Chapter wise Figure Index

Figure Number	Caption	Page Number
1.1	World energy demand and energy contributions from various	6
	energy resources	O
1.2	The contribution of non-renewable and renewable energy	7
	sources	/
1.3	Development of PV generation capacity by IEA and non-IEA	8
1.5	PVPS countries	0
	Predictions of international technology roadmap for	
1.4	photovoltaic (ITRPV-2018) regarding the drastic lowering of	10
1.4	substrate thickness in monocrystalline single junction solar	10
	cells	
1.5	Efficiency improvement of different types of research solar	15
1.3	cell over the years	13
1.6	Schematics of solar cell classification	17
1.7	Different types of losses in solar cell	22
1.8	Schematics of fundamental losses in silicon solar cell	23
	Different texturization patterns on c-Si (a)Random Conical,	
1.9	(b) Micro/nano pyramids, (c) Regular Inverted pyramid, (d)	28
1.9	Porous upward pyramids, (e) Random upward pyramids, (f)	
	Random upward pyramids, (g) Honeycomb, and (h) Grooves	
1.10	Schematic of light trapping by textured surface in Si wafer	28
1.11	(a) SEM image of self-organized nano or micro-sized cones	30
1.12	(a) SEM image of a top surface (b) cross-section of a Cu-	31
1.12	assisted chemical etched silicon surface	31
1.13	Schematic of destructive interference caused by anti-	32
1.13	reflection coating	32
1.14	Different light trapping schemes using dielectric NP layer.	36
1.15	Schematic of light trapping into the absorber layer through the	37
1.13	dielectric resonating sphere.	
1.16	(a) St. Paul's cathedral, London, England where the WGM	38
1.10	mode was noticed first by Rayleigh (b) Enhancement of light	30

	trapping into the thin Si solar cell using dielectric sphere	
	through WGM modes.	
1.17	Key factors for development of efficient and affordable PV	39
	technology.	39
1.18	The developed ${\sim}30~\mu m$ thin flexible c-Si wafer by alkali	41
1.10	etching during the research work.	41
1.19(a)	Four chamber PECVD cluster tool (CT-150) with load lock.	46
1.19(b)	Gas supply, pumping and other parts of the PECVD cluster	47
1.19(0)	tool.	4/
1.20	Schematic of thermal evaporation system.	48
1 21	Flow chart of the performed characterization techniques for	49
1.21	fabricated device.	49
1.22	Diffraction of X-ray from the crystalline planes.	50
1.23	Schematic of Bragg- Brentano goniometer.	51
1.24	Schematic of Basic operation of FESEM	53

Chapter 2

Optimization of back ITO layer as the sandwiched reflector for exploiting longer wavelength lights in thin and flexible (30 µm) single junction c-Si solar cells

Figure Number	Caption	Page Number
2.1	Structures adopted for fabricating the 30 µm wafer based	64
2.1	solar cells starting from basic p-n junction.	04
	(a) cross-sectional SEM image of the thin wafer showing the	
2.2	thickness and (b) AFM image of the post-etched silicon	68
	wafer.	
	XRD pattern of (a) undiffused 180 µm monocrystalline p-	
2.2	type wafer (b) undiffused 30 μm wafer (c) n-diffused 180 μm	(0
2.3	wafer from n-side and (d) n-diffused 30 µm wafer from n-	69
	side.	

2.4	Reflectance spectrum of (a) as cut 180 μm wafer (b) 30 μm	71
2.4	wafer and (c) n-diffused 30 µm wafer from n-side.	71
	J – V characteristics of "Cell 1" and its variants: (a) primitive	
2.5	cell (b) after annealing in air at 600°C for 10 minutes and (c)	72
	primitive cell after firing in belt furnace at 600°C.	
2.6	J – V characteristics of Cell 2.	73
2.7	J – V characteristics of Cell 3a, 3a and 3c.	74
	Reflectance from (a) Si/Al, (b) Si/ITO-50 nm/Al, (c) Si/ITO-	
2.0	100 nm/Al and (d) Si/ITO-150 nm/Al structures with light	7.5
2.8	impinging on the Si surface. The thickness of Al layer in all	75
	cases is 200 nm.	
	(a) FESEM image of the 30 µm textured wafer before ITO	
2.9	coating and (b) after ITO coating. (c) Photograph of a finished	76
	cell on textured thin wafer.	
2.10	J – V characteristics of Cell 4a and Cell 4b	77
2.11	EQE curves for (a) Cell 3a (b) Cell 3b (c) Cell 3c and (d) Cell	78
2.11	4b.	78
	Wavelength-dependent energy profile diagram near the	
	junction of the cell fabricated with 30 µm wafer and having	
2.12	Al/50 nm thick ITO layer as the back contact (Cell 3a).	80
	Chosen wavelengths: (a) 300 (b) 400 (c) 500 (d) 600 (e) 700	
	(f) 800 (g) 900 (h) 1000 and (i) 1100 nm.	
	Schematics showing (a) the pathway of light through the	
	finished cell depending upon "graded refractive index". The	
	red dotted arrow is showing the possibility of total internal	
2.13	reflection. The refractive indices (RI) are for the $400 - 900$	81
	nm zone (b) scattering and multiple bounces of light with	
	longer wavelength (red arrow) in the sandwiched BRL	
	leading to increased OPL (red dotted arrow).	
	Wavelength dependent energy profile diagram near the	
2.14	junction of the textured cell fabricated with 30 μm wafer and	82
	having Al/50 nm thick ITO layer as the back contact. Chosen	

wavelengths: (a) 300 (b) 400 (c) 500 (d) 600 (e) 700 (f) 800 (g) 900 (h) 1000 and (i) 1100 nm

Chapter 3

SHJ solar cells on adequately thin (~30 µm) c-Si wafer with unique dome like front and double layer of ITO nanoparticles as back light trapping arrangements

Figure Number	Caption	Page Number
	Schematic of thin (~30 $\mu m)$ SHJ cells (a) with pyramidal front	
3.1	texture (Cell 1) and (b) with dome shaped front surface (Cell	96
	2).	
	Cross-sectional view of the textured thin c-Si wafer (a) before	
2.2	HNA treatment and (b) after HNA treatment. Partial etching	07
3.2	of the pyramidal structure leading to dome shaped topography	97
	is evident	
2.2	Reflection characteristics of the surface of c-Si wafer with (a)	0.0
3.3	pyramidal and (b) dome shaped textures.	98
	J – V characteristics of the thin SHJ cell with pyramidal (Cell	
3.4	1) and dome shaped (Cell 2) front textures.	99
	Morphology of the ITO layers (a) 50 nm thick flat sampleand	
3.5	20 nm thick Ar plasma treated samples for (b) 5 min (c) 10	101
	min and (d) 15 min.	
	Transmission analysis configurations with 30 μm c-Si and	
3.6	ITO layer/NPs	102
	Transmittance curves for 30 µm c-Si wafer decorated with	
3.7	ITO layer/NPs	103
3.8	Back reflection measurement configurations with five	
	different structures	103
	Reflectance curves as obtained from the back layer	
3.9	configurations prepared on glass	104

3.10	Schematic showing the relative positions of ITO NPs at the	105
	rear side of the SHJ cells fabricated on thin n-c-Si wafer	
3.11	J – V curves for Cell 2, Cell 3A, Cell 3B and Cell 3C	106
3.12	EQE curves for Cell 2 and Cell 3C	109
3.13	(a) J – V characteristics (Cell 3D) and (b) EQE curve for Cell	110
	3D	110

Chapter 4

SHJ solar cells on adequately thin ($\sim 30~\mu m$) c-Si wafer with unique dome like front and double layer of ITO nanoparticles as back light trapping arrangements

Figure Number	Caption	Page Number
4.1	Schematic for proposed structure for (a) Domain 1 and (b) Domain 2	121
4.2	Optical transmittance for domain 1 of a ${\sim}30~\mu m$ thick c-Si wafer	125
4.3	Integrated Reflectance plots as a function of dielectric layer thickness for (a) R_{bi} and (b) R_{bt} as obtained from Si/HfO_2 interface by using HfO_2/SiN_x stack as back reflector cum passivator	126
4.4	Integrated Reflectance plots as a function of dielectric layer thickness for (a) R_{bi} and (b) R_{bt} as obtained from Si/SiO_2 interface by using SiO_2/Al_2O_3 stack as back reflector cum passivator	128
4.5	(a) Reflectance (R(λ)) plot for different thickness of SiO ₂ at Si/SiO ₂ interface for SiO ₂ /Al ₂ O ₃ double back reflector layerand (b) plot for variation of total valley area with SiO ₂ layer thickness	129
4.6	Integrated reflectance plots as a function of dielectric layer thickness for (a) R_{bi} and (b) R_{bt} as obtained from Si/HfO_2 interface by using HfO_2/Al_2O_3 stack as back reflector cum passivator.	131

4.7	Reflectance $(R(\lambda))$ plot for different thickness of HfO ₂ at	
	Si/HfO ₂ interface for HfO ₂ /Al ₂ O ₃ double back reflector	132
	layerand (b) plot for variation of total valley area with HfO ₂	132
	layer thickness	
	Carrier generation rate plotted in log ₁₀ scale with respect to	
10	wafer thickness at (a) 600 nm (b) 700 nm (c) 800 nm (d) 900	124
4.8	nm (e) 1000 nm and (f) 1100 nm for SiO_2 (140 nm)/ Al_2O_3	134
	(100nm) BRL structure.	
	Carrier generation rate plotted in log ₁₀ scale with respect to	
4.0	wafer thickness at (a) 600 nm (b) 700 nm (c) 800 nm (d) 900	126
4.9	nm (e) 1000 nm and (f) 1100 nm for HfO_2 (100 nm)/ Al_2O_3	136
	(100 nm) BRL structure	
	Comparison between MAPD of active layer without BRL and	
4.10	with (a) SiO ₂ /Al ₂ O ₃ and (b) HfO ₂ /Al ₂ O ₃ BRLs with	139
	optimized thickness	
4.11	Comparison between EQE of active layer without BRL and	
	with (a) SiO_2/Al_2O_3 and (b) HfO_2/Al_2O_3 BRLs with	140
	optimized thickness.	
4.12	Current density – voltage characteristics of the cells with	142
	different BRL architectures	

Chapter 5

Hybrid inorganic-organic inverted solar cells with ZnO/ZnMgO barrier layer and effective organic active layer for low leakage current, enhanced efficiency, and reliability

Figure Number	Caption	Page Number
5.1	Schematic of the fabricated solar cells with different	152
	configurations	102
5.2	FESEM images showing topography of (a) RF grown ZnO	155
	layer (b) PLD grown ZnMgO layer and (c) cross-sectional	133

	and topographical view of hydrothermally grown ZnO film	
	with nanorod arrays	
	(a) XRD patterns for RF ZnO, PLD ZnMgO and ZnO NR	
	layers (b) shows ZnO layer with defect states and (c) band	
5.3	alignments across the solar cell structure representing light	157
	induced passivation occurring at the	
	Mg:ZnO/PCBM/P3HT:PCBM interface	
	(a) C-V characteristics of ITO/ZnO NR and	
5 1	ITO/ZnO/ZnMgO electrodes and (b) C-V peak shift with	158
5.4	variation in photo excitation intensities on the ITO/ZnO NR	138
	and ITO/ZnO/ZnMgO electrode structures	
	Optical absorption spectra of (a) PEDOT:PSS/P3HT:PCBM	
5.5	and (b) ZnO/ZnMgO/P3HT:PCBM/PEDOT:PSS layers	159
	deposited on ITO	
<i>5</i> (J-V curves of the four different inverted cells fabricated in	1.00
5.6	this work	160
5.7	EQE plots for Cell A and Cell D	162
5.8	Plot of normalized efficiency for Cell B, Cell C and Cell D	1.60
	with respect to light soaking duration	163