn+1 = xn − λnvn, where vn ∈ T (xn+1), (1.6)

where λk is a sequence of positive regularization parameter. Equivalentally, it can

be written as

xn+1 = JλnT (xn), (1.7)
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where JλT = (Id+ λT )−1 : H → H is the resolvent operator of T with parameter λ.

The PPA may be viewed as one step time-discretization of the dynamical system

0 ∈ ẋ(t) + λnT (x(t)), a.e. t > 0,

where λn is interpreted as a step-size parameter. Denote the solution set T−1{0} as

S. The sequence generated by PPA converges strongly to a point in the solution set

S provided S 6= ∅ . PPA and its dual version in the context of convex programming,

the method of multipliers of Hesteness and Powel, have been extensively studied

([13, 44, 53]) and are known to yield as special cases of decomposition methods such

as a method of partial inverses([84, 85]), the Douglas-Rachford splitting method and

alternating direction method of multipliers ([40, 41, 42]).

1.2 Splitting Methods

Since the resolvent of an operator is not present in any closed form, the resolvent of

an operator is hard to find. This difficulty is reduced by splitting the operator as

the sum of two operators and evaluating separately either via resolvent in case of

the set-valued operator or the operator itself when it is single-valued. The operator

T splits as the sum of A and B such that the resolvent of A, (Id + A)−1 and B,

(Id + B)−1 is easy to compute. For T = A + B, the monotone inclusion Problem

1.0.1 can be written as

Find x ∈ H such that 0 ∈ (A+B)(x). (1.8)

Using the idea of splitting the operator, the first two algorithms are respectively

known as Paceman-Rachford and Douglas-Rachford algorithm, which are originally
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proposed for linear operators. The Paceman-Rachford algorithm [77] proposed by

Paceman and Rachford for linear operators is given by

xn+1 = (Id+ λB)−1(Id− λA)(Id+ λA)−1(Id− λB)(xn),

which is not unconditionally stable, but converges to the solution of the stationary

problem for λ sufficiently small if B is Lipschitz continuous. The Douglas-Rachford

algorithm [39] is given by

xn+1 = (Id+ λB)−1[(Id+ λA)−1(Id− λA)−1(Id− λB) + λB](xn). (1.9)

Lions and Mercier [60] have studied the Paceman-Rachford and Douglas-Rachford

algorithms and improved the algorithms which are equivalent to the Paceman-

Rachford and Douglas-Rachford algorithm upto the variable xn = (I + λB)−1(vn).

These improved algorithms show the convergences for set-valued monotone opera-

tors also. Eckstein [40] have rewritten the Douglas-Rachford algorithm in the form

of proximal point algorithm. Moreover, Eckstein has applied the Douglas–Rachford

algorithm to solve the dual of a certain structured convex optimization problem,

which coincides with the socalled alternating direction method of multipliers.

The Douglas-Rachford algorithm proposed by Lions and Mercier [60] is given as

below:

xn+1 =
1

2
(Id+RA ◦RB)xn, (1.10)

where A and B are set-valued maximal monotone operators. The convergence anal-

ysis of the Douglas-Rachford algorithm is studied in [58, 60] and it is proved that the

sequence generated by the algorithm converges weakly to a fixed point, which lies

in the solution set of inclusion problem (1.8). The result was further reinforced by

Svaiter [87] by studying the weak convergence of the shadow sequences. Recently,
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the Douglas-Rachford algorithm has drawn the attention of researchers due to its

applicability to solve inclusion problems both in convex as well as in non-convex

settings [10, 36, 56]. This algorithm is used to solve large scale optimization prob-

lems arising in machine learning, finance, control, image processing, and PDEs (see

[6, 10, 20, 36, 56, 62, 78]).

Problem solving strategy for the case, when one of the operators A or B is single-

valued, has been evolved separately. Consider A and B to be maximal monotone

operators on H such that B is single-valued and domB ⊃ domA, Lions and Mercier

[60] have proposed the forward-backward algorithm, which is given by

xn+1 = (Id+ λnA)−1(Id− λnB)(xn), (1.11)

where λn > 0. Gabay and Mercier ([43, 65]) have proved the weak convergence

of proximal point algorithm for B−1, a strongly monotone operator with mod-

ulus α such that λn ∈ (0, α) is kept constant. It shows strong convergence if

A is also strongly monotone. Han and Lou [45] have proposed the dual form

of forward-backward splitting algorithm for convex programming. The forward-

backward method has a nice property that we can put the dense part of operator

T as B which facilitates the problem decomposition. Tseng [94] has ruled out the

requirement of B−1 or T to be strongly monotone by including an additional for-

ward step. He has proposed the forward-backward-forward algorithm with the only

assumption that forward operator B be Lipschitz continuous on some closed convex

subset of its domain. For x0 ∈ H, the forward-backward-forward algorithm is given

by,

 pn = (Id+ λnA)−1(Id− λnB)(xn)

xn+1 = (Id− λnB)(pn) + λnB(xn),
(1.12)
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where λn ∈ [ε, (1− ε)/L] with ε ∈ (0, 1
L+1

) and L is a Lipschitz constant of B. The

convergence of the algorithm (1.12) is guaranteed when the solution set of inclusion

problem (1.8) is nonempty.

1.3 Inertial Methods

In the present world of high-dimensional datasets, we do not just need the methods

to solve the problem but the speed of the convergence of the methods is also equally

important. To achieve the fast convergence speed, different algorithms having faster

convergence speed and fewer restrictions on the parameters had been proposed. In

this direction, the inertial term has been introduced which increases the convergence

speed without increasing the computing cost of the algorithm. The inertial term can

be seen as the discretized form of the time dynamical system

ẍ(t) + α1ẋ+ α2f(x(t)) = 0,

where α1, α2 > 0 are free model parameters of the equation. The inertial term is

first introduced in Heavy Ball method proposed by Polyak [79] to minimize a smooth

convex function f and has the following algorithm:

 yn = xn + αn(xn − xn−1),

xn+1 = yn − λn∇f(xn) for all n ∈ N,
(1.13)

where αn ∈ [0, 1) is an extrapolation factor and λn is a step-size parameter. In

2001, Alvarez and Attouch [4] used the idea of Polyak to improve the performance

of proximal point algorithm for the monotone operators and proposed the inertial
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proximal point algorithm is given by

 yn = xn + αn(xn − xn−1),

xn+1 = (Id+ λnT )−1(yn) for all n ∈ N,
(1.14)

where T is a monotone operator and {λn} is a nondecreasing sequence. He has also

proved in [4] that the algorithm (1.14) converges weakly to a zero of T if {αn} is in

[0, 1) and satisfies the condition:

∞∑
n=1

αn‖xn − xn−1‖2 <∞. (1.15)

In order to improve the convergence rate of the Heavy Ball method, Nesterov [72]

has proposed a modification in the above iteration method (1.17) and proposed the

following algorithm:

 yn = xn + αn(xn − xn−1),

xn+1 = yn − λn∇f(yn) for all n ∈ N,
(1.16)

where λn = 1/L, L is the Lipschitz constant of f .

The inertial extrapolation based algorithms have been studied by researchers and

been implemented in several directions (see [15, 31, 73] and references therein). Re-

cently, using inertial extrapolation researchers have constructed many iterative algo-

rithms, such as fast iterative shrinkage thresholding algorithm (FISTA) [11], inertial

forward-backward algorithm [61] and inertial Douglas-Rachford splitting algorithm

[16]. Beck and Teboulle [11] had proposed the fast iterative shrinkage thresholding

algorithms, which is popularly known as FISTA. This algorithm has dominated the

optimization world in the last decade. Consider g : Rd → R as a continuous convex
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function and f : Rd → R is a smooth convex function with continuously differen-

tiable with Lipschitz continuous gradient L. Then, for y0 = x0 = u0, FISTA is given

by


xn = proxγg(Id− γ∇f)(yn−1)

un = xn−1 + tn(xn − xn−1)

yn =
(

1− 1
tn+1

)
xn + 1

tn+1
un n ∈ N0,

(1.17)

where {tn} is a sequence of real numbers greater than 1 and γ > 0.For more infor-

mation regarding on inertial methods, we refer to [12, 15, 29, 31, 73].

1.4 Fixed Point Methods

The monotone inclusion problems can also be solved by formulating them into the

fixed point problem. Consider an operator T : H → H. The fixed point problem is

to find x ∈ H such that

(Id− T )x = 0 (1.18)

The solution set of fixed point problem is denoted by Fix(T ). The monotone in-

clusion problem can be reduced into the fixed point problem by considering T =

(Id+λA)−1(Id−λB). The fixed point approach is largely used to solve problems in

information theory, game theory, optimization, etc. by formulating them into fixed

point problems. One of the most used iterative techniques has been introduced by

Mann[64] in 1953, which is given as follows:

 x1 ∈ C

xn+1 = (1− αn)xn + αnTxn, for all n ∈ N,
(1.19)

10



where {αn} is a real sequence in (0, 1). The sequence {xn} defined by (1.19) con-

verges weakly to a fixed point of T if the iteration parameter {αn} satisfies the

condition
∑∞

n=1 αn(1− αn) =∞.

It is well known that the Mann iteration method for the approximation of fixed

points of pseudo contractive mappings may not well behave (see [33]). To get rid

of this problem, in 1974 Ishikawa [47] has introduced an iterative technique, which

is extensively studied for the approximation of fixed points of pseudo contractive

and nonexpansive mappings by many authors in different spaces (see for example

[1, 38, 88]).

In 2007, Agarwal et al. [3] have introduced an iteration method which is called

S-iteration method. Its convergence rate is faster than both Mann and Ishikawa

iteration methods for contraction mappings. The S-iteration is defined by

 xn+1 = (1− αn)Txn + αnTyn,

yn = (1− βn)xn + βnTxn for all n ∈ N,
(1.20)

where {αn} and {βn} are sequences in (0, 1) with
∑∞

n=1 αnβn(1 − βn) = ∞. The

algorithmic design of S-iteration method is comparatively different and independent

of Mann and Ishikawa iteration methods, i.e. neither Mann nor Ishikawa iterative

technique can be reduced into S-iteration and vice versa. In 2011, Sahu [82] came

up with another form of S-iteration, named as normal S-iteration method which is

defined by

xn+1 = T [(1− βn)xn + βnTxn] for all n ∈ N, (1.21)

where {βn} is a sequence in (0, 1). Normal S-iteration is also known as Hybrid-Picard

Mann iteration method [51]. The performance of normal S-iteration method is better
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than Picard method for contraction mappings. In sense of effective performance, S-

iteration method and normal S-iteration method have attracted many researchers

as alternative iteration method for common fixed point problems (see [30, 34, 86,

97, 98]).

On the other hand, in 2014, in order to accelerate Halpern fixed point algorithm,

Sakurai and Liduka [83] have discussed the importance to find fixed point quickly for

the class of steady and authentic practical systems. So there are increasing interests

in the study of fast algorithms for approximating fixed points of nonexpansive map-

pings. In 2008, Mainge [63] has combined the inertial type extrapolation algorithm

with the classical Mann algorithm and named as inertial Mann iteration method for

finding the fixed points of nonexpansive mappings in a real Hilbert space. Inertial

Mann algorithm is defined as follows:

 yn = xn + αn(xn − xn−1),

xn+1 = (1− λn)yn + λnTyn for all n ∈ N.
(1.22)

Mainge [63] has further studied weak convergence of inertial Mann algorithm (1.22)

under the following conditions:

(C0) αn ∈ [0, α] for all n ∈ N and α ∈ [0, 1);

(C1)
∑∞

n=1 αn‖xn − xn−1‖2 <∞;

(C2) inf
n≥1

λn ≥ 0 and sup
n≥1

λn ≤ 1.

Moreover, we consider the inclusion problems when it contains the composition of

linear operator or composition of parallel-sum operators as one of the operators.

Since in general resolvent of the composition of operators and resolvent of parallel-

sum operators are not present in closed form, Douglas-Rachford algorithm is not
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applicable to solve the structured monotone inclusion problem. In recent studies

[16, 18, 35, 95], several primal-dual methods have been proposed to solve such prob-

lems. Combettes et al. [35] have proposed an inexact Tseng algorithm to solve

structured problems containing set-valued operators in composition with bounded

linear operator and Lipschitz operator. Vũ [95] has replaced Lipschitz operators

with cocoerceive operators and proposed an inexact forward-backward algorithm to

solve this problem. Bot et al. [16, 18] proposed Douglas-Rachford type primal-

dual method and inertial Douglas-Rachford type primal-dual method to solve the

structured monotone inclusion problem.

1.5 Outline of the Thesis

In this subsection, the author describes the outline of the work done in each chapter.

The thesis has possibly made independent by describing the definition and results

useful for better understanding of the thesis in each chapter.

The next chapter is dedicated to the study of an inertial fixed point algorithm to

find the fixed point of a nonexpansive operator. We also study the application of the

proposed algorithm to solve the convex optimization problem. The numerical exper-

iments have been conducted on the high-dimensional dataset to solve the regression

problem.

In Chapter 3, we propose a novel accelerated preconditioning forward-backward al-

gorithm to obtain the vanishing point of the sum of two operators in which one is

maximal monotone and another is M -cocoercive, where M is a linear bounded oper-

ator on underlying spaces. Our proposed algorithm is more general than previously

known algorithms. We study the convergence behavior of the proposed algorithm

under mild assumptions in the framework of real Hilbert spaces. We employ our
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model to solve regression problems and link prediction problems for high-dimensional

datasets and conduct numerical experiments to support our results. This model im-

proves convergence speed and accuracy in respective problems.

In Chapter 4, we propose a novel two-step inertial Douglas-Rachford algorithm to

solve the monotone inclusion problem of the sum of two maximally monotone op-

erators. We study the convergence behavior of the proposed algorithm. Based on

the proposed method, we develop an inertial primal-dual algorithm to solve highly

structured monotone inclusions containing the mixture of linearly composed and

parallel-sum type operators. Finally, we apply the proposed inertial primal-dual

algorithm to solve a highly structured minimization problem. We also perform a

numerical experiment to solve the generalized Heron problem and compare the per-

formance of the proposed inertial primal-dual algorithm to those of already known

algorithms.

In Chapter 5, we propose a fixed point algorithm based on normal-S iteration to find

common fixed point of nonexpansive operators and prove the strong convergence of

the generated sequence to the set of common fixed points without assuming strong

convexity and strong monotonicity. Based on the proposed fixed point algorithm,

we develop a new forward-backward algorithm and a Douglas-Rachford algorithm

in connection with Tikhonov regularization to find the solution of splitting mono-

tone inclusion problem. We also propose a strongly convergent forward-backward

type primal-dual algorithm and a Douglas-Rachford type primal-dual algorithm such

that they solve the monotone inclusion problems containing the mixture of linearly

composed and parallel-sum operators. Finally, we have conducted a numerical ex-

periment to solve image deblurring problems.

***********
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