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PREFACE

In the consideration of optimization problems and differential equations, the mono-

tone inclusion arises routinely and ordinarily, thus solution techniques for them can

be applied to handle many real-world problems.

In this thesis, the author discusses iterative methods and continuous dynamical sys-

tems for monotone inclusion problems. This thesis contains six chapters. Chapter 1

introduces monotone inclusion problems along with the historical background of the

problem. This chapter includes definitions and some basic properties of monotone

and maximal monotone operators, projection operators and fundamental descrip-

tions of the resolvent and Yosida approximations. Some splittings methods and

their related dynamical systems to solve the monotone inclusion problems are also

demonstrated in this chapter.

Chapter 2 describes the generalized problem of split equality variational inclusion

problem. For this purpose, we introduce the problem of finding the zeros of a non-

negative lower semicontinuous function over the common solution set of fixed point

problem and monotone inclusion problem. We propose and study the convergence

behavior of different iterative techniques to solve the generalized problem. Further-

more, we study an inertial form of the proposed algorithm and compare the conver-

gence speed. Moreover, as an application, we analyze split equality equilibrium fixed

point problem. Further with the help of numerical computations experimentally, we

compare the convergence speed of the proposed algorithm with it’s inertial form and

already existing algorithms to solve the generalized problem.

In chapter 3, we explore the first-order variable metric backward-forward dynamical

systems associated with monotone inclusion and convex minimization problems in

xviii



real Hilbert space. The operators are chosen so that the backward-forward dynami-

cal system is closely related to the forward-backward dynamical system and has the

same computational complexity. We show existence, uniqueness, and weak asymp-

totic convergence of the generated trajectories and strong convergence if one of the

operators is uniformly monotone. We also establish that an equilibrium point of the

trajectory is globally exponentially stable and monotone attractor. As a particular

case, we explore similar perspectives of the trajectories generated by a dynamical

system related to the minimization of the sum of a nonsmooth convex and a smooth

convex function. In this sequel, we also study that weak convergence behavior of the

orbits associated with minimization problem without the restriction on the choice

of the step size. Numerical examples are given to illustrate the convergence of tra-

jectories.

In chapter 4, the first-order forward-backward-half forward dynamical systems as-

sociated with the inclusion problem consisting of three monotone operators are an-

alyzed. The framework modifies the forward-backward-forward dynamical system

by adding a cocoercive operator to the inclusion. The existence, uniqueness, and

weak asymptotic convergence of the generated trajectories are discussed. A variable

metric forward-backward-half forward dynamical system with the essence of non-

self-adjoint linear operators is introduced. The proposed notion, in turn, extends

the forward-backward-forward dynamical system and forward-backward dynamical

system in the framework of variable metric by relaxing some conditions on the met-

rics. By using Lyapunov analysis and a continuous variant of the Opial lemma for

the class of operators T, one can prove the convergence of generated trajectories

in variable metric sense. The distributed dynamical system is further explored to

compute a generalized Nash equilibrium in a monotone game as an application. A

numerical example is provided to illustrate the convergence of the trajectories.

Chapter 5 explores a generalized concept, called warped Yosida approximation,
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which is formulated with the help of an auxiliary operator. Yosida approximation

of set-valued operators performs an extensive role in non-linear operator theory;

in particular, in dynamical system governed by maximal monotone operator. The

properties of warped Yosida approximation are analyzed and connections are made

with existing notions.
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