List of Figures

Figure No.	Caption of Figures	Page No.
Figure 1.1:	Classification of broadband antennas	6
Figure 1.2:	Dipole and monopole antennas	7
Figure 1.3:	Geometries of various non-planar and planar broadband antennas	9
Figure 1.4:	Geometries of different frequency independent antennas	10
Figure 1.5:	Geometry of trapezoidal toothed log-periodic antenna	12
Figure 1.6:	Circular patch antenna with full and partial ground planes	15
Figure 1.7:	Principle of overlapping resonant modes of the planar monopole antenna	15
Figure 1.8:	Self-complementary structures	17
Figure 1.9:	Geometries of different quasi-self-complementary antennas (QSCAs)	17
Figure 3.1:	Geometry of (a) conventional MS-to-Parallel Strip balun, (b) proposed MS-to-CPS transition, and (c) prototype of MS-to-CPS transition	46
Figure 3.2:	Unloaded metal trapezoidal toothed log-periodic antenna (a) geometry and (b) Prototype	48
Figure 3.3:	Configuration of unloaded metal TTLPA along with (a) MS-to-parallel strip line balun, (b) MS-to-CPS transition; and (c) prototype of unloaded metal TTLPA along with MS-to-CPS transition	49
Figure 3.4:	Simulated and measured reflection coefficients- frequency characteristics of the unloaded metal TTLPA (along with transition).	51
Figure 3.5:	Simulated-input impedance-frequency characteristics of unloaded metal TTLPA along with transition	52
Figure 3.6:	Simulated current distributions on the unloaded metal TTLPA surface at different frequencies	53
Figure 3.7:	Simulated vector current distributions on MS line-to- CPS transition at different frequencies	54

Figure 3.8:	2D (simulated and measured) and 3D (simulated) radiation patterns of the unloaded metal TTLPA (along with transition) at different frequencies	55
Figure 3.9:	Simulated and/or measured realized gain- and total efficiency-frequency characteristics of unloaded metal TTLPA	56
Figure 3.10:	Geometrical configuration of (a) trapezoidal toothed log-periodic antenna, (b) MS-to-CPS transition, and (c) different parts of antenna	57
Figure 3.11:	Three-dimensional (3D) views of proposed antenna along with transition (a) unloaded metal TTLPA, (b) dielectric-loaded metal TTLPA (antenna A2), and (c) prototype of antenna A2	59
Figure 3.12:	Effect of dielectric constant 'ɛr' of loaded dielectric material on reflection coefficient-frequency characteristic of the proposed dielectric-loaded metal TTLPA	61
Figure 3.13:	Effect of thickness 'td' of loaded dielectric material on reflection coefficient-frequency characteristic of the proposed dielectric-loaded metal TTLPA	61
Figure 3.14:	Reflection coefficient-frequency characteristics of TTLPAs	63
Figure 3.15:	Simulated surface current distributions of antennas A1 and A2	64
Figure 3.16:	Radiation patterns of antennas A1 and A2	65
Figure 3.17:	Realized gain-frequency characteristics of TTLPAs	66
Figure 3.18:	Total efficiency-frequency characteristics of TTLPAs	68
Figure 4.1:	Design methodology of flower-shape (a) spline based curves, (b) comparison of circular and flower-shaped patches, and (c) flower-shaped patch along with its important geometrical parameters	73
Figure 4.2:	Geometries of CPW-fed (a) conventional circular patch antenna, (b) flower-shaped patch antenna; and (c) fabricated antenna	74
Figure 4.3:	The effects of geometrical parameters (a) R1 and (b) R4 on the input VSWR-frequency characteristic of the proposed CPW-fed flower-shaped patch antenna	76
Figure 4.4:	Simulated and measured input VSWR-frequency characteristics of proposed CPW-fed flower-shaped antenna	79

Figure 4.5:	Simulated input VSWR-frequency characteristics of the CPW-fed circular patch and the proposed flower- shaped patch antennas	79
Figure 4.6:	Simulated surface current distributions on the proposed CPW-fed flower-shaped patch at 3, 5, 8, and 10 GHz	80
Figure 4.7:	Simulated and measured radiation patterns of CPW- fed flower-shaped patch antenna at 3, 5, 8, and 10 GHz	81
Figure 4.8:	Simulated and/or measured realized gain- and total efficiency-frequency characteristics of proposed CPW-fed flower-shaped patch antenna	82
Figure 4.9:	Excited and received pulses for face-to-face and side- by-side orientations of proposed CPW-fed flower- shaped patch antennas at a distance of 30 cm	83
Figure 4.10:	Far-field group delays of CPW-fed flower-shaped patch antenna for different orientations at a distance of 30 cm	84
Figure 4.11:	Design steps concerning MS-fed flower-shaped patch antenna	85
Figure 4.12:	MS-fed flower-shaped patch antenna (a) geometry, (b) front view of prototype, and (c) back view of prototype	85
Figure 4.13:	Simulated input VSWR-frequency characteristics of the proposed MS-fed flower-shaped patch antenna for different configurations of feed line and ground plane	88
Figure 4.14:	Simulated and measured input VSWR-frequency characteristics of the proposed MS-fed and CPW-fed flower-shaped patch antennas	89
Figure 4.15:	Simulated surface and volume current distributions on the proposed MS line-fed and CPW-fed flower- shaped patch antennas	90
Figure 4.16:	Simulated and measured radiation patterns of the proposed MS-fed antenna at 3, 6, 9, and 12 GHz	91
Figure 4.17:	Realized gain- and total efficiency-frequency characteristics of the proposed MS-fed and CPW-fed antennas	92
Figure 4.18:	Excited and received pulses for face-to-face and side- by-side orientations of MS-fed flower-shaped patch antennas at a distance of 30 cm	93

Figure 4.19:	Simulated far-field group delays of MS-fed flower- shaped patch antenna for different orientations at a distance of 30 cm	94
Figure 5.1:	Geometries of (a) trapezoidal toothed log-periodic antenna, (b) castor leaf, (c) castor leaf-shaped QSCA with sharp corners, and (d) castor leaf-shaped QSCA with smooth corners	99
Figure 5.2:	Geometry of the proposed single element QSCA having (a) sharp corners designated as A1, (b) smooth corners designated as A2, (c) the prototype having smooth corners	100
Figure 5.3:	Reflection coefficient-frequency characteristics of single element QSCA having smooth/sharp corners	101
Figure 5.4:	Geometry of the proposed two element MIMO antenna (a) without resonators and (b) with resonators; Prototype of the proposed antenna (c) without resonators and (d) with resonators	102
Figure 5.5:	Vector surface current distributions on the proposed antenna patch at 3.5 and 5.5 GHz for deducing resonators' lengths	104
Figure 5.6:	Variations of S_{11} -frequency characteristics of the MIMO antenna with slit parameter (a) s1, (b) s2, (c) s3, and (d) t1	106
Figure 5.7:	Variations of S_{11} -frequency characteristics of the antenna with HSRS parameter (a) p1, (b) p2, and (c) t	107
Figure 5.8:	Variations of S_{11} -frequency characteristics of the antenna loaded with only slit, only HSRS, and both slit and HSRS	108
Figure 5.9:	Experimental setup for measuring total efficiency of proposed antenna using Wheeler cap method	109
Figure 5.10:	S-parameters-frequency characteristics of the proposed MIMO antenna (a) S_{11} and (b) S_{21}	111
Figure 5.11:	Simulated current distributions on the surface of the proposed MIMO antenna with port 1 excited and port 2 match-terminated	112
Figure 5.12:	3D radiation patterns of the proposed MIMO antenna when port $1/2$ is excited while port $2/1$ is match-terminated	114
Figure 5.13:	2D radiation patterns of the proposed MIMO antenna when port 1 excited and port 2 match-terminated	115

Figure 5.14:	Realized gain-frequency characteristics of the proposed MIMO antenna	116
Figure 5.15:	Total efficiency-frequency characteristics of proposed MIMO antenna	117
Figure 5.16:	Variations of envelope correlation coefficients of the proposed MIMO antenna with frequency	117
Figure 6.1:	Geometrical configuration of proposed shared radiator MIMO antenna	122
Figure 6.2:	Evolution steps of proposed antenna	123
Figure 6.3:	Prototype of fabricated antenna (a) front view and (b) back view	123
Figure 6.4:	S-parameter-frequency characteristics of different antenna configurations when exciting port 1 (a) S_{11} and (b) S_{21}	127
Figure 6.5:	S-parameter-frequency characteristics of the proposed antenna (a) reflection coefficient and (b) transmission coefficients S_{21} and S_{12}	129
Figure 6.6:	Simulated surface current distributions of different antenna configurations	131
Figure 6.7:	3D radiation patterns of the proposed MIMO antenna when exciting port $1/2$ while match-terminating port $2/1$	133
Figure 6.8:	2D radiation patterns of the proposed MIMO antenna when exciting port 1 while match-terminating port 2	133
Figure 6.9:	Realized Gain-frequency characteristics of the proposed MIMO antenna when exciting port 1 and match-terminating port 2	134
Figure 6.10:	Total efficiency-frequency characteristics of the proposed MIMO antenna when exciting port 1 and match-terminating port 2	135
Figure 6.11:	Envelope correlation coefficient-frequency characteristics of the proposed MIMO antenna when exciting port 1 and match-terminating port 2	136