To
The greatest gift I ever got from God;
My Parents

CERTIFICATE

It is certified that the work contained in this thesis titled "Accelerated Iterative Techniques to Solve Inclusion Problems and Applications" by Avinash

Dixit has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. degree.

$\frac{780 m}{315121}$

Dr. Tanmoy Som
(Supervisor)
Professor
Department of Mathematical Sciences
Indian Institute of Technology
(Banaras Hindu University)
Varanasi-221005

DECLARATION BY THE CANDIDATE

I, Avinash Dixit, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of Dr. Tanmoy Som from July, 2016 to May, 2021 at the Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports, dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date: May 31, 2021
Place: Varanasi

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

(Prof. Tanmoy Som)
Professor
Department of Mathematical Sciences Indian Institute of Technology
(Banaras Hindu University)
Varanasi-221005

(Prof. Tanmoy Som)
Professor and Head
Department of Mathematical Sciences
Indian Institute of Technology
(Banaras Hindu University)
Varanasi-221005

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Accelerated Iterative Techniques to Solve Inclusion Problems and Applications
Name of the Student: Avinash Dixit

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University), Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Ph.D. degree.

Date: May 31, 2021
Place: Varanasi
(Avinash Dixit)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute copyright notice are indicated.

ACKNOWLEDGEMENTS

Nothing can be started without the support of almighty God Baba Viswanath. I truly express my wholehearted gratitude for this life, happiness, success and for everything which I have, and this is possible because of His blessings.

The author like to use this opportunity to thank Prof. Tanmoy Som, Department of Mathematical Sciences, IIT(BHU), Varanasi for his supervision and encouragement throughout the Ph.D. work. I have been very lucky to have such a supervisor who cared so much about my work, has shaped my understanding of the subject and has given me the confidence to work independently. I would also like to thank Prof. D.R. Sahu (Department of Mathematics, Banaras Hindu University, Varanasi) for his consistent discussion on the topics related to my research work. It increased my knowledge of the subject.

This research work was supported by Junior Research Fellowship and Senior Research Fellowship provided by IIT (BHU) in the form of Teaching Assistantship.

I am thankful to Prof. T. Som, Head of Department, Prof. Subir Das, Convener, DPGC, Department of Mathematical Sciences for their supports throughout my research work. I also express my cordial thanks to Dr. Debdas Ghosh and Prof. Rajeev Srivastava (CSE Department, IIT BHU) for their constant evaluation of my Ph.D. work, which helped me to improve the quality of work. I also express my deep sense of gratitude to all faculty members of the Department for their constant moral supports, suggestions, and encouragement.

A number of people outside the official thesis committee also asked useful questions during my research work and made helpful suggestions to understand mathematics
as well as real-world problems. These people include Mr. Pankaj Gautam, Mr. Amit Kumar Singh, Mr. Om Namah Shivay, Mr. Ankit Mishra, Mr. Gaurav Somani, Mr. Ankit Gupta, Mr. Ajay Kumar, Mr. Shashank Singh, Mr. Somveer Singh. I thank them for their interest in my work.

I would like to mention to my colleagues Mr. Sumit Saini, Mr. Rakesh Kumar, Mr. Om Namah Shivay, Mr. Abhishek Singh, Mr. Anil Kumar Shukla, Mr. Rahul Kumar Maurya, Mr. Anup Singh, Mr. Sanjeev Kumar Singh, Ms. Swati Yadav, Ms. Anuwedita Singh, Ms. Manushi Gupta, Ms. Pooja Gupta, Ms. Shivani Singh, Ms. Deeksha Gupta, who are not just responsible for the interruption of my Ph.D. work but also did not let down my morality during the PhD.

I am also grateful to my Institute, $\operatorname{IIT}(\mathrm{BHU})$, for providing necessary resources throughout my research work. I express my thanks to all nonteaching staff members of the department for their supports.

I express my sincere and cordial gratitude to my mother Mrs. Usha Dixit and my father Mr. Bhrigunath Dixit who love me beyond paint, beyond melodies, beyond words. Words are insufficient to express my profound sense of gratitude to my family members Avanish Dixit, Neha Dixit and Pooja Dixit, who have both the strongest and the softest shoulders to cry on. I pay my special love to my nieces (Sadhvi, Prabha) and nephew (Apoorv) whose smile is an antidote to melt my stress away.

This acknowledgment would be incomplete if the name of great visionary Pandit Madan Mohan Malaviya is not mentioned, who made this divine center of knowledge. Deepest regards to him.

Contents

List of Figures ix
List of Tables xi
Abbreviations xiii
Symbols xv
Preface xvii
1 Introduction 1
1.1 Proximal Point Algorithm 4
1.2 Splitting Methods 5
1.3 Inertial Methods 8
1.4 Fixed Point Methods 10
1.5 Outline of the Thesis 13
2 New accelareted algorithm and its Application to regression prob- lems 15
2.1 Introduction 16
2.2 Preliminary Results 17
2.3 Accelerated normal S-iteration method and its convergence analysis 20
2.4 Numerical Example 29
2.5 Numerical Experiment with Data Sets 32
2.6 Conclusion 41
3 An Accelerated Forward-Backward Splitting Algorithm for Solving Inclusion Problems with Applications 43
3.1 Introduction 44
3.2 Preliminary Results 45
3.3 Main Results 48
3.3.1 Convergence analysis of the APFBNSM 52
3.3.2 Numerical comparison of Algorithms (3.1) and 3.3.1 60
3.4 Applications 62
3.4.1 Convex concave saddle point problem 63
3.4.2 Lasso problem 65
3.5 Numerical Experiments 67
3.5.1 Regression problems 67
3.5.2 Link prediction problems 71
3.6 Conclusion 73
4 Convergence Analysis of Two-Step Inertial Douglas-Rachford Al- gorithm and Application 75
4.1 Introduction 76
4.2 Preliminary Results 77
4.3 Douglas-Rachford Algorithm 80
4.4 Accelerated normal-S primal-dual algorithm 91
4.5 Applications to solve convex optimization problem 99
4.6 Conclusion 107
5 Strongly convergent Algorithms to Solve Monotone Inclusion Prob- lems 109
5.1 Introduction 110
5.2 Preliminary Results 113
5.3 Strongly convergent common fixed point algorithm 115
5.4 Forward-Backward type Algorithms 121
5.4.1 Forward-Backward Algorithm 121
5.4.2 Forward-backward type Primal-Dual algorithm with Tikhonov regularization terms 123
5.5 Douglas-Rachford type Algorithms 130
5.5.1 Douglas-Rachford Algorithm 131
5.5.2 Douglas-Rachford type Primal-Dual algorithm with Tikhonov regularization terms 134
5.6 Numerical Experiment 142
5.7 Conclusion 145
Bibliography 147

List of Figures

$2.1 \log u$ vs number of iteration 30
$2.2 \log v$ vs number of iteration 30
2.3 Coordinatewise graph for different iteration methods. 30
2.4 Colon. 37
2.5 Allaml 37
2.6 Carcinom. 37
2.7 Lymphoma 37
2.8 Nci9. 37
2.9 Lung discrete. 37
2.10 The graph is plotted between number of iteration vs corresponding objective Function value for different datasets. 37
2.11 Colon. 39
2.12 Allaml. 39
2.13 Carcinom. 39
2.14 Lymphoma 39
2.15 Nci9. 39
2.16 Lung discrete. 39
2.17 The graph is between number of iteration and corresponding root mean square error of the function. 39
3.1 Behaviour of $\left\|x_{n}\right\|_{2}$ with respect to number of iterations 61
3.2 Dolphin. 69
3.3 Football. 69
3.4 Jazz. 69
3.5 Celegansneural 69
3.6 Usair97 69
3.7 Netscience. 69
3.8 Value of $F\left(x_{n}\right)-F\left(x^{*}\right)$ for 1000 iterations with different datasets. 69
3.9 Dolphin. 70
3.10 Football. 70
3.11 Jazz. 70
3.12 Celegansneural 70
3.13 Usair97 70
3.14 Netscience 70
3.15 Behavior of root mean square error (RMSE) for different datasets. 70
4.1 Initial points $x_{0}=x_{1}=(10,-20)$ 90
4.2 Initial points $x_{0}=x_{1}=(20,-53)$ 90
4.3 Semilog graph between number of iterations and sum of distance of iterative points to sets C and D for different initial points. 90
4.4 Circle with circle constraints 103
4.5 Sphere with sphere constraints. 103
4.6 Generalized Heron problem for different convex set and contraints. 103
$4.7 \quad m=3, n=2$. 105
$4.8 \quad m=3, n=2$ 105
$4.9 \quad m=5, n=2$ 105
$4.10 m=5, n=2$ 105
$4.10 m=6, n=2$ 106
$4.11 m=6, n=2$ 106
$4.12 m=3, n=3$ 106
$4.13 m=3, n=3$ 106
$4.13 m=5, n=3$ 106
$4.14 m=5, n=3$ 106
4.15 The semilog graph between number of iterations and RMSE for differ- ent choices of m and n as in Table 4.1. Figure 4.7, 4.9, 4.11, 4.13 are plotted for RMSE <0.001 and Figure 4.8, 4.10, 4.12, 4.14 are plotted for RMSE <0.00001 106
5.1 Original. 144
5.2 Blurred 144
5.3 Original 144
5.4 Blurred 144
5.5 The original and blurred images of Lenna and crowd. 144
5.6 Lenna. 145
5.7 Crowd 145
5.8 The variation of $F\left(x_{n}\right)-F\left(x^{*}\right)$ with respect to number of iteration for different images 145
5.9 Algorithm (5.14) 146
5.10 [17, Algorithm 8] 146
5.11 Algorithm (5.14) 146
5.12 [17, Algorithm 8] 146
5.13 The recovered images using different algorithms for 1000 iterations. 146

List of Tables

2.1 Information about datasets 35
2.2 Detailed analysis of proximal gradient algorithms. Objective function value and RMSE corresponding to different datasets at 1000 iteration. Best results are in bold letters. 40
3.1 The evaluation of $\left\|x_{n}\right\|_{2}$ as number of iteration increases for Algorithm (3.1) and Algorithm 3.3.1 62
3.2 Topological information of real-world network datasets 67
3.3 Result 72
3.4 Result Comparison 73
4.1 Number of iterations required to have different accuracy for different algorithms. The best results are presented in bold letters. 104

Abbreviations

PPA Proximal Point Algorithm
FISTA Fast Iterative Shrinkage Thresholding Algorithm
DRA Douglas-Rachford Algorithm
MPG Mann Proximal Gradient
IMPG Inertial Mann Proximal Gradient
NSPG Normal-S Proximal Gradient
INSPG Inertial Normal-S Proximal Gradient
KKT Karush-Kuhn-Tucker
a.e. almost everywhere

AML Acute Myeloid Leukemia
ALL Acute Lymphoblastic Leukemia
RMSE Root Mean Square Error
CN Common Neighbors
AA Adamic/Adar
RA Resource Allocation
PA Preferential Attachment

Symbols

$\mathbb{N} \quad$ The set of Natural numbers
$\mathbb{R} \quad$ The set of Real numbers
$\mathbb{R}_{\infty} \quad \mathbb{R} \cup\{\infty\}$
$\mathbb{N}_{0} \quad \mathbb{N} \cup\{0\}$
Id Identity operator
$2^{\mathcal{X}} \quad$ Power set of a set \mathcal{X}
\mathcal{H} Real Hilbert space
$\langle\cdot \mid \cdot\rangle \quad$ Scalar product
$\|\cdot\| \quad$ Norm
$d \quad$ distance
$\rightarrow \quad$ Strong cpnvergence in Hilbert spaces
$\rightarrow \quad$ Weak convergence in Hilbert spaces
$\operatorname{dom}(A) \quad$ Domain of an operator A
$\operatorname{ran}(A) \quad$ Range of an operator A
int C Interior of a set C
sri C Strong relative interior of a set C
sqri C Strong quasi relative interior of a set C
$i_{c} \quad$ Indicator function of a set C
$P_{C} \quad$ Projector onto a nonempty closed convex set C
$N_{C} \quad$ Normal cone operator of a set C
$\nabla f \quad$ Gradient operator of a function f
$\partial T \quad$ Subdifferential of a function T
$A^{t} \quad$ Transpose of an operator A
$M^{*} \quad$ Adjoint of a bounded linear operator M
$f^{*} \quad$ Conjugate of a function f
$\operatorname{Gr}(T) \quad$ Graph of an operator T
$\operatorname{zer}(T) \quad$ Set of zeros of an operator T
$\operatorname{Fix}(T) \quad$ Set of fixed points of an operator T
$\Gamma(\mathcal{H}) \quad$ Set of all lower semicontinuous convex functions from \mathcal{H} to $[-\infty,+\infty]$
$\Gamma_{0}(\mathcal{H}) \quad$ Set of all proper lower semicontinuous convex functions from \mathcal{H} to $(-\infty,+\infty]$
prox $_{f} \quad$ proximity operator of a function f
$J_{A} \quad$ Resolvent of operator A
$R_{A} \quad$ Reflected resolvent of operator A
$T_{1} \square T_{2} \quad$ Parallel sum of operators T_{1} and T_{2}

PREFACE

The main goal of the work contained in the thesis is to present different methods to solve monotone inclusion problems investigated during the last few years. The basic approach to achieve the goal is to split the monotone operator into a sum of two monotone operators. The other pertinent and massive goal is to apply the proposed methods to solve real-world problems. For real-world application purposes, we are mainly concerned with computer engineering related problems. Different methods are proposed to solve monotone inclusion problems using direct as well as iterative methods. Iterative techniques have the advantage over direct methods in that they can be used to solve even the high-dimensional cases. Keeping the point in mind the author is inclined to develop iterative methods to solve the monotone inclusion problem.

Chapter 1 of the thesis is introductory. It explains the main background of the monotone inclusion problem and the different previous approaches to solve the problem. It also gives the idea about the structure of the thesis.

In Chapter 2 of the thesis, we propose a fixed point algorithm to find the fixed point of a nonexpansive operator. The fixed point algorithms are not just limited to solve the fixed point problems, these fixed point algorithms are also used to solve inclusion problems by framing the monotone inclusion problem as an equivalent fixed point problem. We use the inertial term to define the algorithm, which is motivated by the Heavy ball method proposed by Polyak. We use the proposed fixed point algorithm to solve the regression problems. We conducted numerical experiments to solve high-dimensional regression problems. We compare the performance of the proposed method to already known methods on the basis of convergence speed and accuracy.

In Chapter 3, we propose a preconditioning based inertial forward-backward algorithm and focus to solve the inclusion problem of the sum of two monotone operators. We study the convergence behavior of proposed algorithm under mild assumptions. We also propose an iterative method to solve the saddle point problem. Further, we apply the proposed methods to solve the regression and link prediction problem. A comparative study is also done for the proposed algorithm and some well-known methods to solve regression and link prediction problems.

The Chapter 4 of the thesis addresses the inclusion problem of the sum of two setvalued operators. We propose a novel two-step inertial Douglas-Rachford algorithm to solve the monotone inclusion problem of the sum of two maximally monotone operators based on the normal S-iteration method [82]. Further, we study the convergence behavior of the proposed algorithm. Based on the proposed method, we develop an inertial primal-dual algorithm to solve highly structured monotone inclusions containing the mixture of linearly composed and parallel-sum type operators. Finally, we apply the proposed inertial primal-dual algorithm to solve a highly structured minimization problem. We also perform a numerical experiment to solve the generalized Heron problem and compare the performance of the proposed inertial primal-dual algorithm with the performance of already known algorithms.

We aim to propose strongly convergent methods in Chapter 5 without assuming strong convexity or strong monotonicity. First, we propose a fixed point algorithm to find the common fixed point of nonexpansive operators. Based on proposed fixed point algorithm, we develop a new forward-backward algorithm and a DouglasRachford algorithm in connection with Tikhonov regularization to find the solution of splitting monotone inclusion problems. Further, we consider the complexly structured monotone inclusion problems which are quite popular these days. We also propose a strongly convergent forward-backward type primal-dual algorithm and a

Douglas-Rachford type primal-dual algorithm such that they solve the monotone inclusion problems containing the mixture of linearly composed and parallel-sum type operators. Finally, we conduct a numerical experiment to solve image deblurring problems.

