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PREFACE

The main goal of the work contained in the thesis is to present different methods to

solve monotone inclusion problems investigated during the last few years. The basic

approach to achieve the goal is to split the monotone operator into a sum of two

monotone operators. The other pertinent and massive goal is to apply the proposed

methods to solve real-world problems. For real-world application purposes, we are

mainly concerned with computer engineering related problems. Different methods

are proposed to solve monotone inclusion problems using direct as well as iterative

methods. Iterative techniques have the advantage over direct methods in that they

can be used to solve even the high-dimensional cases. Keeping the point in mind

the author is inclined to develop iterative methods to solve the monotone inclusion

problem.

Chapter 1 of the thesis is introductory. It explains the main background of the mono-

tone inclusion problem and the different previous approaches to solve the problem.

It also gives the idea about the structure of the thesis.

In Chapter 2 of the thesis, we propose a fixed point algorithm to find the fixed

point of a nonexpansive operator. The fixed point algorithms are not just limited

to solve the fixed point problems, these fixed point algorithms are also used to solve

inclusion problems by framing the monotone inclusion problem as an equivalent fixed

point problem. We use the inertial term to define the algorithm, which is motivated

by the Heavy ball method proposed by Polyak. We use the proposed fixed point

algorithm to solve the regression problems. We conducted numerical experiments

to solve high-dimensional regression problems. We compare the performance of the

proposed method to already known methods on the basis of convergence speed and

accuracy.

xvii



In Chapter 3, we propose a preconditioning based inertial forward-backward algo-

rithm and focus to solve the inclusion problem of the sum of two monotone operators.

We study the convergence behavior of proposed algorithm under mild assumptions.

We also propose an iterative method to solve the saddle point problem. Further,

we apply the proposed methods to solve the regression and link prediction problem.

A comparative study is also done for the proposed algorithm and some well-known

methods to solve regression and link prediction problems.

The Chapter 4 of the thesis addresses the inclusion problem of the sum of two set-

valued operators. We propose a novel two-step inertial Douglas-Rachford algorithm

to solve the monotone inclusion problem of the sum of two maximally monotone

operators based on the normal S-iteration method [82]. Further, we study the con-

vergence behavior of the proposed algorithm. Based on the proposed method, we

develop an inertial primal-dual algorithm to solve highly structured monotone inclu-

sions containing the mixture of linearly composed and parallel-sum type operators.

Finally, we apply the proposed inertial primal-dual algorithm to solve a highly struc-

tured minimization problem. We also perform a numerical experiment to solve the

generalized Heron problem and compare the performance of the proposed inertial

primal-dual algorithm with the performance of already known algorithms.

We aim to propose strongly convergent methods in Chapter 5 without assuming

strong convexity or strong monotonicity. First, we propose a fixed point algorithm

to find the common fixed point of nonexpansive operators. Based on proposed fixed

point algorithm, we develop a new forward-backward algorithm and a Douglas-

Rachford algorithm in connection with Tikhonov regularization to find the solution

of splitting monotone inclusion problems. Further, we consider the complexly struc-

tured monotone inclusion problems which are quite popular these days. We also

propose a strongly convergent forward-backward type primal-dual algorithm and a

xviii



Douglas-Rachford type primal-dual algorithm such that they solve the monotone in-

clusion problems containing the mixture of linearly composed and parallel-sum type

operators. Finally, we conduct a numerical experiment to solve image deblurring

problems.
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