
Chapter 3

Variable metric backward-forward dynamical

systems for monotone inclusion problems

3.1 Introduction

The backward-forward algorithm has been studied by Attouch et al. [66] to solve the

monotone inclusion problem (1.3). Operators are chosen so that they are closely as-

sociated with a forward-backward algorithm to solve the problem (1.3). The forward-

backward algorithms with a symmetric positive definite operator M called a variable

metric have been studied by [67, 68, 69]. Raguet et al. have [70] studied general-

ized variable metric forward-backward algorithm by taking the operator M strongly

positive.

In this chapter, we investigate the first order dynamical system, which is associated

with the variable metric backward-forward method to solve structured monotone

inclusion problem of the form:

find x ∈ H : 0 ∈ (A+B)x,

whereA : H → 2H is maximal (γ−α)-cohypomonotone for γ ∈ R, α > 0, B : H → H

is a β-cocoercive for β > 0 and H is a real Hilbert space. We study first-order
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variable metric backward-forward dynamical system of the form:

 ẋ(t) = λ(t)[(I − γM−1B)JMγAx(t)− x(t)]

x(0) = x0,
(3.1)

where γ 6= 0, x0 ∈ H, λ : [0,∞) → [0,∞) is a Lebesgue measurable function and

JMγA : H → 2H is an operator defined by JMγA := (I + γM−1A)−1 and M : H → H is

a strongly positive operator. It is shown that the equilibrium point is exponentially

stable and monotone attractor, whenever B−γ is ρ-strongly monotone for ρ > 0.

We study the convergence behaviour of the trajectories generated by forward-backward

dynamical system in variable metric setting:

 u̇(t) = λ(t)[JMγA(I − γM−1B)u(t)− u(t)]

u(0) = u0,
(3.2)

where u0 ∈ H, λ : [0,∞)→ [0,∞) is a Lebesgue measurable function and operators

A, B and M satisfy the same conditions as in dynamical system (3.1).

We also examine the first order dynamical system generated by optimization problem

of the form

min
x∈H

f(x) + g(x), (3.3)

where f : H → R ∪ {∞} is proper, convex and lower semicontinuous function,

g : H → R is differentiable such that its gradient ∇g is β-cocercive for β > 0.

The remaining parts of this chapter are organized as follows: some lemmas and

definitions required for proving the main results are presented in section 3.2. Exis-

tence, uniqueness, and convergence of the trajectories generated by the first-order
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backward-forward dynamical system (3.1) and forward-backward dynamical system

(3.2) in the variable metric environment are studied in section 3.3. In this section, we

also study the convergence behavior of the dynamical system’s trajectories, which is

associated with minimizing the sum of a smooth and nonsmooth functions. Finally,

section 3.4 is devoted to numerical experiments to illustrate the convergence of the

trajectories of the dynamical system (3.1).

3.2 Preliminaries

Definition 3.2.1. [11] A set-valued operator T : H → 2H is said to be

(i) maximally ρ-cohypomonotone if Tρ = (T−1 + ρI)−1 is maximally monotone,

where ρ ∈ R;

(ii) uniformly monotone with modulus function φ : [0,∞) → [0,∞), if φ is in-

creasing, vanishes only at 0, and

〈x− y, u− v〉 ≥ φ(‖x− y‖) ∀(x, u), (y, v) ∈ G(T );

(iii) strongly monotone with constant ρ ∈ [0,∞) if T − ρI is monotone, i.e.,

〈x− y, u− v〉 ≥ ρ‖x− y‖2 ∀(x, u), (y, v) ∈ G(T ).

Remark 3.2.1. For cohypomonotonicity, its useful and related notions see [71, 72, 73].

Example 3.2.1. [66]

(i) Let T : H → 2H be a maximally monotone operator. Then T is ρ-cohypomonotone

for all ρ ≥ 0.
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(ii) Consider a bounded, linear and symmetric operator N : H → H whose spec-

trum σ(N) has negative points. Define the multivalued operator T : H → 2H

by T = N−1, which is not monotone. Then Tρ = (T +ρI)−1 is maximal mono-

tone operator for ρ > −min ρ(N). Hence, T is maximally ρ-cohypomonotone.

Definition 3.2.2. [11] An operator T : H → H is said to be

(i) β-cocoercive for β > 0 if

〈Tx− Ty, x− y〉 ≥ β‖Tx− Ty‖2 for every x, y ∈ H;

(ii) α-averaged for α ∈ (0, 1) if there exists a nonexpansive operator R : H → H

such that T = (1− α)I + αR.

Remark 3.2.2. If T is a nonexpansive operator, then operator defined by B = I − T

is 1
2
-cocoercive.

Lemma 3.2.1. [11] Let β > 0, γ ∈ (0, 2β) and T : H → H be β-cocoercive. Then

I − γT is γ
2β

-averaged.

Lemma 3.2.2. [74] Let Ti : H → H be αi-averaged operators for some αi ∈ [0, 1),

where i = 1, 2. Then α1+α2−2α1α2

1−α1α2
∈ [0, 1) and T1T2 is α1+α2−2α1α2

1−α1α2
-averaged.

Lemma 3.2.3. [66] Let T : H → 2H be a set-valued operator, γ ∈ R and α > 0.

Then T is maximally (γ−α)-cohypomonotone if and only if Tγ is defined everywhere,

single-valued and α-cocoercive.

Let M : H → H be a bounded, linear, and self-adjoint operator. M is said to

be positive if 〈Mx, x〉 ≥ 0, for all x ∈ H, and strongly positive if ∃ m ∈ (0,∞)

such that M −mI is positive. The square root and inverse of the strongly positive

operator M are denoted by
√
M and M−1.
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The maps (x, y) 7→ 〈x, y〉M := 〈Mx, y〉 and x 7→ ‖x‖M :=
√
〈Mx, x〉 define an inner

product and a norm over H, respectively, where M is a strongly positive operator

on H. For all x ∈ H,

m‖x‖2 ≤ ‖x‖2
M ≤ ‖M‖‖x‖2.

Thus, ‖ · ‖ and ‖ · ‖M are equivalent norms and hence induce the same topology over

H.

For γ ∈ R\{0} and strongly positive operator M , we denote JMγT := (I+γM−1T )−1.

Definition 3.2.3. [11] Let f : H → (−∞,∞] be a function.

(i) If f is a proper function, then f is said to be uniformly convex with modulus

function φ : [0,∞)→ [0,∞) if

f(νx+(1−ν)y)+ν(1−ν)φ(‖x−y‖) ≤ νf(x)+(1−ν)f(y) ∀ν ∈ (0, 1) and x, y ∈ D(f),

where function φ is increasing and vanishes at 0.

(ii) Let γ > 0. The Moreau envelope of f with parameter γ is

fγ(x) = inf
y∈H
{f(y) +

1

2γ
‖x− y‖2}.

Definition 3.2.4. A map x : [0,∞)→ H is said to be strong solution of (3.1), if the

following properties hold:

(i) x : [0,∞)→ H is locally absolutely continuous;

(ii) ẋ(t) = λ(t)[(I − γM−1B)JMγAx(t)− x(t)] for almost every t ∈ [0,∞);

(iii) x(0) = u0.
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Definition 3.2.5. A point x∗ is said to be an equilibrium point of dynamical system

(3.1) if x∗ satisfies (1.3), i.e., 0 ∈ (A+B)x∗.

Definition 3.2.6. [75] Let x(t) be the solution of the dynamical system (3.1) and

x(0) = x0. Then an equilibrium point x∗ is said to be

(i) globally exponentially stable if there are constants C1 > 0 and C2 > 0 such

that

‖x(t)− x∗‖ ≤ C1‖x0 − x∗‖ exp(−C2t) ∀t > 0;

(ii) global monotone attractor if ‖x(t)− x∗‖ is nonincreasing in t.

Lemma 3.2.4. [31] If F : [0,∞) → [0,∞) is locally absolutely continuous function,

for 1 ≤ p < ∞, 1 ≤ r ≤ ∞, F ∈ Lp ([0,∞)), G : [0,∞) → R, G ∈ Lr ([0,∞)) and

for almost every t ∈ [0,∞)

d

d(t)
F (t) ≤ G(t),

then lim
t→∞

F (t) = 0.

Lemma 3.2.5. [76] Let C be a nonempty subset of H and x : [0,∞)→ H ba a given

map. Suppose that

(i) lim
t→∞
‖x(t)− x∗‖ exists, for every x∗ ∈ C;

(ii) every weak sequential cluster point of the map x belongs to C.

Then there exists x∞ ∈ C such that x(t) ⇀ x∞ as t→∞.

Lemma 3.2.6. [11] Let C ⊆ H be a nonempty closed convex set and T : C → H be

a nonexpansive mapping. Let {xn} be a sequence in C and x ∈ H. Suppose that

xn ⇀ u and that xn − Txn → 0. Then u ∈ Fix(T).
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Proposition 3.2.1. Let T : H → 2H be a set-valued operator and γ ∈ R \ {0}. Then

we have the following:

(a) JMγT = I − γM−1Tγ.

(b) Tγ is defined everywhere and single-valued whenever JMγT is so.

(c) JMγ(T−γ) = I − γM−1T .

(d) T is defined everywhere and single-valued whenever JMγ(T−γ) is so.

Proof. (a) Since γ 6= 0, we obtain

y ∈ JMγTx⇔ x ∈ y + γM−1Ty

⇔ x− y
γ
∈M−1T (x− γx− y

γ
)

⇔ y ∈ x− γM−1Tγx.

(b) It follows from (a).

(c) Replace T by T−γ in (a), we get JMγ(T−γ) = I − γM−1(T−γ)γ = I − γM−1T .

(d) It follows from (c).

Proposition 3.2.2. Let A : H → 2H be maximally (γ − α)-cohypomonotone, B :

H → H be β-cocoercive and M : H → H be a strongly positive such that ‖M−1‖ ≤
1
κ

min{α, β}, where κ > 0. Then we have the following:

(a) M−1B is κ-cocoercive.

(b) M−1Aγ is κ-cocoercive.
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Proof. (a) Let x, y ∈ H. Since B is β-cocercive, we have

〈Bx−By, x−y〉 ≥ β‖Bx−By‖2 ⇔ 〈M−1Bx−M−1By, x−y〉M ≥ β〈Bx−By,Bx−By〉.

Also, κ‖M−1Bx−M−1By‖M = κ〈Bx−By,M−1(Bx−By)〉.

Altogether, denoting w := (Bx−By), we obtain

〈M−1Bx−M−1By, x− y〉M − κ‖M−1Bx−M−1By‖M ≥ β‖w‖2 − κ〈w,M−1w〉.

(3.4)

By the Cauchy-Schwarz inequality, we have

κ〈w,M−1w〉 ≤ κ‖M−1‖‖w‖2.

Hence, from (3.4), we get

〈M−1Bx−M−1By, x− y〉M ≥ κ‖M−1Bx−M−1By‖M ,

which implies that M−1B is κ-cocoercive.

(b) From Lemma 3.2.3, Aγ is α-cocoercive operator. So, in the similar manner, one

can show M−1Aγ is κ-cocoercive.

Proposition 3.2.3. Let γ 6= 0. Let A : H → 2H be a set-valued operator such that

JMγA is single-valued and everywhere defined and B : H → H be an operator. Define

T1 := (I + γM−1A)−1(I − γM−1B) and T2 := (I + γM−1B−γ)
−1(I − γM−1Aγ),

where M : H → H is a strongly positive operator. Then the following statements

hold:

(a) x ∈ F(T1)⇔ x ∈ Zer(A+B)⇔ Aγ ◦ (I − γM−1B)x+Bx = 0.
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(b) y ∈ F(T2)⇔ y ∈ Zer(B−γ + Aγ)⇔ B ◦ JMγAy + Aγy = 0.

(c) I − γM−1B : Zer(A+B)→ Zer(B−γ + Aγ) is a bijection with inverse JMγA.

Proof. (a) Suppose that x ∈ Zer(A+B). Then

0 ∈ (A+B)x⇔ 0 ∈ γM−1Ax+ γM−1Bx

⇔ (I − γM−1B)x ∈ (I + γM−1A)x

⇔ x = (I + γM−1A)−1(I − γM−1B)x

⇔ x ∈ F(T1).

Also,

x ∈ F(T1)⇔ x ∈ F [(I − γM−1Aγ)(I − γM−1B)]

⇔ x = x− γM−1Bx− γM−1Aγ ◦ (I − γM−1B)x

⇔ Aγ ◦ (I − γM−1B)x+Bx = 0.

(b) In (a) apply (B−γ, Aγ) in place of (A,B) and using Proposition 3.2.1, we have

the result.

(c) Let x ∈ Zer(A+B). By (a), we have

Aγ ◦ (I − γM−1B)x+B ◦ JMγA ◦ (I − γM−1B)x = 0

⇔ (Aγ +B ◦ JMγA) ◦ (I − γM−1B)x = 0

⇔ (I − γM−1B)x ∈ Zer(B−γ + Aγ).
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Also, for y ∈ Zer(B−γ + Aγ), from (b), we deduce

B ◦ JMγAy + Aγ ◦ (I − γM−1B) ◦ JMγAy = 0⇔ (B + Aγ ◦ (I − γM−1B)) ◦ JMγAy = 0

⇔ JMγAy ∈ Zer(A+B).

Finally, JMγA ◦ (I − γM−1B)x = x, and (I − γM−1B) ◦ JMγAy = y for x ∈ Zer(A+B)

and y ∈ Zer(B−γ + Aγ).

3.3 Convergence of trajectories generated by first

order dynamical systems

3.3.1 Operator Framework

Consider the dynamical system

 ẋ(t) = λ(t)[T (x(t))− x(t)]

x(0) = x0,
(3.5)

where x0 ∈ H, T : H → H is an α-averaged operator and λ : [0,∞) → [0,∞) is a

Lebesgue measurable function satisfying

0 < λ ≤ inf
t≥0

λ(t) ≤ sup
t≥0

λ(t) ≤ λ, (3.6)

where λ, λ ∈ R.
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Definition 3.3.1. A map x : [0,∞)→ H is said to be strong solution of (3.5), if the

following properties hold:

(i) x : [0,∞)→ H is locally absolutely continuous;

(ii) ẋ(t) = λ(t)[T (x(t))− x(t)] for almost every t ∈ [0,∞);

(iii) x(0) = x0.

Definition 3.3.2. [30, 31] Let b > 0, x : [0, b]→ H be a function. Then x is absolutely

continuous if any of the following holds:

(i) x satisfies

x(t) = x(0) +

∫ t

0

y(s)ds for all t ∈ [0, b] (3.7)

with some integrable function y : [0, b]→ H;

(ii) x is continuous and its distribution derivative ẋ is Lebesgue integrable on [0, b];

(iii) ∀ε > 0, ∃δ > 0 such that

(
Ik ∩ Ij = ∅ and

∑
k

|bk − ak| < δ

)
⇒
∑
k

‖x(bk)− x(ak)‖ < ε

holds for any finite family of intervals Ik = (ak, bk) ⊆ [0, b].

Remark 3.3.1. (a) From Definition 3.3.2, one asserts that an absolutely continuous

function is differentiable almost everywhere (a.e.), its derivative matches with its

distributional derivative a.e., and the function can be achieved from its derivative

ẋ = y with the help of (3.7).
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(b) Given b > 0, let x : [0, b] → H be an absolutely continuous function. Then one

can show by using Definition 3.3.2(iii) that z = B ◦x is absolutely continuous for L-

Lipschitz continuous operator B. Also, z is a.e. differentiable and ‖ż(·)‖ ≤ L‖ẋ(·)‖

a.e..

First we establish the following result for the dynamical system (3.5).

Proposition 3.3.1. Let T : H → H be an α-averaged operator for α ∈ (0, 1) with

F(T ) 6= ∅. Let x : [0,∞)→ H be the unique strong global solution of the dynamical

system (3.5). Then we have the following:

(i) The trajectory x is bounded and ẋ, (I − T )x ∈ L2([0,∞);H).

(ii) lim
t→∞

ẋ(t) = lim
t→∞

(I − T )(x(t)) = 0.

(iii) x(t) ⇀ x̄ ∈ F(T ) as t→∞.

Proof. (i) Let x∗ ∈ F(T ). Define k(t) := 1
2
‖x(t) − x∗‖2, t ∈ [0,∞). Then k̇(t) =

〈x(t) − x∗, ẋ(t)〉. From (3.5), and the fact that (I − T )x∗ = 0, we have for every

t ∈ [0,∞)

k̇(t) + λ(t)〈x(t)− x∗, (I − T )(x(t))− (I − T )x∗〉 = 0. (3.8)

Since T is α-averaged operator, so there exists a nonexpansive operator R : H → H

such that T = (1− α)I + αR and F(T ) = F(R). From (3.8) we have

k̇(t) + αλ(t)〈x(t)− x∗, (I −R)(x(t))− (I −R)x∗〉 = 0. (3.9)

Remark 3.2.2 shows that I −R is 1
2
-cocoercive operator. From (3.9) we obtain

k̇(t) +
αλ(t)

2
‖(I −R)(x(t))‖2 ≤ 0,
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which implies that

k̇(t) +
λ(t)

2α
‖(I − T )(x(t))‖2 ≤ 0. (3.10)

From (3.5) and (3.10), we have

k̇(t) +
1

2αλ(t)
‖ẋ(t)‖2 ≤ 0 for all t ∈ [0,∞).

Using condition (3.6), we get

k̇(t) +
1

2αλ
‖ẋ(t)‖2 ≤ 0 for every t ∈ [0,∞). (3.11)

From (3.11), we get that the function t 7→ k(t) is monotonically decreasing. Also,

the map t 7→ k(t) is locally absolutely continuous. Hence there exists N1 ∈ R such

that

k(t) ≤ N1 for all t ∈ [0,∞).

Thus, k is bounded, and hence u is bounded.

To integrate the inequality (3.11), we get that there is N2 ∈ R such that

k(t) +
1

2αλ

∫ t

0

‖ẋ(t)‖2 ≤ N2 for all t ∈ [0,∞). (3.12)

Since k is bounded, so from (3.12), we conclude that ẋ(t) ∈ L2([0,∞);H). Hence,

from (3.5) and (3.6), we get that (I − T )x ∈ L2([0,∞);H).

(ii) Using Remark 3.3.1(b) and cocoercivity of I −R, we have

d

dt

(
1

2
‖(I − T )(x(t))‖2

)
=

d

dt
α2

(
1

2
‖(I −R)(x(t))‖2

)
= α2

〈
(I −R)(x(t)),

d

dt
((I −R)(x(t)))

〉
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≤ α2

2
‖(I −R)(x(t))‖2 + 2α2‖ẋ(t)‖2

=
1

2
‖(I − T )(x(t))‖2 + 2α2‖ẋ(t)‖2 ∀t ∈ [0,∞).

By using Lemma 3.2.4 and part (i) we obtain lim
t→∞

(I − T )(x(t)) = 0, and from (3.6)

and (3.8), we conclude that lim
t→∞

ẋ(t) = 0.

(iii) We show that both the assumptions of Lemma 3.2.5 are satisfied.

As k is bounded and t 7→ k(t) is monotonically decreasing, we observe that lim
t→∞

k(t)

exists and belongs to the set of real numbers. So, lim
t→∞
‖x(t)− x∗‖ exists.

Let ū be a weak sequential cluster point of x(t), i.e, there exists a sequence tn →∞

(as n → ∞) such that {x(tn)} ⇀ x̄. Using Lemma 3.2.6 and part (ii), we deduce

that x̄ ∈ Fix(R) = Fix(T) and the conclusion follows.

In order to study the convergence behaviour of trajectories generated by dynamical

systems (3.1) and (3.2), we need the following assumptions:

(A1) The operator A : H → 2H is maximally (γ − α)-cohypomonotone.

(A2) The operator B : H → H is β-cocoercive.

(A3) Zer(A+B) 6= ∅.

(A4) The operator M : H → H is strongly positive.

Now we are ready to establish weak and strong convergence of trajectories generated

by backward-forward first order dynamical system (3.1).

Theorem 3.3.1. Let assumptions (A1), (A2), (A3) and (A4) hold and λ : [0,∞) →

[0,∞) be a Lebesgue measurable function satisfying condition (3.6). Let x : [0,∞)→

H be the unique strong solution of (3.1) and x0 ∈ H. Let γ ∈ (0, 2κ), where
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κ ∈ (0,∞) such that

κ ≤ ‖M‖min{α, β}. (3.13)

Set δ := 2κ+γ
2γ

. Then the following statements hold:

(i) The trajectory x is bounded and u̇, (I− (I−γM−1B)◦JMγA)x ∈ L2([0,∞);H).

(ii) lim
t→∞

ẋ(t) = lim
t→∞

(I − (I − γM−1B) ◦ JMγA)(x(t)) = 0.

(iii) x(t) ⇀ x∗ ∈ Zer(B−γ + Aγ) as t→∞.

(iv) If x∗ ∈ Zer(B−γ+Aγ), thenAγ(x(·))−Aγx∗ ∈ L2([0,∞);H) and lim
t→∞

Aγ(x(t)) =

Aγu
∗.

(v) M−1Aγ is constant on Zer(B−γ + Aγ).

(vi) y(t) ⇀ y∗ ∈ Zer(A+B) as t→∞, where y(t) = JMγA(x(t)).

(vii) lim
t→∞

B(y(t)) = By∗ = −Aγx∗.

(viii) If B−γ or Aγ is uniformly monotone, then x(t)→ x∗ ∈ Zer(B−γ + Aγ).

(ix) If B−γ is ρ-strongly monotone for ρ > 0 and choose η > 0 fulfilling the condi-

tion:

1

2α
+
η‖M‖2

2γ2
≤ ρ+

‖M‖λ
γ

. (3.14)

Let x∗ be an equilibrium point of dynamical system (3.1). Then we have the

following:

(a) If 1
ηρ
< 4, then x∗ is globally exponentially stable.

(b) If 1
ηρ

= 4, then x∗ is global monotone attractor.
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Proof. (i)-(iii) We can write the dynamical system (3.1) in the form

 ẋ(t) = λ(t)[T (x(t))− x(t)]

x(0) = x0,
(3.15)

where T = (I−γM−1B)(I+γM−1A)−1. From Proposition 3.2.1, T = (I−γM−1B)(I−

γM−1Aγ). Since both M−1B and M−1Aγ are κ-cocoercive. From Lemma 3.2.1,

both I − γM−1B and I − γM−1Aγ are γ
2κ

-averaged. Hence, by Lemma 3.2.2, T is

1
δ
-averaged. Now, the statements (i)-(iii) follow from Propositions 3.3.1 and 3.2.3,

by observing that F(T ) = Zer(B−γ + Aγ).

(iv) Let x∗ ∈ Zer(B−γ + Aγ). From (3.1), we have

ẋ(t)

λ(t)
+ x(t) = (I − γM−1B)(I − γM−1Aγ)(x(t)),

which implies that

− ẋ(t)

γλ(t)
−M−1Aγ(x(t)) = M−1B(I − γM−1Aγ)(x(t)).

From Proposition 3.2.3(b), we have

−M−1Aγx
∗ = M−1B(I − γM−1Aγ)x

∗.

Since operators M−1B and M−1Aγ are κ-cocoercive, we deduce for every t ∈ [0,∞)

κ

∥∥∥∥− ẋ(t)

γλ(t)
−M−1(Aγ(x(t))− Aγx∗)

∥∥∥∥2

≤
〈
− ẋ(t)

γλ(t)
−M−1(Aγ(x(t))− Aγx∗), x(t)− x∗ − γ(M−1Aγ(x(t))−M−1Aγx

∗)

〉
=

〈
− u̇(t)

γλ(t)
, x(t)− x∗ − γ(M−1Aγ(x(t))−M−1Aγx

∗)

〉
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− 〈M−1Aγ(x(t))−M−1Aγx
∗, x(t)− x∗〉+ γ‖M−1Aγ(x(t))−M−1Aγx

∗‖2

≤
〈
− ẋ(t)

γλ(t)
, x(t)− x∗

〉
+ γ

〈
ẋ(t)

γλ(t)
,M−1Aγ(x(t))−M−1Aγx

∗
〉

− κ‖M−1Aγ(x(t))−M−1Aγx
∗‖2 + γ‖M−1Aγ(x(t))−M−1Aγx

∗‖2. (3.16)

Also,

κ

∥∥∥∥− ẋ(t)

γλ(t)
−M−1(Aγ(x(t))− Aγx∗)

∥∥∥∥2

=κ

∥∥∥∥ ẋ(t)

γλ(t)

∥∥∥∥2

+ κ‖M−1Aγ(x(t))−M−1Aγx
∗‖2

+ 2κ

〈
ẋ(t)

γλ(t)
,M−1Aγ(x(t))−M−1Aγx

∗
〉
.

(3.17)

From (3.16) and (3.17), we have

(2κ− γ)‖M−1Aγ(x(t))−M−1Aγx
∗‖2

≤ (γ − 2κ)

〈
ẋ(t)

γλ(t)
,M−1Aγ(x(t))−M−1Aγx

∗
〉
−
〈
ẋ(t)

γλ(t)
, x(t)− x∗

〉
− κ

γ2λ2(t)
‖ẋ(t)‖2

≤ (γ − 2κ)

2

∥∥∥∥ ẋ(t)

γλ(t)

∥∥∥∥2

+
(γ − 2κ)

2
‖M−1Aγ(x(t))−M−1Aγx

∗‖2 −
〈
ẋ(t)

γλ(t)
, x(t)− x∗

〉
≤ γ

2

∥∥∥∥ ẋ(t)

γλ(t)

∥∥∥∥2

+
(γ − 2κ)

2
‖M−1Aγ(x(t))−M−1Aγx

∗‖2 − κ

γ2λ2(t)
‖ẋ(t)‖2

−
〈
ẋ(t)

γλ(t)
, x(t)− x∗

〉
≤ γ

2

∥∥∥∥ ẋ(t)

γλ(t)

∥∥∥∥2

+
(γ − 2κ)

2
‖M−1Aγ(x(t))−M−1Aγx

∗‖2 −
〈
ẋ(t)

γλ(t)
, x(t)− x∗

〉
.

By using the function k : [0,∞) → R, k(t) = 1
2
‖x(t) − x∗‖2 and the fact that

k̇(t) = 〈x(t)− x∗, ẋ(t)〉, we obtain

(
(2κ− γ)− (2κ− γ)

2

)
‖M−1Aγ(x(t))−M−1Aγx

∗‖2 +
1

γλ(t)
k̇(t) ≤ 1

2γλ2(t)
‖ẋ(t)‖2 .
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Taking into accounts the bounds of λ, we deduce for every t ∈ [0,∞)

(
2κ− γ

2

)
‖M−1Aγ(x(t))−M−1Aγx

∗‖2 +
1

γλ̄
k̇(t) ≤ 1

2γλ
2 ‖ẋ(t)‖2 .

Integrating above equation from 0 to τ , we get that for every τ ∈ [0,∞)

(
2κ− γ

2

)∫ τ

0

‖M−1Aγ(x(t))−M−1Aγx
∗‖2dt+

1

γλ̄
(k(τ)− k(0))

≤ 1

2γλ
2

∫ τ

0

‖ẋ(t)‖2.

Since ẋ ∈ L2([0,∞);H), γ ∈ (0, 2κ), and k(τ) ≥ 0 for every τ ∈ [0,∞), it fol-

lows that M−1Aγ(x(t)) −M−1Aγx
∗ ∈ L2([0,∞);H) and hence Aγ(x(t)) − Aγx∗ ∈

L2([0,∞);H).

From Remark 3.3.1, we get

d

dt

(
1

2
‖Aγ(x(t))− Aγx∗‖

)
=

〈
Aγ(x(t))− Aγx∗,

d

dt
(Aγ(x(t)))

〉
≤ 1

2
‖Aγ(x(t))− Aγx∗‖2 +

1

2α2
‖ẋ(t)‖2,

and by Lemma 3.2.4, we have lim
t→∞

Aγ(x(t)) = Aγx
∗.

(v) Let x and y be two zeros of B−γ + Aγ, by Proposition 3.2.3, we obtain

−M−1Aγx = M−1B(x− γM−1Aγx)and−M−1Aγy = M−1B(y − γM−1Aγy).

Since M−1B is κ-cocoercive, we have

κ‖ −M−1Aγy +M−1Aγx‖2 ≤ 〈−M−1Aγy +M−1Aγx, y − γM−1Aγy − x+ γM−1Aγx〉

= γ‖ −M−1Aγy +M−1Aγx‖2

− 〈−M−1Aγy +M−1Aγx,−y + x〉.
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By using κ-cocerciveness of M−1Aγ, we obtain

κ‖ −M−1Aγy +M−1Aγx‖2 ≤ −κ‖ −M−1Aγy +M−1Aγx‖2 + γ‖ −M−1Aγy +M−1Aγx‖2.

Since γ < 2κ, so we get that ‖M−1Aγx−M−1Aγy‖2 = 0. Hence M−1Aγ is constant

on Zer(B−γ + Aγ).

(vi) From statements (iii), (iv) and Proposition 3.2.1, we have

y(t) = JMγA(x(t)) = x(t)− γM−1Aγ(x(t))

converges weakly to y∗ = x∗ − γM−1Bu∗. From fixed point equality, we get

x∗ = (I − γM−1B) ◦ JMγAx∗ = (I − γM−1B)y∗.

Employing the operator JMγA with the equality x∗ = (I − γM−1B)y∗ gives y∗ =

JMγA ◦ (I − γM−1B)y∗, which declares that y∗ is fixed point of JMγA ◦ (I − γM−1B),

hence a zero of A+B.

(vii) Note,

M−1B(y(t)) =
1

γ

(
y(t)− JMγB−γ (y(t))

)
= −M−1Aγx(t) +

1

γ

(
y(t)− JMγB−γ (y(t))

)
,

which conclude that B(y(t)) → −Aγx∗ as t → ∞. Finally, from statement (vi) we

deduce that −Aγx∗ = By∗.

(viii) Assume thatB−γ is uniformly monotone with modulus function φB−γ : [0,∞)→

[0,∞). Let x∗ ∈ Zer(B−γ + Aγ) be an unique element. From Proposition 3.2.1, we
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have for every t ∈ [0,∞)

−M ẋ(t)

γλ(t)
− Aγ(x(t)) ∈ B−γ

(
ẋ(t)

λ(t)
+ x(t)

)
. (3.18)

Combining (3.18) with −Aγx∗ ∈ B−γx∗, we have for every t ∈ [0,∞)

φB−γ

(∥∥∥∥ ẋ(t)

λ(t)
+ x(t)− x∗

∥∥∥∥)
≤
〈
ẋ(t)

λ(t)
+ x(t)− x∗, Aγx∗ −M

ẋ(t)

γλ(t)
− Aγ(x(t))

〉
=

〈
ẋ(t)

λ(t)
, Aγx

∗ −M ẋ(t)

γλ(t)
− Aγ(x(t))

〉
+

〈
x(t)− x∗,M ẋ(t)

γλ(t)

〉
− 〈x(t)− x∗, Aγ(x(t))− Aγx∗〉,

which combines with the monotonicity of Aγ yields

φB−γ

(∥∥∥∥ ẋ(t)

λ(t)
+ x(t)− x∗

∥∥∥∥)
≤
〈
ẋ(t)

λ(t)
, Aγx

∗ − Aγ(x(t))

〉
− 1

λ2(t)γ
‖ẋ(t)‖2

M +

〈
x(t)− x∗,M ẋ(t)

γλ(t)

〉
≤
〈
ẋ(t)

λ(t)
, Aγx

∗ − Aγ(x(t))

〉
+

〈
x(t)− x∗,M ẋ(t)

γλ(t)

〉
. (3.19)

From parts (i)-(iv), (3.19) and the fact that λ is bounded by positive constants, we

get

lim
t→∞

φB−γ

(∥∥∥∥ ẋ(t)

λ(t)
+ x(t)− x∗

∥∥∥∥) = 0.

Since the function φB−γ is increasingly vanishes to 0, so we have

(
ẋ(t)

λ(t)
+ x(t)− x∗

)
→ 0 as t→∞.
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Using statement (ii) and the boundedness of λ we get that x(t) converges strongly

to x∗ as t→∞.

(ix) Suppose that B−γ is ρ-strong monotone. Combining (3.18) with −Aγx∗ ∈

B−γx
∗, we have

ρ

∥∥∥∥ ẋ(t)

λ(t)
+ x(t)− x∗

∥∥∥∥2

≤
〈
ẋ(t)

λ(t)
+ x(t)− x∗, Aγx∗ −

M

γλ(t)
ẋ(t)− Aγ(x(t))

〉
=

〈
ẋ(t)

λ(t)
, Aγx

∗ − M

γλ(t)
ẋ(t)− Aγ(x(t))

〉
+

〈
x(t)− x∗, Aγx∗ −

M

γλ(t)
ẋ(t)− Aγ(x(t))

〉
≤ 1

2αλ2(t)
‖ẋ(t)‖2 +

α

2
‖Aγx∗ − Aγ(x(t))‖2 − 1

γλ(t)
‖ẋ(t)‖2

M +

〈
x(t)− x∗, −M

γλ(t)
ẋ(t)

〉
− 〈x(t)− x∗, Aγ(x(t))− Aγx∗〉.

Using α-cocoercivity of Aγ, we have

ρ

∥∥∥∥ ẋ(t)

λ(t)
+ x(t)− x∗

∥∥∥∥2

≤ 1

2αλ2(t)
‖ẋ(t)‖2 − 1

γλ(t)
‖ẋ(t)‖2

M +

〈
x(t)− x∗, −M

γλ(t)
ẋ(t)

〉
≤ 1

2αλ2(t)
‖u̇(t)‖2 − ‖M‖ 1

γλ(t)
‖ẋ(t)‖2 +

1

2η
‖x(t)− x∗‖2 +

η‖M‖2

2γ2λ2(t)
‖ẋ(t)‖2

=

(
1

2αλ2(t)
− ‖M‖
γλ(t)

+
η‖M‖2

2γ2λ2(t)

)
‖ẋ(t)‖2 +

1

2η
k(t). (3.20)

Also,

ρ

∥∥∥∥ ẋ(t)

λ(t)
+ x(t)− x∗

∥∥∥∥2

=
ρ

λ2(t)
‖ẋ(t)‖2 +

2ρ

λ(t)
k̇(t) + 2ρk(t). (3.21)

From (3.20) and (3.21), we have for t ∈ [0,∞)

2ρ

λ(t)
k̇(t) +

(
2ρ− 1

2η

)
k(t) +

(
ρ

λ2(t)
− 1

2αλ2(t)
+
‖M‖
γλ(t)

− η‖M‖2

2γ2λ2(t)

)
‖u̇(t)‖2 ≤ 0.
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So, from (3.14) and the fact that λ(t) is bounded, we have for every t ∈ [0,∞)

2ρ

λ
k̇(t) +

(
2ρ− 1

2η

)
k(t) ≤ 0,

which implies that

k̇(t) +
2ρ− 1

2η

2ρ
λ

k(t) ≤ 0.

Now we have two cases:

(a) If 1
ηρ
< 4, then we have

k̇(t) + Ck(t) ≤ 0, (3.22)

for every t ∈ [0,∞), where C := λ
(

1− 1
4ηρ

)
> 0. Now, by multiplying

exp(Ct) with (3.22) and integrating between 0 and τ , where τ ≥ 0, we have

the desired result.

(b) If 1
ηρ

= 4, then k̇(t) ≤ 0, so u∗ is global monotone attractor.

We now study the convergence of trajectories generated by forward-backward first

order dynamical system (3.2). Before analyzing the results based on the dynamical

system (3.2), we need the following proposition.

Proposition 3.3.2. Let γ 6= 0 and λ : [0,∞)→ [0,∞) be a function. Let A : H → 2H

be a set-valued operator such that JMγA is everywhere defined and single-valued and

B : H → H. Then we have the following:
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(i) For each x0 ∈ H, the dynamical system (3.1) applied to (A,B) uniquely defines

a function x(t). For u0 ∈ H, dynamical system (3.2) applied to (B−γ, Aγ)

uniquely defines a function u(t). Moreover, if x0 = u0, then x(t) = u(t) for

t ∈ [0,∞).

(ii) For each u0 ∈ H, dynamical system (3.2) applied to (A,B) uniquely defines

a function u(t). For x0 ∈ H, dynamical system (3.1) applied to (B−γ, Aγ)

uniquely defines a function x(t). Moreover, if u0 = x0, then u(t) = x(t) for

t ∈ [0,∞).

Proof. (i) The uniqueness of the dynamical system (3.2) follows from the hypothesis

(as Aγ and JMγB−γ are single-valued and everywhere defined). If we consider T = B−γ

in Proposition 3.2.1(ii) and T = Aγ in Proposition 3.2.1(a), then the system (3.1) is

uniquely defined and satisfies the same relation as (3.2) does.

(ii) It follows from (i), by using (A,B) in place of (B−γ, Aγ).

Theorem 3.3.2. Let assumptions (A1), (A2), (A3) and (A4) hold and λ : [0,∞) →

[0,∞) be a Lebesgue measurable function satisfying condition (3.6). Let u : [0,∞)→

H be the unique strong solution of (3.2) and u0 ∈ H. Let γ ∈ (0, 2κ), where

κ ∈ (0,∞) satisfies (3.13). Set δ := 2κ+γ
2γ

. Then the following statements hold:

(i) The trajectory u is bounded and u̇, (I−JMγA ◦ (I−γM−1B))u ∈ L2([0,∞);H).

(ii) lim
t→∞

u̇(t) = lim
t→∞

(I − JMγA ◦ (I − γM−1B))(u(t)) = 0.

(iii) u(t) ⇀ u∗ ∈ Zer(A+B) as t→∞.

(iv) If u∗ ∈ Zer(A+B), then B(u(·))−Bu∗ ∈ L2([0,∞);H), lim
t→∞

B(u(t)) = Bu∗.

(v) v(t) ⇀ v∗ ∈ Zer(A+B) as t→∞, where v(t) = (I − γM−1B)(u(t)).
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(vi) lim
t→∞

Aγ(v(t)) = Aγv
∗ = −Bu∗.

(vii) If A or B is uniformly monotone, then u(t) converges strongly to a unique

point in Zer(A+B) as t→∞.

(viii) If A is ρ-strongly monotone for some ρ > 0 and η > 0 such that:

1

2α
+
η‖M‖2

2γ2
≤ ρ+

‖M‖λ
γ

.

Let u∗ be an equilibrium point of the dynamical system (3.2). Then we have

the following:

(a) If 1
ηρ
< 4, then u∗ is globally exponentially stable.

(b) If 1
ηρ

= 4, then u∗ is global monotone attractor.

Proof. By Proposition 3.3.2, dynamical system (3.2) applied to (B−γ, Aγ) is system

(3.1) applied to (A,B). Since the pair (A,B) satisfies the same assumption as

(B−γ, Aγ), so by using (A,B) instead of (B−γ, Aγ) in Theorem 3.3.1, we have the

desired result.

3.3.2 Function framework

In this section, to study the optimization problem (3.3) we consider the following

first order dynamical system

 ẋ(t) = λ(t)[(I − γM−1∇g) proxMγf x(t)− x(t)]

x(0) = x0,
(3.23)

where x0 ∈ H and λ : [0,∞)→ [0,∞) is Lebesgue measurable function.
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To study the convergence behavior of trajectories generated by the dynamical system

(3.23), we need the following assumptions:

(B1) f : H → R ∪ {∞} is proper, convex, and lower-semicontinuous function.

(B2) g : H → R is differentiable and its gradient ∇g is β-cocoercive function.

(B3) Argmin(f + g) 6= ∅.

Remark 3.3.2.

(1) Considering α = γ, A = ∂f , B = ∇g, assumptions (A1) and (A2) hold. Since

A is maximal monotone, the operator Aγ is defined everywhere, single-valued and

γ-cocoercive [11]. Moreover, by the Moreau-Rockafellar theorem [77], one has ∂(f +

g) = ∂f +∇g, so Zer(A+B) = Zer(∂f +∇g) = Zer(∂(f +g)) = Argmin(f +g) 6= ∅.

(2) If Moreau envelope of f is denoted by fγ, then ∇fγ = (I − proxγf )/γ [11]. So,

∇fγ = Aγ.

(3) The proximity operator of a proper, lower semicontinuous and convex function f

relative to the metric induced by strongly positive operator M is (see [68])

proxMγf (x) = Argmin
v∈H

{
f(y) +

1

2γ
‖x− y‖2

M

}
.

Note that JMγ∂f = proxMγf = (I + γM−1∂f)−1.

Theorem 3.3.3. Let assumptions (B1), (B2), (B3) and (A4) hold, λ : [0,∞) →

[0,∞) be a Lebesgue measurable function satisfying condition (3.6), x0 ∈ H and

x : [0,∞) → H be the unique strong global solution of dynamical system (3.23).

Let γ ∈ (0, 2κ), where 0 < κ ≤ ‖M‖β and ‖M‖ ≥ 1
2
. Set δ := 2κ+γ

2γ
. Then the

following statements hold:
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(i) The trajectory x is bounded and u̇, (I−(I−γM−1∇g) proxMγf )x ∈ L2([0,∞);H).

(ii) lim
t→∞

ẋ(t) = lim
t→∞

(I − (I − γM−1∇g) proxMγf )(x(t)) = 0.

(iii) x(t) ⇀ x∗.

(iv) lim
t→∞
∇fγ(x(t)) = ∇fγ(x∗).

(v) y(t) ⇀ y∗ ∈ Argmin(f + g), where v(t) = proxMγf (x(t)).

(vi) lim
t→∞
∇g(y(t)) = ∇g(y∗) = −∇fγ(x∗).

(vii) (f +g)(y(t))→ (f +g)(y∗) = inf(f +g), f(y(t))→ f(y∗) and g(y(t))→ g(y∗).

Proof. The statements (i) through (vi) follow from Theorem 3.3.1 and Remark 3.3.2,

by taking A := ∂f and B := ∇g.

(vii) First, we show that (f + g)(y(t)) → (f + g)(y∗). Since (f + g) is lower semi-

continuity and y(t) ⇀ y∗, we have (f + g)(y∗) ≤ lim inf(f + g)(y(t)). Suppose that

z(t) = y(t)− γM−1∇g(y(t)) and since y(t) = proxMγf (x(t)), we have

x(t) ∈ y(t) + γM−1∂f(y(t)) = w(t) + γM−1∇g(y(t)) + γM−1∂f(y(t)) (3.24)

= z(t) + γM−1∂(f + g)(y(t)).

So, from the definition of subgradient of f + g at y(t)

(f + g)(y∗) ≥ (f + g)(y(t)) + 〈y∗ − y(t),
M

γ
(x(t)− z(t))〉.

In view of (ii), (f + g)(y∗) ≥ lim sup(f + g)(y(t)). So, we have (f + g)(y(t)) →

(f + g)(y∗).

Secondly, we show that f(y(t))→ f(y∗) as t→∞. From statement (v) and the fact
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that f is lower semicontinuous, we obtain f(y∗) ≤ lim inf f(y(t)). Also, from (3.24)

and by the definition of subgradient of f at point y(t), we have

f(y∗) ≥ f(y(t)) + 〈y∗ − y(t),
M

γ
(x(t)− z(t)−∇g(y(t)))〉

≥ f(y(t)) + 〈y∗ − y(t),
M

γ
(x(t)− z(t)− (∇g(y(t))−∇g(y∗)))〉

+ 〈y∗ − y(t),−∇g(y∗)〉.

From statements (ii), (v) and (vi), we have f(y∗) ≥ lim sup f(y(t)), which shows the

desired result.

Suppose γ ∈ R. Define the function l : H → R ∪ {∞}, by l∗γ =
(
l∗ + γ

2
‖ · ‖2

)
, where

l∗γ is the Frenchel conjugate of a function lγ [11]. So, lγ =
(
l∗ + γ

2
‖ · ‖2

)∗
. Since,

for γ > 0 and convex l, the function
(
l∗ + γ

2
‖ · ‖2

)∗
is the Moreau envelope of l, so

the notation of Frenchel conjugate is compatible with the notation for the Moreau

envelope.

Lemma 3.3.1. [66] Let γ ∈ (0, β] and g : H → R be convex and differentiable. Let

∇g be β-cocoercive. Then the following statements hold:

(i) For γ ≥ −β, µ ∈ R, we have (gγ)µ = gγ+µ. In particular, (g−γ)γ = g.

(ii) g−γ is convex, lower semicontinious, proper and proxMγg−γ = I − γM−1∇g.

(iii) For all u ∈ H, g−γ(u) = sup
η∈H

{
g(η)− 1

2γ
‖u− η‖2

}
.

Lemma 3.3.2. Let γ ∈ (0, β], and assumptions (B1), (B2), (B3) and (A4) hold. Then

(i) I −M−1γ∇g : Argmin(f + g)→ Argmin(fγ + g−γ) is a bijection with inverse

proxMγf .

(ii) inf(f + g) = inf(g−γ + fγ).
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Proof. Proof follows from [[66], Proposition 4.6], Remark 3.3.2, Lemma 3.3.1 and

Lemma 3.2.3.

In Theorem 3.3.3, we have discussed the asymptotic convergence of the trajectories

of (3.23) under the condition γ ∈ (0, 2κ); κ > 0. In convex optimization, the

interesting observation is to think about the choice of step sizes. Now, we choose

γ ∈ (0, β] and discuss the dynamical system (3.23) of the optimization problem.

Theorem 3.3.4. Let assumptions (B1), (B2), (B3) and (A4) hold. Let γ ∈ (0, β],

λ : [0,∞) → [0,∞) be a Lebesgue measurable function satisfying condition (3.6),

x0 ∈ H and x : [0,∞) → H be the unique strong global solution of dynamical

system (3.23). Then the statements of Theorem 3.3.3 and the following statements

are true:

(i) x(t) converges weakly to a minimizer of g−γ + fγ as t→∞.

(ii) If x∗ is a minimizer of g−γ + fγ, then ∇fγ(x(·)) − ∇fγ(x∗) ∈ L2([0,∞);H),

lim
t→∞
∇fγ(x(t)) = ∇fγ(x∗) and ∇fγ(x(t)) is constant on g−γ + fγ.

(iii) If ∂g−γ or∇fγ is uniformly convex, then x(t) converges strongly to a minimizer

of g−γ + fγ as t→∞.

(iv) If ∂g−γ is ρ-strongly convex for ρ > 0, and choose η > 0 fulfilling the condition:

1

2α
+
η‖M‖2

2γ2
≤ ρ+

‖M‖λ
γ

.

Let x∗ be an equilibrium point of dynamical system (3.23). Then we have the

following:

(a) If 1
ηρ
< 4, then x∗ is globally exponentially stable.

(b) If 1
ηρ

= 4, then x∗ is global monotone attractor.
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Proof. It follows by applying Lemma 3.3.1 and Lemma 3.3.2 to Theorem 3.3.1.

Now, we discuss the convergence of the trajectories of (3.23) without the restriction

on the choice of the step size (γ ∈ (0, 2κ); κ > 0).

Theorem 3.3.5. Let assumptions (B1), (B2), (B3) and (A4) hold. Let λ : [0,∞) →

[0,∞) be a Lebesgue measurable function satisfying condition (3.6), x0 ∈ H and

u : [0,∞) → H be the unique strong global solution of (3.23). Then we have the

following:

(i) The trajectory x is bounded and ẋ, (I−(I−γM−1∇g) proxMγf )x ∈ L2([0,∞);H).

(ii) lim
t→∞

ẋ(t) = lim
t→∞

(I − (I − γM−1∇g) proxMγf )(x(t)) = 0.

(iii) x(t) ⇀ x∗ ∈ Zer((∇g)−γ +∇fγ) as t→∞.

(iv) If x∗ ∈ Zer((∇g)−γ +∇fγ), then ∇fγ(x(·))−∇fγ(x∗) ∈ L2([0,∞);H).

(v) If (∇g)−γ or ∇fγ is uniformly convex, then x(t) → x∗ ∈ Zer((∇g)−γ + ∇fγ)

as t→∞.

Proof. Let x∗ ∈ Zer((∇g)−γ +∇fγ). From the definition of proximal operator and

Proposition 3.2.1, we have for every t ∈ [0,∞)

−M ẋ(t)

γλ(t)
−∇fγ = (∇g)−γ

(
ẋ(t)

λ(t)
+ x(t)

)
. (3.25)

Combining (3.25) with−∇fγ(x∗) ∈ (∇g)−γ(x
∗) and using the maximal monotonicity

of (∇g)−γ, we have for every t ∈ [0,∞)

〈
ẋ(t)

λ(t)
+ x(t)− x∗,∇fγ(x∗)−M

ẋ(t)

γλ(t)
−∇fγ(x(t))

〉
≥ 0.
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Since ∇fγ is α-cocoercive, so for every t ∈ [0,∞)

α‖∇fγ(x(t))−∇fγ(x∗)‖ ≤ 〈x(t)− x∗,∇fγ(x(t))−∇fγ(x∗)〉

≤
〈
ẋ(t)

λ(t)
,∇fγ −M

ẋ(t)

γλ(t)
−∇fγ(x(t))

〉
+

〈
x(t)− x∗,−M ẋ(t)

γλ(t)

〉
≤ 1

λ(t)
〈ẋ(t),∇fγ(x∗)−∇fγ(x(t))〉 − 1

γλ2(t)
‖ẋ(t)‖2

M

+
1

γλ(t)
〈x(t)− x∗,−Mẋ(t)〉.

Define the map q : [0,∞)→ R, q(t) = fγ(x(t))− fγ(x∗)− 〈∇fγ(x∗), x(t)− x∗〉.

Since ∇fγ is convex function, so we have

q(t) ≥ 0 ∀t ≥ 0.

Also, for any t ∈ [0,∞)

q̇(t) = 〈ẋ(t),∇fγ(x(t))−∇fγ(x∗)〉.

Define the function h : [0,∞) → R, h(t) = 1
2
‖x(t) − x∗‖2

M and using the fact that

ḣ(t) = 〈x(t)− x∗,Mẋ(t)〉, we obtain

αλ(t)‖∇fγ(x(t))−∇fγ(x∗)‖ ≤ −
d

dt
(q(t))− 1

γλ(t)
‖ẋ(t)‖2

M −
1

γ
ḣ(t), (3.26)

which implies that

αλ(t)‖∇fγ(x(t))−∇fγ(x∗)‖+
d

dt

(
1

γ
h+ q

)
+

1

γλ(t)
‖ẋ(t)‖2

M ≤ 0.

So the function t 7→ 1
γ
h+q is monotonically decreasing. Keeping in mind the proof of

Proposition 3.3.1, and the fact that λ has positive upper and lower bounds, we obtain

that 1
γ
h+ q, h, q, u are bounded and ẋ, (I− (I−γM−1∇g) proxMγf )x ∈ L2([0,∞);H).
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Also, lim
t→∞

ẋ(t) = 0. It follows from (3.26) that

∇fγ(x(t))−∇fγ(x∗) ∈ L2([0,∞);H).

From Lemma 3.2.4, we conclude

lim
t→∞
∇fγ(x(t)) = ∇fγ(x∗).

Therefore, statements (i), (ii) and (iv) are proved.

(iii) First we show that every weak sequential cluster point of x(·) is in Zer((∇g)−γ+

∇fγ). Let x∗ ∈ Zer((∇g)−γ+∇fγ) and tn →∞ (as n→∞) be such that {x(tn)}⇀

x̄. Since (x(tn),∇fγ(x(tn)) ∈ G(∇fγ), lim
n→∞

∇fγ(x(tn)) = ∇fγ(x∗) and G(∇fγ) is

sequentially closed in the weak-strong topology, we get ∇fγ(x̄) = ∇fγ(x∗).

Using the fact that G(∇g) is sequentially closed in the weak-strong topology and

letting A = ∂f , B = ∇g and t = tn, we have −∇fγ(x∗) ∈ (∇g)−γ(x̄). So, we get

−∇fγ(x̄) ∈ (∇g)−γ(x̄), hence x̄ ∈ Zer((∇g)−γ +∇fγ).

Next, we show that x(·) has at most one weak sequential cluster point. It proves

that the trajectory convergence weakly to a zero of (∇g)−γ +∇fγ.

Let x∗, y∗ be two weak sequential cluster point of x(·). So, there exist sequences

{tn} → ∞ and {t′n} → ∞ such that {x(tn)} ⇀ x∗ and {x(t′n)} ⇀ y∗. Since

x∗, y∗ ∈ Argmin
x∈H

{f(x) + g(x)} 6= ∅, we have lim
t→∞

Φ(t, x∗) ∈ R and lim
t→∞

Φ(t, y∗) ∈ R,

hence ∃ lim
t→∞

Φ(t, x∗)− lim
t→∞

Φ(t, y∗) ∈ R, where

Φ(t, x∗) =
1

2γ
‖x(t)− x∗‖2 + f(x(t))− f(x∗)− 〈∇fγ(x∗), x(t)− x∗〉.
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So, we get

∃ lim
t→∞

(
1

γ
〈x(t), y∗ − x∗〉+ 〈∇fγ(x∗)−∇fγ(y∗), x(t)〉

)
∈ R. (3.27)

If we express (3.27) by the means of sequences {tn} and {t′n}, we obtain

1

γ
〈x∗, y∗ − x∗〉+ 〈 ∇fγ(y∗)−∇fγ(x∗), x∗〉 =

1

γ
〈y∗, y∗ − x∗〉+ 〈 ∇fγ(y∗)−∇fγ(x∗), y∗〉,

which implies that

1

γ
‖x∗ − y∗‖+ 〈 ∇fγ(y∗)−∇fγ(x∗), y∗ − x∗〉 = 0,

and by the monotonicity of ∇fγ we conclude that x∗ = y∗.

(v) The proof follows by taking A = ∂f and B = ∇g in Theorem 3.3.1(vii).

3.4 Numerical Examples

Example 3.4.1. Let H = R be a Hilbert space endowed with Euclidean inner product.

Let A : H → 2H be a set-valued operator defined by

A(x) =


0, if x < 0

[0, 1], if x = 0

1, if x > 0.

Note that A is maximally monotone operator. So, A is ρ-cohypomonotone operator

for ρ ≥ 0.
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Let B : R→ R be 1-cocoercive operator defined by

B(x) =
x

2
.

So β = 1. Let M : R → R be a strongly positive operator defined by M(x) = 3x.

So, from (3.1), we have the dynamical system


ẋ(t) = λ(t)


11x(t)

12
− x(t), t < 0

−x(t), t ∈ [0, 1
6
]

11x(t)
12
− 1

6
− x(t), t > 1

6

x(0) = x0.

Choose ρ = 1
4

= 1
2
− 1

4
. So, γ = 1

2
, α = 1

4
. Let κ = 1

2
. Observe that all the assump-

tions of Theorem 3.3.1 are satisfied. Figure 3.1 shows the convergence behaviour of

the trajectories generated by dynamical system (3.1) for the Lebesgue measurable

function λ : [0,∞)→ [0,∞) defined by

λ(t) =

 1, if t ∈ [0, 50]

0, otherwise.
(3.28)

Example 3.4.2. Let H = R2 be a real Hilbert space endowed with Euclidean inner

product and N : R2 → R2 be an operator defined by

N =

−2 0

0 0

 .

Now, consider the multivalued operator A := N−1, so by Example 3.2.1, Aρ =
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(N + ρI)−1 is maximally monotone operator for ρ > 2, and hence A is ρ(> 2)-

cohypomonotone operator. Let B : R2 → R2 be 1-cocercive operator defined by

B =

1
2

0

0 1
3

 .
Here β = 1. Let M : R2 → R2 be a strongly positive operator defined by

M =

4 0

0 8

 .
So, from (3.1), we have the dynamical system


ẋ(t) = λ(t)


1

4
0

0 35
48

x(t)− x(t)


x(0) = x0.

Choose ρ = 3 = 4−1. So, γ = 4, α = 1. Let κ = 3. Observe that all the assumptions

of the Theorem 3.3.1 are satisfied. Figure 3.2 shows the convergence behaviour of

the trajectories generated by dynamical system (3.1) for the Lebesgue measurable

function λ : [0,∞)→ [0,∞) defined by (3.28).

3.5 Conclusions

In this chapter, first-order variable metric backward-forward dynamical systems as-

sociated with monotone inclusion, and convex minimization problems have been

studied. Existence, uniqueness, weak and strong convergence of the trajectories of
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Figure 3.1: Trajectories generated by the dynamical system of Example 3.4.1
for u0 = 0.5.
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Figure 3.2: Trajectories generated by the dynamical system of Example 3.4.2
for u0 = (−0.4, 0.5).
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dynamical systems (3.1), (3.2), and (3.23) have been studied. We have also estab-

lished that an equilibrium point of the trajectory is globally exponentially stable

and monotone attractor.

***********


