TABLE OF CONTENTS

Chapter	Title	Page No.
Chapter 1	INTRODUCTION	1-13
	1.1 General	1
	1.2 Background and motivation	6
	1.3 Research Objectives	10
	1.4 Thesis structure	12
Chapter 2	LITERATURE REVIEW	14-37
	2.1 Introduction	14
	2.2 River thermal pattern variation and its impact on the river	15
	ecosystem	
	2.3 Factors influencing the river temperature	17
	2.3.1 Effect of anthropogenic disturbances	17
	2.3.2 Effect of river geomorphology	20
	2.3.3 Effect of global warming	21
	2.4 River thermal pattern and river-basin temperature fluctuation	23
	scenario in context to Indian rivers	
	2.5 Application of the satellite imageries for river temperature detec	tion 25
	2.6 Description of river Ganga	30
	2.6.1 General illustration of river Ganga	30
	2.6.2 Climate	32
	2.6.3 Hydrogeology and Geomorphology	32
	2.6.4 Biodiversity	36
	2.7 Research gap	37
	2.8 Summary	37

Chapter 3	PERIODIC MONITORING OF RIVER THERMAL	38-78
	PATTERN USING SATELLITE IMAGES	
	3.1 Introduction	38
	3.2 Study area description	41
	3.2.1 Climate	43
	3.2.2 Land use/Land cover (LU/LC) pattern	44
	3.3 Data	45
	3.3.1 Satellite data	45
	3.3.2 Air temperature	47
	3.4 Methodology	50
	3.4.1 Atmospheric correction	50
	3.4.2 Creating the water mask	51
	3.4.3 Surface water temperature calculation	52
	3.5 Results	54
	3.5.1 Estimated Water Temperature	54
	3.5.2 Temporal and longitudinal variation of river thermal profile	60
	3.5.3 Relationship between air temperature, LANDSAT-7&8 satellite	72
	calculated temperature	
	3.6 Discussion	74
Chapter 4	IMPACT OF URBAN STRETCH ON THERMAL PATTERN	79-102
	OF RIVER	
	4.1 Introduction	79
	4.2 Data	83
	4.3 Materials and method	84
	4.3.1 portable thermal sensor	85
	4.4 Results	87
	4.4.1 Validation of Estimated Water Temperature	87
	4.4.2 Spatio-temporal Variation of River Thermal Profile	89

Chapter 5 IMPACT OF MINIMAL HUMAN INTERACTION ON	103-124
RIVER THERMAL PATTERN FLUCTUATION	
5.1 Introduction	103
5.2 Data	108
5.2.1 Meteorological datasets	108
5.2.2 Satellite imagery datasets	109
5.3 Methodology adopted for this analysis	110
5.4 Results	111
5.4.1 Statistical representation of river temperature	111
5.4.2 Changing patterns of river temperature for Varanasi stretch	116
5.5 Discussion	121
5.5.1 Analysis of the spatio-temporal change in river temperature	121
5.5.2 Analysis of the river temperature fluctuations due to	123
lockdown imposed in the second COVID-19 wave	
in the summers of 2021	
5.5.3 Special emphasis for the Varanasi stretch	123
Chapter 6 GEOMORPHIC CONTROLS OF LANDSAT-BASED	125-159
THERMAL PATTERNS	
6.1 Introduction	125
6.2 Data	131
6.3 Materials and methods	132
6.3.1 Extraction of flow channel and sandbars from Image Classification	134
6.3.2 Removal of the mixed pixels and Temperature profile extraction	135
6.3.3 Field thermal measures for validating thermal imagery	137
6.3.4 Additional variables	140

6.4 Results	143
6.4.1 Space and time variability of river temperature	143
6.4.2 Spatial thermal pattern variation with river geomorphological	147
parameters	
6.5 Discussion	154
6.5.1 Analysis of the river temperature with geomorphological	154
parameters at some specific regions	
Chapter 7 GLOBAL WARMING IMPACT ON RIVER1	60-195
THERMAL PATTERN IN FUTURE	
7.1 Introduction	160
7.2 Data	167
7.2.1 LANDSAT datasets	167
7.2.2 ERA 5 datasets	168
7.2.3 Visible Infrared Imaging Radiometer Suite (VIIRS)	168
Day/Night Band (DNB) datasets	
7.2.4 In-situ datasets	169
7.3 Methodology adopted for this work	169
7.3.1 Air temperature calculation using ERA 5 Datasets	169
7.3.2 Future prediction of parameters	170
7.4 Results	177
7.4.1 Statistics for the in-situ measurements and satellite data validation	177
7.4.2 Air temperature pattern and future trend	179
7.4.3 LSTM model validation and the future trend prediction	182
7.5 Discussion	192
7.5.1 Analysis of the elevated river temperature in the study stretch	192
7.5.2 Impact of global warming on river Ganga and over the Ganga basi	n 194

Chapter 8 FINDING AND CONCLUSION	196-213
8.1 Introduction	196
8.2 Specific conclusion of each objective	197
8.2.1 Conclusion of the objective achieved in Chapter 3	197
8.2.2 Conclusion of the objective achieved in Chapter 4	198
8.2.3 Conclusion of the objective achieved in Chapter 5	199
8.2.4 Conclusion of the objective achieved in Chapter 6	200
8.2.5 Conclusion of the objective achieved in Chapter 7	201
8.3 Findings of this research	203
8.4 Limitations of this research work	210
8.5 Future scope of the work	211
8.6 Summary of the research work and the final conclusion	212
REFERENCES	214-239
APPENDICES	240-250

LIST OF FIGURES

Figure. No.	Figure title Pa	age No.
Figure 1.1	Flowchart of the overview for this thesis work	10
Figure 2.1	Geomorphological division and broad category of the land use pattern in	n 33
	mid Ganga plain (source: Saha and Sahu, 2016)	
Figure 2.2	Contribution of different orders (Source: Dwivedi et al., 2016)	36
Figure 3.1	Location of the studied reach between Mirzapur and Ghazipur in the	42
Eigura 2.2	Dereentees distribution of each LU/LC tune (source: Bale et al. 2021)	15
Figure 3.2	Flowshart of the methodology for temperature estimation from L8	4J
Figure 5.5	Flowchart of the methodology for temperature estimation from L8	51
Figure 3.4	Sampling point for Ghazipur (LANDSAT-/ overpass;	56
Figure 3.5	Sampling point for Varanasi (LANDSAT-7 overpass;	56
	date 20th May, 2017)	
Figure 3.6	Sampling point for Ghazipur (LANDSAT-8 overpass;	57
	date 24th January, 2018)	
Figure 3.7	Sampling point for Varanasi (LANDSAT-8 overpass;	57
	date 8th February, 2018)	
Figure 3.8	Field photographs while doing the in-situ sampling	58
Figure 3.9	Regression plot for the LANDSAT-7 and in-situ temperature	59
Figure 3.10	Regression plot for the LANDSAT-8 and in-situ temperature	60
Figure 3.11	Temporal thermal box plot for the month of February for	62
	LANDSAT-7 and LANDSAT-8	
Figure 3.12	Temporal thermal box plot for the month of May-June for	63
	LANDSAT-7 and LANDSAT-8	

Figure 3.13	Temporal thermal box plot for the month of October-November	63
	for LANDSAT-7 and LANDSAT-8	
Figure 3.14	Spatial thermal profile for May 2013	64
Figure 3.15	Spatial thermal profile for November 2013	64
Figure 3.16	Spatial thermal profile for February 2015	65
Figure 3.17	Spatial thermal profile for May 2015	65
Figure 3.18	Spatial thermal profile for October 2015	65
Figure 3.19	Spatial thermal profile for February 2017	66
Figure 3.20	Spatial thermal profile for May 2017	66
Figure 3.21	Spatial thermal profile for October 2017	66
Figure 3.22	Spatial thermal profile for February 2018	67
Figure 3.23	Spatial thermal profile for October 2018	67
Figure 3.24	Spatial thermal profile for May 2013	68
Figure 3.25	Spatial thermal profile for October 2013	68
Figure 3.26	Spatial thermal profile for February 2015	69
Figure 3.27	Spatial thermal profile for June 2015	69
Figure 3.28	Spatial thermal profile for November 2015	69
Figure 3.29	Spatial thermal profile for February 2017	70
Figure 3.30	Spatial thermal profile for June 2017	70
Figure 3.31	Spatial thermal profile for November 2017	70
Figure 3.32	Spatial thermal profile for February 2018	71
Figure 3.33	Spatial thermal profile for May 2018	71
Figure 3.34	Spatial thermal profile for October 2018	71
Figure 3.35	Season-wise median air temp and surface water temp for L-8 datasets	73
Figure 3.36	Season-wise median air temp and surface water temp for L-7 datasets	73

Figure 3.37	Thermal and RGB image of a LANDSAT-7 scene;	75
	Ghazipur situated in the non-scan line region	
Figure 3.38	Thermal and RGB image of a LANDSAT-8 scene	76
Figure 4.1	Location map showing the confluence points	82
Figure 4.2	Flowchart of the work	84
Figure 4.3	Functional block diagram of the sensor system set-up	86
Figure 4.4	Portable sensor system set up	86
Figure 4.5	Correlation graph between the temperature observed from the	88
	portable thermal sensor and satellite-derived temperature	
Figure 4.6	Map of the in-situ temperature measurement point	89
Figure 4.7	Spatial distribution of river thermal profile	90-91
Figure 4.8	February 2019 image depicting confluence point variation	92
Figure 4.9	November 2018 image depicting confluence point variation	92
Figure 4.10	Temporal temperature profile graph for Confluence Point 1	98
Figure 4.11	Temporal temperature profile graph for Confluence Point 2	98
Figure 4.12	Temporal temperature profile graph for Confluence Point 3	99
Figure 5.1	Geolocation map of the study area from Mirzapur to Ghazipur.	107
	The blue vector represent the river and red patches illustrates	
	the river stretch considered for this analysis	
Figure 5.2	Flowchart of the work procedure	110
Figure 5.3	Box plot representation for river temperature in the	112
	Ghazipur stretch	
Figure 5.4	Box plot representation for river temperature in the	113
	Varanasi stretch	
Figure 5.5	Box plot representation for river temperature in the	113
	Mirzapur stretch	

Figure 5.6	Box plot representation of the river temperature	114
	for the analysis of the second wave COVID-19	
	lockdown effect in Ghazipur region	
Figure 5.7	Box plot representation of the river temperature	115
	for the analysis of the second wave COVID-19	
	lockdown effect in Varanasi region	
Figure 5.8	Box plot representation of the river temperature	115
	for the analysis of the second wave COVID-19	
	lockdown effect in Mirzapur region	
Figure 5.9	River temperature variation for the Varanasi	117
	stretch during the time-period of	
	February 2019 and February 2020	
Figure 5.10	River temperature variation for the Varanasi	117
	stretch during the time-period of May 2019 and May 2020	
Figure 5.11	River temperature variation for the Varanasi	118
	stretch during the time-period of	
	November 2019 and October 2020	
Figure 5.12	River temperature (° C) variation for the	119
	Varanasi stretch using LANDSAT-8 datasets during the	
	time period of (a) May 2019, (b) May 2020, (c) and (d) May 2021	
Figure 6.1	Location map showing the study region	130
Figure 6.2	Flowchart of the methodology adopted for the work	133
Figure 6.3	Extraction of pure water pixels	135
Figure 6.4	Pure water pixel inclusion and rejection scenarios	137
	for a small stretch of the study area	
Figure 6.5	Scatterplot linking observed water temperature and	138
	LANDSAT image water temperature	
Figure 6.6	Field sampling values for 25 th December 2018	139

Figure 6.7	Field sampling values for 10 th January 2019	139
Figure 6.8	Field sampling values for 11 th February 2019	140
Figure 6.9	River stage value (obtained from Prayagraj CWC station)	141
Figure 6.10	Narrow and wide cross section chosen within the study	142
	reach for measuring river velocity	
Figure 6.11	(A) Thermal Profile of river Ganga of a sub-reach within the study zone	144
Figure 6.11	(B) Thermal Profile for Feb and June 2014	145
Figure 6.12	Variation of temperature at reach-scale for the different study dates	146
	[Horizontal dark lines inside the boxes indicate median values.	
	The width of the boxes indicates the distribution of the temperature	
	corresponding to the interquartile range (Q3(75%)- Q1(25%))].	
	Graph (a) is for February month and (b) for May 2018 and June months	5
Figure 6.13	Graphical representation of parameters for February 2015	148
Figure 6.14	Graphical representation of parameters for June 2015	149
Figure 6.15	Graphical representation of parameters for February 2016	150
Figure 6.16	Graphical representation of parameters for June 2016	151
Figure 6.17	Graphical representation of parameters for February 2017	152
Figure 6.18	Graphical representation of parameters for June 2017	153
Figure 6.19	Field sampling values for 5 th April 2021	157
Figure 6.20	Field sampling values for 7 th April 2021	158
Figure 6.21	Field sampling values for 15 th April 2021	158
Figure 6.22	On-field photographs while doing the in-situ sampling in April 2021	159
Figure 7.1	Geo-location map of the region for which the work has been done	166
Figure 7.2	Unfolding structure of RNN	173
Figure 7.3	LSTM cell structure	175
Figure 7.4	Scatter plot showing the relation between in-situ	179
	and satellite observed temperature	
Figure 7.5	Sarima model predicted air temperature for the city river stretch	180

Figure 7.6	Prophet model predicted air temperature for the city river stretch	181
Figure 7.7	Sarima model predicted air temperature for the non-city river stretch	181
Figure 7.8	Prophet model predicted air temperature for the non-city river stretch	181
Figure 7.9	Comparison between the model derived and the satellite-derived	183
	datasets for the city stretch river temperature	
Figure 7.10	Comparison between the model derived and the satellite-derived	184
	datasets for the non-city stretch river temperature	
Figure 7.11	Comparison between the model derived and the satellite-derived	185
	datasets for the city nighttime radiance	
Figure 7.12	Comparison between the model derived and the satellite-derived	186
	datasets for the non-city nighttime radiance	
Figure 7.13	LSTM predicted river temperature for the city stretch for the	188
	year (a) 2022 (b) 2025	
Figure 7.14	LSTM predicted river temperature for the non-city stretch for the	189
	year (a) 2022 (b) 2025	
Figure 7.15	LSTM predicted nighttime radiance for the region surrounding the	190
	city river stretch for the year (a) 2022 (b) 2025	
Figure 7.16	LSTM predicted nighttime radiance for the region surrounding	191
	the non-city river stretch for the year (a) 2022 (b) 2025	
Figure 8.1	Flowchart of the methodology	203
Figure 8.2	River stretch for the microbial colony zone(s)	204
	identification	
Figure 8.3	Summertime temperature fluctuations	206
Figure 8.4	Wintertime temperature fluctuations	207
Figure 8.5	Scatter link between microbial colony count and temperature	208
Figure 8.6	Microbial colony count for summer season	209
Figure 8.7	Microbial colony count for winter season	209

LIST OF TABLES

Table. No	. Table title	Page No.
Table 2.1	TIR band of different sensors for quantifying water temperature	29
Table 3.1	Meteorological parameters for LANDSAT 7 images	48
Table 3.2	Meteorological parameters for LANDSAT 8 images	49
Table 3.3	Relationship between Air temp. and L8, L7 satellite	72
	water surface estimated temp.	
Table 4.1	Characteristic of the confluence points	83
Table 4.2	Summary of satellite datasets used	83
Table 4.3	Spatial variation of river temperature	93
Table 4.4	Relative surface water temperature variation for the year 2013	94
Table 4.5	Relative surface water temperature variation for the year 2014	95
Table 4.6	Relative surface water temperature variation for the year 2015	95
Table 4.7	Relative surface water temperature variation for the year 2016	95
Table 4.8	Relative surface water temperature variation for the year 2017	95
Table 4.9	Relative surface water temperature variation for the year 2018	96
Table 4.10	Relative surface water temperature variation for the year 2019	96
Table 4.11	Relative surface water temperature variation for the year 2020	96
Table 5.1	The time period for meteorological data	109
Table 5.2	List of satellite images	109
Table 5.3	Temperature pattern for non-point and point region in Varanasi stretch	120
Table 6.1	Date of acquisition of the median air temperature values for the	131
	whole study stretch and River stage at Prayagraj	
	Hydrological station (CWC station) along with velocity values	
Table 6.2	OA and kappa values of the Classification and Regression Trees for	134
	water and sand bars pixels of the eight studied dates	

Table 7.1	Summary of the Landsat datasets used in this study	168
Table 7.2	VIIRS Satellite image acquisition dates	169
Table 7.3	Descriptive statistical values of in-situ river temperature	178
Table 7.4	RMSPE values showing the efficiency of Prophet and Sarima models	182
Table 7.5	Performance analysis of the LSTM model(s)	187
Table 7.6	p-value of the LSTM model(s) for predicted years	192
Table 8.1	Microbial counts for the selected points	205