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Introduction

The topic of monotone operators has a significant history and its roots seems to

be primarily in functional analysis, rather than mathematical programming. A

complete literature review would be prohibitively long, but important early contri-

bution and survey may be found in the works of Browder [1, 2, 3], Minty [4, 5, 6],

Kachurovskii [7], and Rockafeller [8, 9]. The original definition of a monotone oper-

ator appears to be formulated by Kachurovskii [10].

A monotone operator can be perceived as a two-way generalization: the first one

is a non-linear abstraction of linear endomorphisms whose matrices are positive

semidefinite, and the second one is a multidimensional abstraction of non-decreasing

functions in Rn; i.e., the derivatives of convex and differentiable functions. Hence,

not amazingly, a most well-known example of this type of operators in a Banach

space is the Fréchet derivative of a convex smooth mapping, or, in the point-to-set

notion, the sub-differential of a lower-semi-continuous convex function.

Definition 1.0.1. [11] A set-valued operator T : H → 2H is said to be

(i) monotone if

〈x− y, u− v〉 ≥ 0 ∀(x, u), (y, v) ∈ G(T );

(ii) maximal monotone if there exist no monotone operator S : H → 2H such that

G(T ) is properly contained in G(S),
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Figure 1.1: Monotone and maximal monotone operator

where G(T ) := {(x, y) ∈ H ×H : y ∈ Tx} is graph of an operator T .

Example 1.0.1. (i) The operator T : R→ 2R defined by

T (x) =


x− 1, x < 0,

{−1, 1}, x = 0,

x+ 1, x > 0

is monotone and

T (x) =


x− 1, x < 0,

[−1, 1], x = 0,

x+ 1, x > 0

is maximally monotone.

(ii) Let α ∈ [−1, 1] and T : H → H be a non-expansive operator. Then I + αT is

maximal monotone operator.

Now we look at some of the features of maximal monotone operators.
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Proposition 1.0.1. [11] Let T : H → 2H be a maximally monotone operator, then

we have the following:

(i) for any sequence {(xn, un)} ∈ G(T ) and (x, u) ∈ H×H, if xn ⇀ x and un → u,

then (x, u) ∈ G(T )(T ), i.e., G(T ) is sequentially closed in Hweak ×Hstrong,

(ii) for any sequence {(xn, un)} ∈ G(T ) and (x, u) ∈ H×H, if xn → x and un ⇀ u,

then (x, u) ∈ G(T ), i.e., G(T ) is sequentially closed in Hstrong ×Hweak,

(iii) G(T ) is closed in Hstrong ×Hstrong.

Remark 1.0.1. The graph of a maximum monotone operator does not need to be

sequentially closed in Hweak × Hweak. Consider that H = l2(N) and C = B(0; 1).

So, I −PC is firmly nonexpansive and hence maximally monotone. Take a sequence

{xn} = {e1 + e2n}, where {en} is the sequence of unit vectors in l2(N). Then the

sequence (xn, (1 − 1/
√

2)xn) ∈ G(T )(I − PC) and xn ⇀ e1, (xn, (1 − 1/
√

2)xn) ⇀

(1− 1/
√

2)e1. Although, the weak limit (e1, (1− 1/
√

2)e1) /∈ G(I − PC).

Proposition 1.0.2. [11] Let T1 : H1 → 2H1 and T2 : H2 → 2H2 be two maximal

monotone operators, where H1 and H2 are real Hilbert spaces. Set H := H1 × H2

and T : H → 2H : (x, y) 7→ T1x× T2y. Then T is a maximal monotone operator.

To find a zero of an operator is a decrepit and vastly influential problem, and a

number of physical and mathematical problems get converted to this problem. When

the function is a point-to-set operator, the inclusion problem is a generalized version

of this classical problem. Given the operator T : D(T ) ⊂ H → 2H , the inclusion

problem is:

to find x ∈ H such that 0 ∈ T (x). (1.1)
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Recently, this problem has attracted much attention as many nonlinear problems,

emanating within applied fields, are mathematically represented as nonlinear oper-

ator equations and/or inclusions. If T is maximally monotone, then the set of its

zeros has the following characterization.

x ∈ Zer(T )⇐⇒ 〈u− x, z〉 ≥ 0 ∀(u, z) ∈ G(T ). (1.2)

The resolvent and Yosida approximation of T are two single-valued Lipschitz con-

tinuous operators that can be associated with a monotone operator T .

Definition 1.0.2. Let T : H → 2H be a set-valued operator. Then resolvent and

Yosida approximation of T of index γ(> 0) are defined by:

JγA := (I + γA)−1, Aγ :=
1

γ
(I − JγA),

respectively.

The proof that the resolvent of maximal monotone operator is single-valued every-

where defined may be tracked back to Minty [4]. To evaluate the resolvent by a

general iterative method has been proposed by Bruck [12]. The relation between

monotone and firmly nonexpansive operators is not distinguished in the literature

but Browder and Petryshyn [13] have considered, in discussing, the single-valued

case. Some properties of resolvent and Yosida approximations are given in the next

results.

Proposition 1.0.3. Let T : H → 2H be a set-valued operator. Then, for x, y ∈ H, we

have the followings:

(i) D(JγT ) = D(Tγ) = ran(I + γT ) and ran(JγT ) = D(T );

(ii) y ∈ JγTx⇔ (y, γ−1(x− y)) ∈ G(T );
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(iii) y ∈ Tγx⇔ (x− γy, y) ∈ G(T ).

Proposition 1.0.4. [14] Let T : H → 2H be a maximal monotone operator. Then,

we have the followings:

(i) The resolvent JγT : H → H and I − JγT : H → H are firmly non-expansive

and maximal monotone;

(ii) The reflected resolvent

RγT : H → H : x 7→ 2JγTx− x

is non-expansive;

(iii) The Yosida approximation Tγ : H → H is maximal monotone, γ-cocoercive

and hence 1
γ
-Lipschitz continuous.

The proximal point algorithm [15, 16] is a very prominent method to tackle the

inclusion problem (1.1), which is given by

xn+1 = (Id+ λnT )−1(xn) for all n ∈ N,

where λn > 0. In many cases, computing the resolvent of an operator is also as

difficult as solving the original inclusion problem.

1.1 Splitting Algorithms

The idea is clear and old: divide et impera (divide and conquer). Splitting is one of

the most crucial and standardized approaches for exploring structured algorithms
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Figure 1.2: The Proximal point algorithm.

to solve complex and structured problems. The problem of accessing the set of ze-

ros of maximally monotone operators employing splitting iterative methods, where

the involved operators are appraised independently, either through its resolvent for

the case of set-valued or through the operator itself for the case of single-valued,

remains to be a very attractive research area. This is due to its usefulness in solving

real-world problems that can be modeled as non-differentiable convex optimization

problems, like those arising in image processing, signal recovery, support vector

machines classification, location theory, clustering, network communications, etc.

Difficult models in signal and image processing, optimization, environment science,

meteorology, differential equations and variational inequalities have given rise to

various operator splitting methods. The overarching concept has always been to

simplify, i.e., to improve efficiency in computational work by solving simpler sub-

problems. As a result, researchers concentrate their efforts on the so-called splitting

method, when the operator T = A+B. Therefore, monotone inclusion problem is:

to find x ∈ H such that 0 ∈ (A+B)(x), (1.3)
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where either both the operators A and B are set-valued or one is set-valued and

other one is single-valued. Based on splitting techniques, many iterative methods

have been designed to solve problem (1.3). Some well-known techniques are Peace-

man–Rachford splitting algorithm [17], Douglas–Rachford splitting algorithm [18],

and forward–backward algorithm [19] and forward-backward-forward splitting algo-

rithm [20].

If both the operators A and B are maximal monotone, Douglas–Rachford splitting

algorithm finds the solution of problem (1.3), which is as follows: choose x0 ∈ H for

all n ≥ 0


yn = JγBxn

zn = JγA(2yn − xn)

xn+1 = xn + λn(yn − zn),

(1.4)

where λn ∈ [0, 2]. The following describes the convergence behavior of the Dou-

glas–Rachford algorithm:

Theorem 1.1.1. Let A,B : H → 2H be maximally monotone operators with Zer(A+

B) 6= ∅. Let γ > 0, x0 ∈ H, and {λn} be a sequence in [0, 2] with
∑∞

n=1 λn(2 −

λn) = ∞. Consider {xn} is a sequence defined by the algorithm (1.4). Then,

∃x ∈ F(RγA ◦RγB) such that the following statements hold:

(i) JγBx ∈ Zer(A+B);

(ii) yn − zn → 0;

(iii) xn ⇀ x;

(iv) yn ⇀ x;

(v) {zn}⇀ JγBx;
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(vi) Assume that A is a normal cone operator of a closed affine set C ⊆ H. Then,

PCxn ⇀ JγBx;

(vii) Assume that either A or B is uniformly monotone on every nonempty bounded

subset of D(A) or D(B). Then, sequences {yn} and {zn} converge weakly to

the unique point in Zer(A+B).
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Figure 1.3: Douglas–Rachford algorithm.

With a product space approach, the Douglas–Rachford algorithm can easily be

adapted to solve monotone inclusions for the sum of more than two operators, see

[14, Proposition 25.7]. Currently, the Douglas–Rachford algorithm is a very active

field of research, since numerical experiments show that it works exceptionally well

even for nonconvex problems, and this behavior remains somewhat miraculous, see

e.g. [21].

The next algorithm is applicable for particular instances of problem (1.3) where

one of the operators is additionally β-cocoercive for some β. The advantage of this

so-called forward-backward algorithm is that it is not necessary to calculate the

proximal point of the well-behaved operator B, which might be inaccessible. The

forward-backward algorithm and its convergence is given in the following theorem:
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Theorem 1.1.2. Let A : H → 2H be a maximal monotone operator, and B : H → H

be β-cocoercive operator for β > 0. Consider that γ ∈ (0, 2β) and set δ = 2 − γ
2β

.

Let λn ∈ [0, δ] such that
∑∞

n=1 λn(δ − λn) = ∞ and Zer(A + B) 6= ∅. For x0 ∈ H,

forward-backward algorithm is given by

xn+1 = xn + λn(JγA(I − γB)xn − xn). (1.5)

Then the following statements hold:

(i) {xn}⇀ x∗ ∈ Zer(A+B).

(ii) Let x ∈ Zer(A + B). Then {Bxn} converges strongly to the unique dual

solution Bx.

(iii) Assume that either A or B is uniformly monotone on every nonempty bounded

subset of D(A) or H, respectively. Then {xn} converges strongly to the unique

point in Zer(A+B).
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Figure 1.4: Forward-backward algorithm.
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To relax the cocoercivity condition in forward-backward (FB) algorithm, Tseng [20]

has modified the FB algorithm and introduced a new algorithm, called forward-

backward-forward algorithm, which is summarized in next result.

Theorem 1.1.3. Let A : H → 2H be a maximal monotone operator, and B : H → H

be a monotone and β-Lipschitz continuous operator for β > 0 with D(B) = H. For

γ ∈ (0, β) and x0 ∈ H, we have the following algorithm:


yn = (I − γB)xn

zn = JγAyn

xn+1 = xn − yn + zn − γBzn.

(1.6)

Then, we have the following:

(i) {xn − zn} converges strongly to 0;

(ii) {xn} and {zn} converge weakly to a point in Zer(A+B);

(iii) Consider that A or B is uniformly monotone on every nonempty bounded

subset of D(A). Then {xn} and {zn} converge strongly to an unique point in

Zer(A+B).

1.2 Continuous Dynamical system for inclusion

problems

Since the seventies of the 19th century, much attention has been paid to the mono-

tone inclusion and optimization problems through the dynamical systems approach

(Baillon, Brezis and Bruck, see ([22, 23, 24]), not only because of their natural im-

portance in the fields such as applied functional analysis and differential equation
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but also since there are admitted as important tools for the discovery and study of

numerical algorithms for minimization problems acquired by the time discretization

of continuous dynamics. The dynamic approach to iterative optimization techniques

can provide deeper intuitions into the conventional nature of the methods, and the

ideas used in the continuous case can be attuned to produce results for discrete

algorithms. We refer the reader to [25] for more information on the relationships

between continuous and discrete dynamics.

In order to solve minimization problem

minx∈H f(x),

where f : H → R is a smooth function, one uses the discretization ẋ(t) = 1
γ
(xn+1 −

xn) (γ > 0) of the gradient flow

ẋ(t) = −∇f(x(t)),

which produces steepest descent method as

xn+1 = xn − γ∇f(xn).

The discretization of the differential inclusion

ẋ(t) ∈ −∂f(x(t)),

generates the subgradient scheme xn+1 ∈ xn − γ∂f(xn), or, by the discretization

xn+1 − xn ∈ −γ∂f(xn), we get the proximal point algorithm [26]

xn+1 = (I + γ∂f(xn))−1.
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Now we go ahead and discuss about continuous implicit-type dynamical systems

related with optimization and monotone inclusion problems, which are the initial-

valued differential equation. With a view to obtain solution of optimization problem

inf
x∈C

f(x), (1.7)

where f : H → R is a smooth function, Antipin [27] studied convergence of the

orbits of following dynamical system


ẋ(t) + x(t) = PC(x(t)− γ∇f(x(t))),

x(0) = x0 ∈ H, γ > 0,
(1.8)

in finite dimensional space. He has also explored the exponential convergence of

the generated trajectories. In the convex setting, Bolte [28] has established that

trajectory of (1.8) converges weakly to a minimizer of problem (1.7), in a general

real Hilbert space. He has also shown that the orbits can be forced to converge

strongly toward a well-specified minimizer. The operator PC used in (1.8), is called

projection operator, which is defined as follows:

Definition 1.2.1. [11] Let C be a subset of H, and x ∈ H, p ∈ C. Then p is a

projection of x on to C (or a best approximation to x from C) if ‖x− p‖ = dC(x).

If every point in H has at least one projection onto C or exactly one projection

onto C, then C is proximinal or Chebyshev set, respectively. If every point in H has

exactly one projection onto C, then C is a Chebyshev set. In this case, the projector

onto C is the operator, denoted by PC , that maps every point in H to its unique

projection onto C.

It is remarkable that the projection mapping PC is a non-expansive mapping from

H to C (for more information on projection mappings, see Agarwal, O’Regan, and
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Sahu [29]). Now, we discuss the important properties of the projection operator.

Lemma 1.2.1. [29] Let C be a nonempty closed convex subset of a real Hilbert space

H, then we have the following:

(i) PC(x) ∈ C, ∀x ∈ H;

(ii) 〈x− PC(x), PC(x)− y〉 ≥ 0, ∀x, y ∈ C;

(iii) ‖x− y‖2 ≥ ‖x− PC(x)‖2 + ‖y − PC(x)‖2, ∀x ∈ H and y ∈ C;

(iv) 〈PC(x)− PC(y), x− y〉 ≥ ‖PC(x)− PC(y)‖2, ∀x, y ∈ H.

 

𝑦 

𝑥 

𝑝 

𝐶 

Figure 1.5: Projection onto a nonempty closed convex set C in the Euclidean
plane.

A Newton-like dynamical approach to solve monotone inclusion problem (1.1) has

been delineated by Attouch et al. [30]. By using Lyapunov analysis, authors have

proved that the trajectories converges weakly to equilibria. In this context, to study

monotone inclusion problem via splitting method, a Newton-like dynamical system

has been developed by Abbas et al. [31], where the operator is the sum of the sub-

differential of a convex lower semi-continuous function, and the gradient of a convex
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differentiable function. Abbas et al. [32] studied the following dynamical system to

extend this study to a non-potential case and thus broaden its range of applications:


ẋ(t) + x(t) = proxγΦ(I − γB)x(t)

x(0) = x0,

where Φ : H → R∞ is a proper, lower semicontinuous and convex function, B :

H → H is a cocoercive operator and proxγΦ : H → H represents the proximal point

operator of γΦ, which is defined by:

proxγΦ(x) = argminy∈H

{
Φ(y) +

1

γ
‖x− y‖2

}
. (1.9)

Note that if Zer(∂Φ + B) 6= ∅, then weak convergence of orbit of dynamical system

(1.9) is assured by selecting the step-size γ in an appropriate domain bounded by

cocoercive parameter of the operator B. One can observe that the time discretization

of the dynamical system (1.9) corresponds to forward-backward algorithm, that

converges weakly to zero of Zer(∂Φ + B). Here ∂Φ is subdifferential of Φ, which is

defined as follows:

Definition 1.2.2. [14, Definition 16.1] Let Φ : H → (−∞,∞] be proper. The subd-

ifferential of Φ is the set-valued operator

∂Φ : H → 2H : x 7→ {u ∈ H|(∀y ∈ H)〈y − x, u〉+ Φ(x) ≤ Φ(y)}.

Let x ∈ H. If ∂Φ 6= ∅, then Φ is subdifferentiable at x.

The first order dynamical system, which is linked to forward-backward (FB) algo-

rithm to find a solution of (1.3) has been studied by Bot et al. [33]. For a given
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x0 ∈ H, the dynamical system considered is given by:


ẋ(t) = λ(t)[JγA(I − γB)x(t)− x(t)],

x(0) = x0,
(1.10)

where λ : [0,∞) → [0,∞) is a Lebesgue measurable function, A : H → 2H is

maximal monotone operator, B : H → H is β-cocoercive operator for β > 0, and

JγA is resolvent of operator A for γ > 0. In this work, the authors have studied

the convergence of trajectories for γ ∈ (0, 2β) and have shown the convergence

of forward-backward dynamical system with the help of convergence of dynamical

system generated by non-expansive mapping T :


ẋ(t) = λ(t)[Tx(t)− x(t)],

x(0) = x0 ∈ H,
(1.11)

where λ : [0,∞)→ [0, 1] is a Lebesgue measurable function satisfying the following

criteria:

∫ ∞
0

λ(t)(1− λ(t))dt =∞ or inf
t≥0

λ(t) > 0.

Authors have also used the fact that zero of forward-backward operator is the same

as the fixed point of a nonexpansive operator. The dynamical system (1.11) is a

continuous form of the classical Krasnosel’ski’ı–Mann algorithm to find the fixed

points of the nonexpansive operator T [14]. To verify the existance and uniqueness

of strong global solution of a dynamical system, researches have verified the Cauchy-

Picard-Lipschitz theorem for absolute continuous trajectories, which is as follows:

Theorem 1.2.1. [34, Theorem 58], [35, Proposition 6.2.1] Assume that a function

G : [0,∞)×H → H satisfies the following:
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(i) G(·, x) : [0,∞)→ H is measurable ∀x ∈ H;

(ii) G(t, ·) : H → H is continuous ∀t ≥ 0;

(iii) there is a function l1 ∈ L1
loc(R+;R) such that

‖G(t, x1)−G(t, x2)‖ ≤ l1(t)‖x1 − x2‖ ∀x1, x2 ∈ H ∀t ∈ [0, b] b ∈ R+;

(iv) ∃ a function l2 ∈ L1
loc(R+;R) such that

‖G(t, x)‖ ≤ l2(t) ∀x ∈ H ∀t ∈ [0, b] b ∈ R+.

Then ∃ a unique solution t 7→ x(t) as t→∞ of the dynamical system defined by


ẋ(t) = G(γ(t), x(t)),

x(0) = x0,

where x0 ∈ H.

Moreover, Bot et al. [36] have also studied that the trajectory generated by the

dynamical system (1.10) converges strongly with an exponential rate to the solution

of the problem (1.3) when the operator A : H → 2H is maximal monotone, B :

H → H is monotone and 1
β
-Lipschitz for β > 0 such that sum of both the operators

is ρ-strongly monotone for ρ > 0. In this work, authors have also derived the

convergence rates of the orbits of dynamical system related with minimization of sum

of a proper, lower semicontinuous and convex function with a smooth convex such

that the objective function satisfies a strong convexity assumption. The dynamical
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system is as follows:


u̇(t) = λ(t)[proxγf(I − γ∇g)u(t)− u(t)]

u(0) = u0,

where function f : H → R∞ is proper, lower semicontinuous, convex and function

g : H → R is convex, 1/β-Lipschitz continuous gradient for β > 0 and Fréchet

differentiable.

In 2020, Csetnek [37] has presented a survey on the first and second-order dynamical

system to solve the monotone inclusion problem. In this survey, he has studied

dynamical systems to solve non-convex optimization problems.

There are two types of dynamical systems in the literature to find the roots of the

sum of a maximal monotone operator A : H → 2H and a monotone and L-Lipschitz

continuous operator B : H → H for L > 0 in a real Hilbert space. Firstly, Banart

et al. [38] have studied the following forward-backward-forward (FBF) dynamical

system:


z(t) = Jγ(t)A(I − γ(t)B)x(t),

ẋ(t) = z(t)− x(t) + γ(t)(Bx(t)−Bz(t)),

x(0) = x0,

(1.12)

where x0 ∈ H and γ : [0,∞) → (0, 1
L

) is a Lebesgue measurable function. In this

consideration, the authors have relaxed the cocoercivity condition of the operator

B of the dynamical system (1.10). On the other hand, Csetnek et al. [39] have
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investigated the following dynamical system:


ẋ(t) + x(t) = JγA(x(t)− y(t))− ẏ(t),

y(t) = γBx(t),

x(0) = x0,

where x0 ∈ H and γ ∈ [ε, 1−3ε
3L

] for ε > 0.

1.3 Problem statement and Thesis Objectives

In the second chapter, we look at a problem that is a coalition of the three problems

listed below:

(i) to find a root of a nonnegative function F ;

(ii) to find a root of a set-valued operator T ;

(iii) to find common fixed points of operators R1, R2, . . . , Rm;

i.e., consider the following problem

(P) find z∗ ∈ T−1(0) ∩ (∩mi=1F(Ri)) such that F (z∗) = 0.

Here we introduce and deliberate the convergence behavior of different iterative

techniques for solving the generalized problem and compare the convergence speed.

In chapter 3, we study the existence, uniqueness, and weak asymptotic convergence

as well as strong convergence of the generated orbits of first-order backward-forward

dynamical system to solve the structured monotone inclusion problem of the form:

find x ∈ H : 0 ∈ (A+B)x,
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whereA : H → 2H is maximal (γ−α)-cohypomonotone for γ ∈ R, α > 0, B : H → H

is a β-cocoercive for β > 0. We also establish that an equilibrium point of the

trajectory is globally exponentially stable and monotone attractor. As a particular

case, we explore similar perspectives of the orbits generated by a dynamical system

related to the minimization of the sum of a nonsmooth convex and a smooth convex

function.

In chapter 4, we investigate the existence, uniqueness, and weak asymptotic conver-

gence of the orbits of first-order forward-backward-half forward dynamical systems

related with the inclusion problem of the form:

find x ∈ H : 0 ∈ Ax+B1x+B2x,

where, A : H → 2H is maximally monotone operator, B1 : H → H is β-cocoercive

for β > 0, and B2 : H → H is monotone and L-Lipschitz continuous andD(B2) = H.

We also explore a variable metric forward-backward-half forward dynamical system

in the sense of non-self-adjoint linear operators.

1.4 Outline of the Thesis

The outline of the thesis is as follows:

Chapter 1 presents the introduction of the thesis. Basic definitions that are being

used throughout this thesis are provided. It also provides the literature survey and

some recent works on monotone inclusion problems. The motivation behind choosing

the topic and problem statement of the thesis is also explained.

Chapter 2 describes three iterative methods to find the zero of a nonnegative lower

semicontinuous function over the common solution set of the fixed point problem
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and monotone inclusion problem. The split equality variational inclusion and split

equality equilibrium problems with numerical examples are also studied in this chap-

ter.

Chapter 3 provides the existence, uniqueness, weak and strong convergence of the

orbits of first-order backward-forward dynamical systems to deal with the monotone

inclusion problems. In addition, convergence of trajectories generated by convex

minimization problem is also discussed.

Chapter 4 is based on the convergence of the trajectories of forward-backward-half

forward dynamical system to tackle monotone inclusion problem consisting of three

operators. The same has been studied in non-self-adjoint variable metric sense. As

an application, generalized Nash equilibrium problem are studied.

Chapter 5 explore the warped Yosida approximation and its properties.

Chapter 6 concludes the thesis and hints towards possible future work in solving

inclusion problem and non-convex optimization problem.

***********


