Table of Contents

Tit	le page		i
De	dication.		ii
Cer	tificate		iii
De	Declaration by the candidate		
Co	pyright t	ransfer certificate	v
Ac	knowled	gement	vi
Ab	stract		xvii
1	Introdu	ction	17
	1.1 Ge	eneral	17
	1.2 De	sign philosophy	18
	1.3 Stu	ructural safety	20
	1.4 Ai	m and objectives of the study	21
	1.5 Or	ganization of the thesis report	22
2	Literature review		24
	2.1 Ge	eneral	24
	2.2 Str	ructural analysis of tensile membranes	24
	2.3 Cu	rrent design problems of TMS	27
	2.4 Simulation approaches of membranes		29
	2.5 A	probabilistic approach to the analysis of fabric structures	30
	2.5.1	ASCE Standard	31
	2.5.2	IASS references	32
	2.5.3	EUROCODE 0	33
	2.5.4	French Design Code:	34
	2.5.5	Japan Design Guide :	34
	2.5.6	German design:	35
	2.5.7	Italian design:	35
	2.6 Th	e reliability approach	35
	2.6.1	General uncertainties involved in a structural reliability analysis	36
	2.6.2	A review of general reliability theories and methods	39
	2.6.3	Monte-Carlo Method (MCM)	43

	2.6.4 Finite element probability approach	44
	2.7 Research Gap	.48
	2.8 Scope of study	. 49
	2.9 Summary	.49
3	Mathematical formulations	51
	3.1 General	. 51
	3.2 Finite element formulations for TMS	. 51
	3.3 Newton-Raphson Method – application on TMS	. 55
	3.4 First order reliability method and limit state functions.	. 57
	3.5 Summary	. 65
4	Reliability Analysis of Hyperbolic Paraboloid Shaped TMS	67
	4.1 General	. 67
	4.2 Description and visualization of the Hypar TMS	. 68
	4.3 The Design Philosophy	.70
	4.4 Identification of the Limit State Functions	.72
	4.5 Results and Discussions	.73
	4.5.1 Form-finding analysis bound for different height of hyper shaped TMS the isotropic pre-stressing scenario	in 73
	4.5.2 Form-finding analysis bound for different height of hyper shaped TMS the Anisotropic pre-stressing scenario	in 75
	4.5.3 Stress-deformation analysis for various loads and load combinations a isotropic pre-stress Hypar TMS	for 78
	4.5.4 Stress-deformation analysis for various loads and load combinations and stress Hyper TMS	for 90
	4.5.5 Reliability Analysis of hypar TMS	97
	4.6 Summary	105
5 Str	Applicability of reliability concept in square-base conic shaped Tensile Membra ucture	ine 07
	5.1 General	107
	5.2 Description of the TMS	109
	5.3 Current design philosophy	111
	5.4 Identification of the Limit State Functions	113
	5.5 Results and Discussions	114
	5.5.1 Form-finding analysis bound for different height of square base conshaped TMS in the isotropic pre-stressing scenario	nic 15

	5.5.2 shaped 7	Form-finding analysis bound for different height of square base conic TMS in the Anisotropic pre-stressing scenario
	5.5.3 and load	Stress-deformation analysis of square-base conic TMS for various loads combinations with isotropic pre-stressing
	5.5.4 and load	Stress-deformation analysis of square-base conic TMS for various loads combinations with anisotropic pre-stressing
	5.5.5	Reliability Analysis of conic TMS 133
	5.6 Sun	nmary
6	Conclus	ions
	6.1 Ger	neral
	6.2 Cor	cluding remarks
	6.3 Fut	ure scope of work145

List of Tables

Table 1: Target Reliabilities for different building categories given by Euro code 0.33

Table 2 Target reliabilities of RC2 building type by limit states, reproduced from "Eurocode - Basis for Structural Design" Table C2 Target reliability index β for Class RC2 structural members [(Caner & Hsu, 1999)]
Table 3: Classification of general uncertainties
Table 4: Classification based on the source of uncertainty
Table 5: Definition of statistical variables 58
Table 6 Descripton of deformation and stresses for form-finding of Hypar TMS 75
Table 7 The description of deformation and stresses as an outcome of form-findingprocedure for anisotropic pre-stressing of Hypar TMS.77
Table 8 The maximum warp stress responses for various load cases and differentheight for isotropic pre-stressing of Hypar TMS
Table 9 The minimum fill/weft stress responses for various load cases and differentheight for isotropic pre-stressing of Hypar TMS
Table 10 The z-axis maximum deformations for each load case corresponding toheight variation of Hypar TMS
Table 11 The maximum warp stress description of stress-deformation analysis ofHypar TMS (anisotropic stress)
Table 12 The minimum fill/weft stress description of stress-deformation analysis ofHypar TMS (anisotropic stress)
Table 13 The maximum z-axis deformation for various load cases with change inheight of Hypar TMS (anisotropic pre-stressing)
Table 14 Reliability indices for the fabric failure limit state for each load case with $COV = 0.10$ corresponding to different height of Hypar TMS (Isotropic pre-stress).98
Table 15 Reliability indices for the fabric failure limit state for each load case with $COV = 0.15$ corresponding to different height of Hypar TMS (Isotropic pre-stress)99
Table 16 Reliability indices for the fabric failure limit state for each load case with $COV = 0.20$ corresponding to different height of Hypar TMS (Isotropic pre-stress)99
Table 17 Reliability indices for the fabric failure limit state for each load case with $COV = 0.25$ corresponding to different height of Hypar TMS (Isotropic pre-stress)99
Table 18 Reliability indices for the wrinkling failure limit state for each load case with $COV = 0.10$ corresponding to different height of Hypar TMS (Isotropic prestress)

Table 19 Reliability indices for the wrinkling failure limit state for each load case with $COV = 0.15$ corresponding to different height of Hypar TMS (Isotropic prestress)
Table 20 Reliability indices for the wrinkling failure limit state for each load case with $COV = 0.20$ corresponding to different height of Hypar TMS (Isotropic prestress)
Table 21 Reliability indices for the wrinkling failure limit state for each load case with $COV = 0.25$ corresponding to different height of Hypar TMS (Isotropic prestress)
Table 22 Reliability indices for the fabric failure limit state for each load case with $COV = 0.10$ corresponding to different height of Hypar TMS (Anisotropic prestress)
Table 23 Reliability indices for the fabric failure limit state for each load case with $COV = 0.15$ corresponding to different height of Hypar TMS (Anisotropic prestress)
Table 24 Reliability indices for the fabric failure limit state for each load case with $COV = 0.20$ corresponding to different height of Hypar TMS (Anisotropic prestress)
Table 25 Reliability indices for the fabric failure limit state for each load case with $COV = 0.25$ corresponding to different height of Hypar TMS (Anisotropic prestress)
Table 26 Reliability indices for the wrinkling failure limit state for each load case with $COV = 0.10$ corresponding to different height of Hypar TMS (Anisotropic prestress)
Table 27 Reliability indices for the wrinkling failure limit state for each load case with $COV = 0.15$ corresponding to different height of Hypar TMS (Anisotropic prestress)
Table 28 Reliability indices for the wrinkling failure limit state for each load case with $COV = 0.20$ corresponding to different height of Hypar TMS (Anisotropic prestress)
Table 29 Reliability indices for the wrinkling failure limit state for each load case with $COV = 0.25$ corresponding to different height of Hypar TMS (Anisotropic prestress)
Table 30 Descripton of deformation and stresses for form-finding of Hypar TMS(Isotropic pre-stress)115
Table 31 Description of deformation and stresses for form-finding of Hypar TMS(Anisotropic pre-stress)
Table 32 The maximum warp stress responses for various load cases and differentheight for isotropic pre-stressing of Conic TMS.121

Table 33 The minimum fill stress responses for various load cases and differentheight for isotropic pre-stressing of Conic TMS.122
Table 34 The maximum deformation results various loads corresponding toIsotropic pre-stressing of Conic TMS
Table 35 The maximum warp stress responses for various load cases and differentheight for Anisotropic pre-stressing of Conic TMS128
Table 36 The minimum fill stress responses for various load cases and differentheight for Anisotropic pre-stressing of Conic TMS129
Table 37 Deformation results for conic TMS (Anisotropic pre-stress)
Table 38 Reliability indices for the fabric failure limit state for each load case with $COV = 0.10$ corresponding to different height of Conic TMS (Isotropic pre-stress)135
Table 39 Reliability indices for the fabric failure limit state for each load case with $COV = 0.15$ corresponding to different height of Conic TMS (Isotropic pre-stress)135
Table 40 Reliability indices for the fabric failure limit state for each load case with $COV = 0.20$ corresponding to different height of Conic TMS (Isotropic pre-stress)135
Table 41 Reliability indices for the fabric failure limit state for each load case with $COV = 0.25$ corresponding to different height of Conic TMS (Isotropic pre-stress)136
Table 42 Reliability indices for the wrinkling failure limit state for each load case with $COV = 0.10$ corresponding to different height of Conic TMS (Isotropic prestress)
Table 43 Reliability indices for the wrinkling failure limit state for each load case with $COV = 0.15$ corresponding to different height of Conic TMS (Isotropic prestress)
Table 44 Reliability indices for the wrinkling failure limit state for each load case with $COV = 0.20$ corresponding to different height of Conic TMS (Isotropic prestress)
Table 45 Reliability indices for the wrinkling failure limit state for each load case with $COV = 0.25$ corresponding to different height of Conic TMS (Isotropic prestress)
Table 46 Reliability indices for the fabric failure limit state for each load case with $COV = 0.10$ corresponding to different height of Conic TMS (Ansotropic pre-stress)138
Table 47 Reliability indices for the fabric failure limit state for each load case with $COV = 0.15$ corresponding to different height of Conic TMS (Ansotropic pre-stress)139
Table 48 Reliability indices for the fabric failure limit state for each load case with $COV = 0.20$ corresponding to different height of Conic TMS (Ansotropic pre-stress)139
Table 49 Reliability indices for the fabric failure limit state for each load case with $COV = 0.10$ corresponding to different height of Conic TMS (Anisotropic prestress)

Table 50 Reliability indices for the wrinkling failure limit state for each load case with $COV = 0.10$ corresponding to different height of Conic TMS (Anisotropic prestress)
Table 51 Reliability indices for the wrinkling failure limit state for each load case with $COV = 0.15$ corresponding to different height of Conic TMS (Anisotropic prestress)
Table 52 Reliability indices for the wrinkling failure limit state for each load casewith COV = 0.20 corresponding to different height of Conic TMS (Anisotropic pre- stress)
Table 53 Reliability indices for the wrinkling failure limit state for each load case with $COV = 0.25$ corresponding to different height of Conic TMS (Anisotropic prestress)

List of Figures

Figure 1 The schematic diagram of reliability	12
Figure 2 A typical CST element in local coordinate system	+2 52
Figure 3 A general representation of Newton Paphson solution procedure	52
Figure 4 Representation of limit state function safe and unsafe regions	
Figure 5 Hasofer-L ind reliability index: nonlinear limit state function	00
Figure 6 Basic FORM algorithm for reliability index calculation	05 64
Figure 7 Isometric view of Hyperbolic Pereboloid TMS	-0 60
Figure 8 Plan view profile of the Hyper TMS	69.
Figure 9 The height variation profiles of Hyper TMS	02
Figure 10 The form-found simulation models displaying maximum deformation conto	/ 1 11rs
for Isotronic pre-stressing of Hyper TMS	74
Figure 11 warn stress contours (a) and fill/weft stress contours (b) for height 3 5m of	/ 1
Hyper TMS	75
Figure 12 Deformation along z-axis for form-finding of Hyper TMS (anisotropic)	
Figure 13 Deformation contour models of anisotropic pre-stressing of Hyper TMS	
Figure 14 The warp stress (a) and fill stress (b) distribution contours for form-finding	•• / /
process of anisotropic pre-stressing of Hypar TMS.	78
Figure 15 The warp and fill stresses development contours after stress-deformation	
analysis for isotropic pre-stressing of Hypar TMS	81
Figure 16 The deformation contour models for wind-uplift load case of Hyper TMS	
(isotropic pre-stress)	84
Figure 17 The deformation span ratio under wind-uplift for deflection along z-axis for	
Hypar TMS (Isotropic pre-stress)	84
Figure 18 The deformation contour models for snow load case of Hypar TMS (isotropi	ic
pre-stress)	85
Figure 19 The deformation span ratio under snow-load for deflection along z-axis for	
Hypar TMS (Isotropic pre-stress)	86
Figure 20 The deformation contour models for CO1 load case of Hypar TMS (isotropi	с
pre-stress)	87
Figure 21 The deformation span ratio under CO1(1.6*snow-load) for deflection along	Z-
axis for Hypar TMS (Isotropic pre-stress)	88
Figure 22 The deformation contour models for CO2 load case of Hypar TMS (isotropic	c
pre-stress)	89
Figure 23 The deformation span ratio under <i>CO2(0.5*wind-uplift +1.6snow load)</i> for	
deflection along z-axis for Hypar TMS (Isotropic pre-stress)	89
Figure 24 The stress development contours for height 3.5m for both warp and fill	
direction stresses for Hypar TMS (anisotropic pre-stress)	92
Figure 25 The deformation contour models for wind-uplift load case of Hypar TMS	
(Anisotropic pre-stress)	94

Figure 26 The deformation contour models for snow load case of Hypar TMS
(Anisotropic pre-stress)96
Figure 27 Deformation profile of load case CO1 for Hypar TMS (Anisotropic pre-stress)
Figure 28 Deformation profile of load case CO2 for Hypar TMS (Anisotropic pre-stress)
Figure 29 An isometric view of a Square-Base Conic Shaped TMS107
Figure 30 The elevation plan view of Square-Base Conic TMS110
Figure 31 The height variation profiles for Conic TMS adopted in this case study112
Figure 32 Basic form-found curvature profile of Square-base conic TMS after application of initial Pre-stressing
Figure 33 Deformation-span ratio for deformation along z-axis for form-finding of conic
TMS (Isotropic pre-stress)116
Figure 34 Deformation contours of form-finding process for conic TMS (Isotropic pre- stress)
Figure 35 The Warp stress (a) and fill stress (b) obtained after form-finding of the conic TMS(Isotropic pre-stress) with height H = 5.0 m
Figure 36 Deformation contours of form-finding process for conic TMS (Anisotropic pre- stress)
Figure 37 Deformation-span ratio for deflection along z-axis for form-finding of conic TMS (Anisotropic pre-stress)
Figure 38 The Warp stress (a) and fill stress (b) obtained after form-finding of the conic TMS(Anisotropic pre-stress) with height $H = 5.0$ m
Figure 39 The warp and fill stresses development contours after stress-deformation
analysis for isotropic pre-stressing of Conic TMS
Figure 40 The deformation span ratio under wind-uplift for deflection along z-axis for
Conic TMS (Isotropic pre-stress)
Figure 41 The deformation contour models for wind uplift load for Conic TMS (Isotropic pre-stress)
Figure 42 The deformation span ratio under snow load for deflection along z-axis for
Conic TMS (Isotropic pre-stress)126
Figure 43 Deformation contour results of Conic TMS (Isotropic Pre-stress) for load case CO1
Figure 44 The deformation span ratio under CO2 load for deflection along z-axis for Conic TMS (Isotropic pre-stress)
Figure 45 The warp and fill stresses development contours after stress-deformation analysis for Anisotropic pre-stressing of Conic TMS
Figure 46 The deformation span ratio under snow load for deflection along z-axis for
Conic TMS (Anisotropic pre-stress)
Figure 47 Deformation contours of Conic TMS (Anisotropic pre-stress) for load case
CO1