
Chapter 5

Warped Yosida Approximation and its Properties

5.1 Introduction

Newton-like dynamical system governed by maximally monotone operator is as fol-

lows:

ẋ(t) + Tx(t) = 0,

where T is a maximally monotone operator. This dynamical system is ill-posed.

One can regularize the monotone operators on Hilbert into single-valued Lipschitzian

operators via a process known as the Yosida approximation. This approximation is

very applicable due to ill-posedness of Newton-like dynamical system governed by

maximally monotone operator.

The resolvent and Yosida approximation plays an important role in the convergence

of dynamical system associated with maximal monotone operator [96, 97, 98]. In

2020, Bui et al. [99] have introduced warped resolvent and discussed its properties.

In this sequel, in this manuscript, we have defined warped Yosida approximation

and analyzed it properties.
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5.2 Warped Yosida Approximation

In this section, we define Yosida approximation and provide some characterization

and properties.

Definition 5.2.1. Let B be a reflexive Banach space with dual space B∗. Assume that

C(6= ∅) ⊆ B, M : C → B∗ and T : B → 2B
∗

are such that ran(M) ⊂ ran(T + γM)

and T + γM is injective. For any γ ∈ (0,∞), warped Yosida approximation of T

with kernel M is defined by AMγ = 1
γ

(
M −M ◦ JMγT

)
, where JMγT is warped resolvent.

Example 5.2.1. Let C(6= ∅) be a subset of B and φ : B → (−∞,∞] be a proper

convex lower semicontinuous map. Let γ > 0. Assume that M : C → B∗ is an

operator with ran(M) ⊂ ran(M + γ∂φ) and M + γ∂φ is injective. Then warped

Yosida approximation of ∂φ is (∂φ)Mγ = 1
γ
(M −M ◦ ProxMγ∂φ), where ProxMγ∂φ =

(M + γ∂φ)−1 ◦M .

Let M be an injective operator. The warped Yosida approximation of ∂φ is described

by the following variational inequality:

z = (∂φ)Mγ ⇔ (∀y ∈ B) 〈y − x+ γM−1z, γz〉+ φ(x− γM−1z) ≤ φ(z) ∀(x, z) ∈ B ×B.

Example 5.2.2. Let T : B → 2B
∗

be a maximal monotone operator such that

Zer(T ) 6= ∅. Suppose that f : B → (−∞,∞] is an admissible function such

that D(T ) ⊂ int D(f). Set M = ∇f . Then T∇fγ is well defined warped Yosida

approximation defined in [100].

Now, we provide an example of warped Yosida approximation with respect to dif-

ferent choices of admissible function f .

Example 5.2.3. Let A : (0,∞) → R be a monotone mapping. Define an admissible

function (Boltzmann-Shannon entropy) BS : (0,∞) → (0,∞) by x 7→ x log x − x.



Chapter 5. Warped Yosida approximation and its Properties 135

Then warped resolvent of A is [101]

JBSA x = (log +A)−1 ◦ Ax = xeAx.

Next, warped Yosida approximation

ABSx = ∇BSx−∇BS ◦ JBSA x

= log x− log(xeAx)

= log x− log x− log eAx

= −Ax.

In the next proposition, we give an explicit formula for warped Yosida approximation

of a monotone operator, which is displacement mapping of a linear isometry of finite

order.

Proposition 5.2.1. Let H be a real Hilbert space and R : H → H be a linear isometry

of finite order m. Define T := I−R, referred as the displacement mapping of R, and

hence T is a maximal monotone operator. Assume that M : H → H is an injective

operator with ran(M) ⊂ ran(T + γM) and T + γM is injective, for γ > 0. We have

the following estimates for warped resolvent and warped Yosida approximation:

(i) JMγ(I−S) = I
M+γI

∑∞
n=0

(
γ

M+γI

)n
Sn ◦M , where S : H → H is a nonexpansive

and linear operator.

(ii) JMγT = I
(M+γI)m−(γI)m

∑m−1
n=0 (M + γI)m−1−n γnRn ◦M .

(iii) TMγ = 1
γ

(
M −M ◦ JMγT

)
.
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Proof. (i) Let S : H → H be a nonexpansive and linear operator.

JMγ(I−S) = (M + γ(I − S))−1 ◦M

= M−1(I + γM−1(I − S))−1 ◦M

= M−1

[
(I + γM−1)

(
I − γM−1

I + γM−1
S

)]−1

◦M

=
M−1

I + γM−1

∞∑
n=0

(
γM−1

I + γM−1

)n
Sn ◦M

=
I

M + γI

∞∑
n=0

(
γ

M + γI

)n
Sn ◦M

(ii) Let T := I − R, where R is an isometry of finite order m. So, R is surjective

and ‖R‖ = 1, and hence R is nonexpansive. Therefore from (i), we have

JMγT =
I

M + γI

∞∑
n=0

(
γ

M + γI

)n
Rn ◦M

=

(
I

M + γI

)(m−1∑
n=0

(
γ

M + γI

)n
Rn +

(
γ

M + γI

)m m−1∑
n=0

(
γ

M + γI

)n
Rn + · · ·

)
◦M

=

(
I

M + γI

)(
1 +

(
γ

M + γI

)m
+

(
γ

M + γI

)2m

+ · · ·

)
m−1∑
n=0

(
γ

M + γI

)n
Rn ◦M

=

(
I

M + γI

) 1

1−
(

γI
M+γI

)m
m−1∑

n=0

(
γ

M + γI

)n
Rn ◦M

=

(
(M + γI)m−1

(M + γI)m − (γI)m

)m−1∑
n=0

(
γ

M + γI

)n
Rn ◦M

=
I

(M + γI)m − (γI)m

m−1∑
n=0

(M + γI)m−1−n γnRn ◦M.

Now, we explore some properties and characteristics of warped Yosida approxima-

tion.
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Proposition 5.2.2. Let T : B → 2B
∗

and M : B → B∗ be the operators with

ran(M) ⊂ ran(T + γM) and T + γM is injective, for γ > 0. Then we have the

following:

(i)
(
JMγT (x), TMγ (x)

)
∈ G(T ), x ∈ B.

(ii) 0 ∈ T (x) if and only if 0 ∈ TMγ (x), x ∈ B.

Proof. (i) For x ∈ B, we have

JMγT (x) = (M + γT )−1 ◦M(x)

⇔M(x) ∈ (M + γT ) ◦ JMγT (x)

⇔1

γ

(
M −M ◦ JMγT

)
(x) ∈ T

(
JMγT (x)

)
⇔TMγ (x) ∈ T

(
JMγT (x)

)
.

(ii) For x ∈ B,

0 ∈ T (x)⇔ 0 ∈ γT (x)

⇔M(x) ∈ (M + γT )(x)

⇔x ∈ (M + γT )−1 ◦M(x)

⇔M(x) ∈M(JMγT (x))

⇔0 ∈
(
M −M ◦ JMγT

)
(x)

⇔0 ∈ γTMγ x⇔ 0 ∈ TMγ x.
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Proposition 5.2.3. Let T : B → 2B
∗

be an operator and M : B → B∗ be an injective

operator with ran(M) ⊂ ran(T +γM) and T +γM is injective, for γ > 0. Let λ > 0.

Then we have the following:

(i) TMγ = (γM−1 + T−1)
−1

.

(ii) TMγ = JM
−1

γ−1T−1 ◦ γ−1M .

(iii) TMγ+λ =
(
TMγ
)M
λ

.

(iv) Let x, y ∈ B. Then x = TMγ y ⇔ (y − γM−1x, x) ∈ G(T ).

(v) Assume that T is monotone and M−1 is β-strongly monotone. Then TMγ is

βγ-cocoercive.

Proof. (i) Let x, y ∈ B. Indeed,

x ∈ TγMy ⇔ x ∈ 1

γ

(
M −M ◦ JMγT

)
(y)

⇔γx ∈
(
M −M ◦ JMγT

)
(y)

⇔M(y)− γx ∈ (M ◦ JMγT )(y)

⇔M−1(M(y)− γx) ∈ JMγT (y)

⇔y − γM−1(x) ∈ (M + γT )−1 ◦M(y)

⇔(M + γT )(y − γM−1(x)) ∈M(y)

⇔M(y) + γT (y)− γx− γ2T ◦M−1(x) ∈M(y)

⇔x ∈ T (y − γM−1(x)) (5.1)

⇔x ∈ (γM−1 + T−1)−1(y).
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(ii) Let x, y ∈ B. From part (i),

x ∈ TγMy ⇔ x ∈ (γM−1 + T−1)−1(y)

⇔x ∈ (M−1 + γ−1T−1)−1 ◦M−1(γ−1M(y))

⇔x ∈ JM−1

γ−1T−1 ◦ γ−1M(y).

(iii) From part(i), for x, y ∈ B,

x ∈ TM(γ+λ)(y)⇔x ∈ ((γ + λ)M−1 + T−1)−1(y)

⇔x ∈ T (y − (γ + λ)M−1(x))

⇔x ∈ T (y − γM−1y − λM−1y)

⇔x ∈ TMγ (y − λM−1(y))

⇔x ∈
(
TMγ
)M
λ
y.

(iv) For x, y ∈ B and from (5.1), we have

x ∈ TMγ ⇔ x ∈ T (y − γM−1x)⇔ (y − γM−1x, x) ∈ G(T ). (5.2)

(v) For x1 = TMγ y1, x2 ∈ TMγ y2 ∈ B, from (5.1) and using monotonicity of T , we

obtain

〈x1 − x2, y1 − γM−1x− y2 + γM−1x2〉 ≥ 0

⇒ 〈x1 − x2, y1 − y2〉 ≥ γ〈x1 − x2,M
−1x1,M

−1x2〉. (5.3)

Since M−1 is β-strongly monotone, so from (5.3), we deduce that

β‖x1 − x2‖2 ≤ 〈x1 − x2,M
−1x1 −M−1x2〉
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≤ 1

γ
〈x1 − x2, y1 − y2〉,

which implies that

βγ‖x1 − x2‖2 ≤ 〈x1 − x2, y1 − y2〉. (5.4)

Therefore, TMγ is βγ-cocoercive and hence 1
βγ

-Lipschitz continuous.

Proposition 5.2.4. Let T : B → 2B
∗

be a maximal monotone operator and M :

B → B∗ be an injective operator such that ran(M) ⊂ ran(T + γM) and T + γM is

injective for γ > 0. Then, we have the following:

(i) For x, y, and p ∈ B

(y, p) =
(
JMγT , T

M
γ

)
⇔


(y, p) ∈ G(T ),

x = y + γM−1p.

(ii) Assume that M is α-Lipschitz continuous and β-strongly monotone. Let S :

B → G(T ) be a map defined by

x 7→ (JMγTx, T
M
γ x).

Then S is a Lipschitz continuous. Further, if M−1 is λ-Lipschitzian, then S−1

is also Lipschitz continuous.
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Proof. (i) From the definition of warped resolvent and warped Yosida approxima-

tion, we have


y = JMγT ,

p = TMγ ,
⇔


(y, γ−1(Mx−My) ∈ G(T ),

p = 1
γ
(Mx−My),

⇔


(y, p) ∈ G(T ),

x = y + γM−1p.

(ii) Let x, y ∈ B. Using Lipschitz continuity of JMγT and TMγ , we have

‖Sx− Sy‖2 = ‖JMγTx− JMγTy‖2 + ‖TMγ x− TMγ y‖2

≤ α

β
‖x− y‖2 +

1

β
‖x− y‖2.

Thus, S is
√

α+1
β

-Lipschitz continuous.

Conversely, let (x, p), (y, q) ∈ G(T ). By Cauchy-Schwarz inequality, we deduce

that

‖S−1(x, p)− S−1(y, q)‖2 = ‖(x− y) + γ(M−1p−M−1q)‖2

≤ (‖x− y‖+ γ‖M−1p−M−1q‖)2

≤ (‖x− y‖+ γλ‖p− q‖)2

≤ (1 + γ2λ2)(‖x− y‖+ ‖p− q‖)2

≤ (1 + γ2λ2)(‖(x, p)− (y, q)‖2).

Hence, S−1 is (1 + γ2λ2)-Lipschitz continuous.

Proposition 5.2.5. Let T : H → 2H be a maximal monotone operator and M :

H → H be an injective operator such that ran(M) ⊂ ran(T + γM), ran(M) ⊂

ran(T +µM), T +µM and T + γM are injective for µ, γ > 0. Then, for any x ∈ H,

we have the following:
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(i) JMµTx
(
µ
γ
x+ (1− µ

γ
)JMγTx

)
= JMγTx.

(ii) If M is β-Lipschitz and α-strongly monotone, then

‖JMγTx− JMµTx‖ ≤
β

α

(
1− µ

γ

)
‖M−1TMγ x‖.

Proof. (i) For x ∈ H and µ = λγ, we have

x ∈ ((M + γT )−1 ◦M)−1 ◦ (M + γT )−1 ◦Mx

⇔ x ∈M−1 ◦ (M + γT ) ◦ JMγTx

⇔ (Mx−M ◦ JMγTx) ∈ γT (JMγTx)

⇔ λMx− (1− λ)M ◦ JMγTx ∈ (M + µT )JMγTx

⇔ (M + µT )−1 ◦M(λx+ (1− λ)JMγTx) = JMγTx

⇔ JMµT (λx+ (1− λ)JMγTx) = JMγTx.

Putting λ = µ
γ
, we have

JMµTx

(
µ

γ
x+ (1− µ

γ
)JMγTx

)
= JMγTx.

(ii) From (i), we get

‖JMγTx− JMµTx‖ = ‖JMµTx
(
µ

γ
x+ (1− µ

γ
)JMγTx

)
− JMµTx‖

≤ β

α

∥∥∥∥(1− µ

γ

)
(x− JMγTx)

∥∥∥∥
=
β

α

(
1− µ

γ

)
‖M−1TMγ x.‖

***********


