To

The greatest gift I ever got from God;

My Parents

CERTIFICATE

It is certified that the work contained in this thesis titled "Accelerated Iterative **Techniques to Solve Inclusion Problems and Applications**" by **Avinash Dixit** has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. degree.

212/2/2/

Dr. Tanmoy Som (Supervisor) Professor Department of Mathematical Sciences Indian Institute of Technology (Banaras Hindu University) Varanasi-221005

DECLARATION BY THE CANDIDATE

I, Avinash Dixit, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of Dr. Tanmoy Som from July, 2016 to May, 2021 at the Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports, dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date: May 31, 2021 Place: Varanasi

Avinash Dix (Avinash Dixit)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

(Prof. Tanmoy Som) Professor Department of Mathematical Sciences Indian Institute of Technology (Banaras Hindu University) Varanasi-221005

15/2021

(Prof. Tanmoy Som) Professor and Head Department of Mathematical Sciences Indian Institute of Technology (Banaras Hindu University) Varanasi-221005

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Accelerated Iterative Techniques to Solve Inclusion Problems and Applications Name of the Student: Avinash Dixit

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University), Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Ph.D. degree.

Date: May 31, 2021 Place: Varanasi

Avinash Di

(Avinash Dixit)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute copyright notice are indicated.

ACKNOWLEDGEMENTS

Nothing can be started without the support of almighty God Baba Viswanath. I truly express my wholehearted gratitude for this life, happiness, success and for everything which I have, and this is possible because of His blessings.

The author like to use this opportunity to thank *Prof. Tanmoy Som, Department of Mathematical Sciences, IIT(BHU), Varanasi* for his supervision and encouragement throughout the Ph.D. work. I have been very lucky to have such a supervisor who cared so much about my work, has shaped my understanding of the subject and has given me the confidence to work independently. I would also like to thank *Prof. D.R. Sahu (Department of Mathematics, Banaras Hindu University, Varanasi)* for his consistent discussion on the topics related to my research work. It increased my knowledge of the subject.

This research work was supported by Junior Research Fellowship and Senior Research Fellowship provided by IIT (BHU) in the form of Teaching Assistantship.

I am thankful to *Prof. T. Som, Head of Department, Prof. Subir Das, Convener, DPGC, Department of Mathematical Sciences* for their supports throughout my research work. I also express my cordial thanks to *Dr. Debdas Ghosh and Prof. Rajeev Srivastava (CSE Department, IIT BHU)* for their constant evaluation of my Ph.D. work, which helped me to improve the quality of work. I also express my deep sense of gratitude to all faculty members of the Department for their constant moral supports, suggestions, and encouragement.

A number of people outside the official thesis committee also asked useful questions during my research work and made helpful suggestions to understand mathematics as well as real-world problems. These people include Mr. Pankaj Gautam, Mr. Amit Kumar Singh, Mr. Om Namah Shivay, Mr. Ankit Mishra, Mr. Gaurav Somani, Mr. Ankit Gupta, Mr. Ajay Kumar, Mr. Shashank Singh, Mr. Somveer Singh. I thank them for their interest in my work.

I would like to mention to my colleagues Mr. Sumit Saini, Mr. Rakesh Kumar, Mr. Om Namah Shivay, Mr. Abhishek Singh, Mr. Anil Kumar Shukla, Mr. Rahul Kumar Maurya, Mr. Anup Singh, Mr. Sanjeev Kumar Singh, Ms. Swati Yadav, Ms. Anuwedita Singh, Ms. Manushi Gupta, Ms. Pooja Gupta, Ms. Shivani Singh, Ms. Deeksha Gupta, who are not just responsible for the interruption of my Ph.D. work but also did not let down my morality during the PhD.

I am also grateful to my Institute, IIT(BHU), for providing necessary resources throughout my research work. I express my thanks to all nonteaching staff members of the department for their supports.

I express my sincere and cordial gratitude to my mother *Mrs. Usha Dixit* and my father *Mr. Bhrigunath Dixit* who love me beyond paint, beyond melodies, beyond words. Words are insufficient to express my profound sense of gratitude to my family members *Avanish Dixit*, *Neha Dixit* and *Pooja Dixit*, who have both the strongest and the softest shoulders to cry on. I pay my special love to my nieces (*Sadhvi, Prabha*) and nephew (*Apoorv*) whose smile is an antidote to melt my stress away.

This acknowledgment would be incomplete if the name of great visionary **Pandit Madan Mohan Malaviya** is not mentioned, who made this divine center of knowledge. Deepest regards to him.

Avinash Dixit

Contents

Li	st of	Figures	ix
Li	st of	Tables	xi
A	bbre	viations	xiii
Sy	mbo	ols	xv
Pı	refac	e 2	cvii
1	Intr	roduction	1
	1.1	Proximal Point Algorithm	4
	1.2	Splitting Methods	5
	1.3	Inertial Methods	8
	1.4	Fixed Point Methods	10
	1.5	Outline of the Thesis	13
2	Ne	w accelareted algorithm and its Application to regression prob-	
	lem	S	15
	2.1	Introduction	16
	2.2	Preliminary Results	17
	2.3	Accelerated normal S-iteration method and its convergence analysis .	20
	2.4	Numerical Example	29
	2.5	Numerical Experiment with Data Sets	32
	2.6	Conclusion	41
3	An	Accelerated Forward-Backward Splitting Algorithm for Solving	
	Incl	lusion Problems with Applications	43
	3.1	Introduction	44
	3.2	Preliminary Results	45
	3.3	Main Results	48
		3.3.1 Convergence analysis of the APFBNSM	52

	3.4	3.3.2Numerical comparison of Algorithms (3.1) and 3.3.16Applications63.4.1Convex concave saddle point problem6	60 52 53	
		3.4.2 Lasso problem	5	
	3.5	Numerical Experiments	<i>i</i> 7	
		3.5.1 Regression problems	<i>i</i> 7	
		3.5.2 Link prediction problems	'1	
	3.6	Conclusion	'3	
4	Convergence Analysis of Two-Step Inertial Douglas-Rachford Al-			
	4 1	Introduction 7	'6	
	4.2	Preliminary Results 7	7'7	
	4.3	Douglas-Bachford Algorithm	30	
	4.4	Accelerated normal-S primal-dual algorithm	11	
	4.5	Applications to solve convex optimization problem	10	
	1.0			
	4.6	Conclusion	ľ7	
	4.6	Conclusion)'(
5	4.6 Stro lema	Conclusion10ongly convergent Algorithms to Solve Monotone Inclusion Prob-s10	97 9	
5	4.6 Stro lema 5.1	Conclusion 10 ongly convergent Algorithms to Solve Monotone Inclusion Prob- s 10 Introduction 11	9 9 0	
5	4.6 Stro lema 5.1 5.2	Conclusion 10 ongly convergent Algorithms to Solve Monotone Inclusion Prob- s 10 Introduction 11 Preliminary Results 11)7 9 _0 _3	
5	4.6 Stro lems 5.1 5.2 5.3	Conclusion 10 ongly convergent Algorithms to Solve Monotone Inclusion Prob- s 10 Introduction 11 Preliminary Results 11 Strongly convergent common fixed point algorithm 11	9 9 0 3 5	
5	4.6 Stree 5.1 5.2 5.3 5.4	Conclusion 10 ongly convergent Algorithms to Solve Monotone Inclusion Prob- s 10 Introduction 11 Preliminary Results 11 Strongly convergent common fixed point algorithm 11 Forward-Backward type Algorithms 12)7 9 .0 .3 .5 !1	
5	4.6 Strc lema 5.1 5.2 5.3 5.4	Conclusion 10 ongly convergent Algorithms to Solve Monotone Inclusion Prob- 10 s 10 Introduction 11 Preliminary Results 11 Strongly convergent common fixed point algorithm 11 Forward-Backward type Algorithms 12 5.4.1 Forward-Backward Algorithm 12	97 9 .0 .3 .5 11	
5	4.6 Stro lem: 5.1 5.2 5.3 5.4	Conclusion	9 .0 .3 .5 1 1	
5	4.6 Stree lema 5.1 5.2 5.3 5.4	Conclusion 10 ongly convergent Algorithms to Solve Monotone Inclusion Prob- 10 s 10 Introduction 11 Preliminary Results 11 Strongly convergent common fixed point algorithm 11 Forward-Backward type Algorithms 12 5.4.1 Forward-Backward Algorithm 12 5.4.2 Forward-backward type Primal-Dual algorithm with Tikhonov regularization terms 12	9.0 .0 .3 .5 .1 .3 .3 .3	
5	4.6 Strc lema 5.1 5.2 5.3 5.4	Conclusion 10 ongly convergent Algorithms to Solve Monotone Inclusion Prob- 10 Introduction 11 Preliminary Results 11 Strongly convergent common fixed point algorithm 11 Forward-Backward type Algorithms 12 5.4.1 Forward-Backward Algorithm 12 5.4.2 Forward-backward type Primal-Dual algorithm with Tikhonov regularization terms 12 Douglas-Rachford type Algorithms 13	9 .0 .3 .5 .1 .1 .3 .0 .3 .5 .1 .1 .1 .1 .3 .0	
5	 4.6 Street 5.1 5.2 5.3 5.4 	Conclusion 10 ongly convergent Algorithms to Solve Monotone Inclusion Prob- 10 Introduction 11 Preliminary Results 11 Strongly convergent common fixed point algorithm 11 Forward-Backward type Algorithms 12 5.4.1 Forward-Backward Algorithm 12 5.4.2 Forward-backward type Primal-Dual algorithm with Tikhonov regularization terms 12 Douglas-Rachford type Algorithms 13	97 99.0.3.5 121 13 10 11	
5	 4.6 Street 5.1 5.2 5.3 5.4 	Conclusion10ongly convergent Algorithms to Solve Monotone Inclusion Prob- s10Introduction11Preliminary Results11Strongly convergent common fixed point algorithm11Forward-Backward type Algorithms125.4.1Forward-Backward Algorithm125.4.2Forward-backward type Primal-Dual algorithm with Tikhonov regularization terms12Douglas-Rachford type Algorithms135.5.2Douglas-Rachford type Primal-Dual algorithm with Tikhonov	97 9.0 3.5 21 21 3.0 11	
5	4.6 Stree lema 5.1 5.2 5.3 5.4 5.5	Conclusion10ongly convergent Algorithms to Solve Monotone Inclusion Prob- s10Introduction11Preliminary Results11Strongly convergent common fixed point algorithm11Forward-Backward type Algorithms125.4.1Forward-Backward Algorithm125.4.2Forward-Backward type Primal-Dual algorithm with Tikhonov regularization terms135.5.1Douglas-Rachford type Algorithms135.5.2Douglas-Rachford type Primal-Dual algorithm with Tikhonov regularization terms13	9.03.521 21 23 00 11 44	
5	 4.6 Stropendic Stropendic Stropendic	Conclusion 10 ongly convergent Algorithms to Solve Monotone Inclusion Prob- 10 s 10 Introduction 11 Preliminary Results 11 Strongly convergent common fixed point algorithm 11 Forward-Backward type Algorithms 12 5.4.1 Forward-Backward Algorithm 12 5.4.2 Forward-backward type Primal-Dual algorithm with Tikhonov regularization terms 12 Douglas-Rachford type Algorithms 13 5.5.1 Douglas-Rachford Algorithm 13 5.5.2 Douglas-Rachford type Primal-Dual algorithm with Tikhonov regularization terms 13 Numerical Experiment 14	97 9 0.3 0.5 121 0.3 0.3 0.5 121 0.3 0.5 121 0.5 121 0.5 0	

Bibliography

 $\mathbf{147}$

List of Figures

2.1	$\log u$ vs number of iteration
2.2	$\log v$ vs number of iteration
2.3	Coordinatewise graph for different iteration methods
2.4	Colon
2.5	Allaml
2.6	Carcinom
2.7	Lymphoma
2.8	Nci9
2.9	Lung discrete
2.10	The graph is plotted between number of iteration vs corresponding
	objective Function value for different datasets
2.11	Colon
2.12	Allaml
2.13	Carcinom
2.14	Lymphoma
2.15	Nci9
2.16	Lung discrete
2.17	The graph is between number of iteration and corresponding root
	mean square error of the function
0.1	
3.1	Behaviour of $ x_n _2$ with respect to number of iterations 61
3.2	Dolphin.
3.3	Football.
3.4	
3.5	Celegansneural
3.6	$\bigcup_{sair97} \dots \dots$
3.7	Netscience
3.8	Value of $F(x_n) - F(x^*)$ for 1000 iterations with different datasets 69
3.9	Dolphin
3.10	Football
3.11	Jazz
3.12	Celegansneural
3.13	Usair97 70

3.14	Netscience
3.15	Behavior of root mean square error (RMSE) for different datasets 70
4.1	Initial points $x_0 = x_1 = (10, -20)$
4.2	Initial points $x_0 = x_1 = (20, -53)$
4.3	Semilog graph between number of iterations and sum of distance of
	iterative points to sets C and D for different initial points 90
4.4	Circle with circle constraints
4.5	Sphere with sphere constraints
4.6	Generalized Heron problem for different convex set and contraints 103
4.7	$m = 3, n = 2. \dots \dots \dots \dots \dots \dots \dots \dots \dots $
4.8	$m = 3, n = 2 \dots \dots$
4.9	$m = 5, n = 2 \dots \dots$
4.10	$m = 5, n = 2 \dots \dots$
4.10	$m = 6, n = 2 \dots \dots$
4.11	$m = 6, n = 2 \dots \dots$
4.12	$m = 3, n = 3 \dots \dots$
4.13	$m = 3, n = 3 \dots \dots$
4.13	$m = 5, n = 3 \dots \dots$
4.14	$m = 5, n = 3 \dots \dots$
4.15	The semilog graph between number of iterations and RMSE for differ-
	ent choices of m and n as in Table 4.1. Figure 4.7, 4.9, 4.11, 4.13 are
	plotted for $RMSE < 0.001$ and Figure 4.8, 4.10, 4.12, 4.14 are plotted
	for $RMSE < 0.00001106$
51	Original 144
0.1 E 0	
0.Z	
5.3	Original
5.4	Blurred
5.5	The original and blurred images of Lenna and crowd
5.6	
5.7	Lenna
	Lenna
5.8	Lenna
5.8	Lenna
5.8 5.9	Lenna
5.8 5.9 5.10	Lenna
5.8 5.9 5.10 5.11	Lenna
5.8 5.9 5.10 5.11 5.12	Lenna.145Crowd145The variation of $F(x_n) - F(x^*)$ with respect to number of iterationfor different images.145Algorithm (5.14).146[17, Algorithm 8]146Algorithm (5.14).146[17, Algorithm 8]146[17, Algorithm 8].146

List of Tables

2.1	Information about datasets	35
2.2	Detailed analysis of proximal gradient algorithms. Objective function	
	value and RMSE corresponding to different datasets at 1000 iteration.	
	Best results are in bold letters	40
31	The evaluation of $ x_{+} _{2}$ as number of iteration increases for Algorithm	
0.1	(3.1) and Algorithm 3.3.1 \dots	62
3.2	Topological information of real-world network datasets	67
3.3	Result	72
3.4	Result Comparison	73
4.1	Number of iterations required to have different accuracy for different	
	algorithms. The best results are presented in bold letters	104

Abbreviations

PPA	Proximal Point Algorithm
FISTA	Fast Iterative Shrinkage Thresholding Algorithm
DRA	Douglas-Rachford Algorithm
MPG	Mann Proximal Gradient
IMPG	Inertial Mann Proximal Gradient
NSPG	Normal-S Proximal Gradient
INSPG	Inertial Normal-S Proximal Gradient
KKT	Karush-Kuhn-Tucker
a.e.	almost everywhere
AML	Acute Myeloid Leukemia
ALL	Acute Lymphoblastic Leukemia
RMSE	Root Mean Square Error
\mathbf{CN}	Common Neighbors
AA	Adamic/Adar
RA	Resource Allocation
\mathbf{PA}	Preferential Attachment

Symbols

\mathbb{N}	The set of Natural numbers
\mathbb{R}	The set of Real numbers
\mathbb{R}_{∞}	$\mathbb{R}\cup\{\infty\}$
\mathbb{N}_0	$\mathbb{N} \cup \{0\}$
Id	Identity operator
$2^{\mathcal{X}}$	Power set of a set \mathcal{X}
${\cal H}$	Real Hilbert space
$\langle \cdot \cdot \rangle$	Scalar product
$\ \cdot\ $	Norm
d	distance
\rightarrow	Strong cpnvergence in Hilbert spaces
<u> </u>	Weak convergence in Hilbert spaces
dom(A)	Domain of an operator A
ran(A)	Range of an operator A
$int \ C$	Interior of a set C
$sri\ C$	Strong relative interior of a set C
$sqri \ C$	Strong quasi relative interior of a set ${\cal C}$
i_c	Indicator function of a set C
P_C	Projector onto a nonempty closed convex set ${\cal C}$
N_C	Normal cone operator of a set C

Symbols

∇f	Gradient operator of a function f
∂T	Subdifferential of a function T
A^t	Transpose of an operator A
M^*	Adjoint of a bounded linear operator M
f^*	Conjugate of a function f
Gr(T)	Graph of an operator T
$\operatorname{zer}(T)$	Set of zeros of an operator T
$\operatorname{Fix}(T)$	Set of fixed points of an operator T
$\Gamma(\mathcal{H})$	Set of all lower semicontinuous convex functions from \mathcal{H} to $[-\infty, +\infty]$
$\Gamma_0(\mathcal{H})$	Set of all proper lower semicontinuous convex functions from \mathcal{H} to $(-\infty, +\infty]$
$prox_f$	proximity operator of a function f
J_A	Resolvent of operator A
R_A	Reflected resolvent of operator A
$T_1 \Box T_2$	Parallel sum of operators T_1 and T_2

PREFACE

The main goal of the work contained in the thesis is to present different methods to solve monotone inclusion problems investigated during the last few years. The basic approach to achieve the goal is to split the monotone operator into a sum of two monotone operators. The other pertinent and massive goal is to apply the proposed methods to solve real-world problems. For real-world application purposes, we are mainly concerned with computer engineering related problems. Different methods are proposed to solve monotone inclusion problems using direct as well as iterative methods. Iterative techniques have the advantage over direct methods in that they can be used to solve even the high-dimensional cases. Keeping the point in mind the author is inclined to develop iterative methods to solve the monotone inclusion problem.

Chapter 1 of the thesis is introductory. It explains the main background of the monotone inclusion problem and the different previous approaches to solve the problem. It also gives the idea about the structure of the thesis.

In Chapter 2 of the thesis, we propose a fixed point algorithm to find the fixed point of a nonexpansive operator. The fixed point algorithms are not just limited to solve the fixed point problems, these fixed point algorithms are also used to solve inclusion problems by framing the monotone inclusion problem as an equivalent fixed point problem. We use the inertial term to define the algorithm, which is motivated by the Heavy ball method proposed by Polyak. We use the proposed fixed point algorithm to solve the regression problems. We conducted numerical experiments to solve high-dimensional regression problems. We compare the performance of the proposed method to already known methods on the basis of convergence speed and accuracy. In Chapter 3, we propose a preconditioning based inertial forward-backward algorithm and focus to solve the inclusion problem of the sum of two monotone operators. We study the convergence behavior of proposed algorithm under mild assumptions. We also propose an iterative method to solve the saddle point problem. Further, we apply the proposed methods to solve the regression and link prediction problem. A comparative study is also done for the proposed algorithm and some well-known methods to solve regression and link prediction problems.

The Chapter 4 of the thesis addresses the inclusion problem of the sum of two setvalued operators. We propose a novel two-step inertial Douglas-Rachford algorithm to solve the monotone inclusion problem of the sum of two maximally monotone operators based on the normal S-iteration method [82]. Further, we study the convergence behavior of the proposed algorithm. Based on the proposed method, we develop an inertial primal-dual algorithm to solve highly structured monotone inclusions containing the mixture of linearly composed and parallel-sum type operators. Finally, we apply the proposed inertial primal-dual algorithm to solve a highly structured minimization problem. We also perform a numerical experiment to solve the generalized Heron problem and compare the performance of the proposed inertial primal-dual algorithms.

We aim to propose strongly convergent methods in Chapter 5 without assuming strong convexity or strong monotonicity. First, we propose a fixed point algorithm to find the common fixed point of nonexpansive operators. Based on proposed fixed point algorithm, we develop a new forward-backward algorithm and a Douglas-Rachford algorithm in connection with Tikhonov regularization to find the solution of splitting monotone inclusion problems. Further, we consider the complexly structured monotone inclusion problems which are quite popular these days. We also propose a strongly convergent forward-backward type primal-dual algorithm and a Douglas-Rachford type primal-dual algorithm such that they solve the monotone inclusion problems containing the mixture of linearly composed and parallel-sum type operators. Finally, we conduct a numerical experiment to solve image deblurring problems.