Dedicated to Lord Shiva, my loving Grandparents, parents, and my family

PRELIMINARIES

S.No.	List	Page No.
1.	Title page	i
2.	Certificates	ii-iv
3.	Acknowledgement	v-vi
4.	Table of Contents	vii-xi
5.	List of Figures	xii-xvii
6.	List of Tables	xviii-xix
7.	Preface	xx-xxii

INVESTIGATION OF THE CAUSATIVE FACTORS FOR SURFACE WATER TEMPERATURE FLUCTUATIONS

CERTIFICATE

It is certified that the work contained in the thesis titled *"Investigation of the causative factors for surface water temperature fluctuations"* by *"NILENDU DAS"* has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

> (Dr. Shishir Gaur) Supervisor Department of Civil Engineering Indian Institute of Technology (BHU) Varanasi

I, *Nilendu Das*, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of *Dr. Shishir Gaur* from July-2016 to April-2022, at the *Department of Civil Engineering*, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma.

I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc, reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date :

Signature of the Student

Place: Varanasi

(Nilendu Das)

CERTIFICATE BY THE SUPERVISOR(S)

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

Dr. Shishir Gaur (Supervisor) Department of Civil Engineering Indian Institute of Technology (BHU) Varanasi

H.O.D Department of Civil Engineering Indian Institute of Technology Varanasi

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thésis: Investigation of the causative factors for surface water temperature

fluctuations

Name of the Student: Mr. Nilendu Das

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the *"Doctor of Philosophy"* degree.

Date :

Signature of the Student

Place: Varanasi

(Nilendu Das)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ACKNOWLEDGEMENT

Initially, I would like to express my deep sense of gratitude to my current supervisor **Dr. Shishir** *Gaur* Department of Civil Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, for his valuable guidance, constant support, critical and motivating comments throughout the completion of this research work. I would also like to pay sincere gratitude to my mentor **Dr. Anurag Ohri**. It has been my great honour to work with such renowned professors. I gained a lot of experience in my area of research as well as improved my communication and writing skills. It is my pleasure to express my deepest admiration and heartiest thanks to them for helping me learn the subject and develop an interest in further research in this area.

Very special gratitude goes to the Head Department of Civil Engineering (IITBHU) for their support and making available resources such as the Geoinformatics Engineering Laboratory and the Environmental Engineering Laboratory that was instrumental in the fieldwork of this research. I would like to acknowledge the MHRD (India) for providing financial support for the research work. I am also thankful to my RPEC members **Prof. Rajendra Prasad** as, an external expert from the Department of Physics, and internal subject expert, **Dr. Medha Jha**, for their valuable suggestions. Then, I would like to thank **Dr. B.N. Singh** and **Dr.Ajay** for reviewing the manuscript of the thesis and for their encouraging comments. Even I would also like to thank my colleague **Mr. Ankit Tewari** for his constant help in correcting the grammatical errors in the manuscript writing.

I am also thankful to all technical staff, teaching, and non-teaching staff, especially **Mr. Akhilesh Kumar**, **Mr. Vikas**, **Mr. Bhuwal**, **Mr. Shankar Ramji**, and **Mr. Lalji** of the Department of Civil Engineering, for their support during the research work.

I would also very sincerely like to thank **Mr. Rajarshi Bhattacharjee** (once my junior and now my colleague) for his constant input and thought, which helped me immensely throughout my work. He shared the burden of my thesis and worked tirelessly alongside me to complete my work. Even some of my juniors, mainly **Shivam, Abhinandan**, and **Vaibhav**, worked extensively to achieve my Ph.D. objectives along with some other sincere interns, especially, **Avikal**, **Nilesh**, and **Arpit**.

I would also like to thank my seniors for their constant motivation and support, especially Dr. Sachin Mishra and Dr. Ashwani Kumar Agnihotri. I would also like to extend my sincere gratitude to all my colleagues, especially Dr.Nikhilesh, Mr.Abhijeet Debnath, Mr. Bhupendra, Mr. Mohit, Mr. Ranveer, Mr. Shreyansh, Mr. Ajit, and Mr. Anurag. I would also like to thank my friends, especially Dubey ji, DJ, Sumit, Arpan, Surya, and one of my very respected senior brother figures Basudeb Da. I would also like to thank my junior Ojha for his motivation.

I am incredibly indebted to my Grandparents (especially to my **Didun** and **Dadu**) and **Parents** for their unconditional love and support and for all they have taught me. I am also very grateful to my extended **family** and **cousins** for their unconditional love.

Lastly, I would like to pay my deepest gratitude to Lord Shiva; I can't put a single step forward without his blessings.

Date: 19/9/2022

Nilendu Das Research Scholar Department of Civil Engineering Indian Institute of Technology (BHU) Varanasi 221005, India

TABLE OF CONTENTS

Chapter	Title	Page No.
Chapter 1	INTRODUCTION	1-13
	1.1 General	1
	1.2 Background and motivation	6
	1.3 Research Objectives	10
	1.4 Thesis structure	12
Chapter 2	LITERATURE REVIEW	14-37
	2.1 Introduction	14
	2.2 River thermal pattern variation and its impact on the river	15
	ecosystem	
	2.3 Factors influencing the river temperature	17
	2.3.1 Effect of anthropogenic disturbances	17
	2.3.2 Effect of river geomorphology	20
	2.3.3 Effect of global warming	21
	2.4 River thermal pattern and river-basin temperature fluctuation	23
	scenario in context to Indian rivers	
	2.5 Application of the satellite imageries for river temperature detec	tion 25
	2.6 Description of river Ganga	30
	2.6.1 General illustration of river Ganga	30
	2.6.2 Climate	32
	2.6.3 Hydrogeology and Geomorphology	32
	2.6.4 Biodiversity	36
	2.7 Research gap	37
	2.8 Summary	37

Chapter 3	PERIODIC MONITORING OF RIVER THERMAL	38-78
	PATTERN USING SATELLITE IMAGES	
	3.1 Introduction	38
	3.2 Study area description	41
	3.2.1 Climate	43
	3.2.2 Land use/Land cover (LU/LC) pattern	44
	3.3 Data	45
	3.3.1 Satellite data	45
	3.3.2 Air temperature	47
	3.4 Methodology	50
	3.4.1 Atmospheric correction	50
	3.4.2 Creating the water mask	51
	3.4.3 Surface water temperature calculation	52
	3.5 Results	54
	3.5.1 Estimated Water Temperature	54
	3.5.2 Temporal and longitudinal variation of river thermal profile	60
	3.5.3 Relationship between air temperature, LANDSAT-7&8 satellite	72
	calculated temperature	
	3.6 Discussion	74
Chapter 4	IMPACT OF URBAN STRETCH ON THERMAL PATTERN	79-102
	OF RIVER	
	4.1 Introduction	79
	4.2 Data	83
	4.3 Materials and method	84
	4.3.1 portable thermal sensor	85
	4.4 Results	87
	4.4.1 Validation of Estimated Water Temperature	87
	4.4.2 Spatio-temporal Variation of River Thermal Profile	89

Chapter 5 IMPACT OF MINIMAL HUMAN INTERACTION ON	103-124
RIVER THERMAL PATTERN FLUCTUATION	
5.1 Introduction	103
5.2 Data	108
5.2.1 Meteorological datasets	108
5.2.2 Satellite imagery datasets	109
5.3 Methodology adopted for this analysis	110
5.4 Results	111
5.4.1 Statistical representation of river temperature	111
5.4.2 Changing patterns of river temperature for Varanasi stretch	116
5.5 Discussion	121
5.5.1 Analysis of the spatio-temporal change in river temperature	121
5.5.2 Analysis of the river temperature fluctuations due to	123
lockdown imposed in the second COVID-19 wave	
in the summers of 2021	
5.5.3 Special emphasis for the Varanasi stretch	123
Chapter 6 GEOMORPHIC CONTROLS OF LANDSAT-BASED	125-159
THERMAL PATTERNS	
6.1 Introduction	125
6.2 Data	131
6.3 Materials and methods	132
6.3.1 Extraction of flow channel and sandbars from Image Classification	134
6.3.2 Removal of the mixed pixels and Temperature profile extraction	135
6.3.3 Field thermal measures for validating thermal imagery	137
6.3.4 Additional variables	140

6.4 Results	143
6.4.1 Space and time variability of river temperature	143
6.4.2 Spatial thermal pattern variation with river geomorphological	147
parameters	
6.5 Discussion	154
6.5.1 Analysis of the river temperature with geomorphological	154
parameters at some specific regions	
Chapter 7 GLOBAL WARMING IMPACT ON RIVER1	60-195
THERMAL PATTERN IN FUTURE	
7.1 Introduction	160
7.2 Data	167
7.2.1 LANDSAT datasets	167
7.2.2 ERA 5 datasets	168
7.2.3 Visible Infrared Imaging Radiometer Suite (VIIRS)	168
Day/Night Band (DNB) datasets	
7.2.4 In-situ datasets	169
7.3 Methodology adopted for this work	169
7.3.1 Air temperature calculation using ERA 5 Datasets	169
7.3.2 Future prediction of parameters	170
7.4 Results	177
7.4.1 Statistics for the in-situ measurements and satellite data validation	177
7.4.2 Air temperature pattern and future trend	179
7.4.3 LSTM model validation and the future trend prediction	182
7.5 Discussion	192
7.5.1 Analysis of the elevated river temperature in the study stretch	192
7.5.2 Impact of global warming on river Ganga and over the Ganga basi	n 194

Chapter 8 FINDING AND CONCLUSION	196-213
8.1 Introduction	196
8.2 Specific conclusion of each objective	197
8.2.1 Conclusion of the objective achieved in Chapter 3	197
8.2.2 Conclusion of the objective achieved in Chapter 4	198
8.2.3 Conclusion of the objective achieved in Chapter 5	199
8.2.4 Conclusion of the objective achieved in Chapter 6	200
8.2.5 Conclusion of the objective achieved in Chapter 7	201
8.3 Findings of this research	203
8.4 Limitations of this research work	210
8.5 Future scope of the work	211
8.6 Summary of the research work and the final conclusion	212
REFERENCES	214-239
APPENDICES	240-250

LIST OF FIGURES

Figure. No.	Figure title Pa	age No.
Figure 1.1	Flowchart of the overview for this thesis work	10
Figure 2.1	Geomorphological division and broad category of the land use pattern in	n 33
	mid Ganga plain (source: Saha and Sahu, 2016)	
Figure 2.2	Contribution of different orders (Source: Dwivedi et al., 2016)	36
Figure 3.1	Location of the studied reach between Mirzapur and Ghazipur in the	42
Eigura 2.2	Dereentees distribution of each LU/LC tune (source: Bale et al. 2021)	15
Figure 3.2	Flowshart of the methodology for temperature estimation from L8	4J
Figure 5.5	Flowchart of the methodology for temperature estimation from L8	51
Figure 3.4	Sampling point for Ghazipur (LANDSAT-/ overpass;	56
Figure 3.5	Sampling point for Varanasi (LANDSAT-7 overpass;	56
	date 20th May, 2017)	
Figure 3.6	Sampling point for Ghazipur (LANDSAT-8 overpass;	57
	date 24th January, 2018)	
Figure 3.7	Sampling point for Varanasi (LANDSAT-8 overpass;	57
	date 8th February, 2018)	
Figure 3.8	Field photographs while doing the in-situ sampling	58
Figure 3.9	Regression plot for the LANDSAT-7 and in-situ temperature	59
Figure 3.10	Regression plot for the LANDSAT-8 and in-situ temperature	60
Figure 3.11	Temporal thermal box plot for the month of February for	62
	LANDSAT-7 and LANDSAT-8	
Figure 3.12	Temporal thermal box plot for the month of May-June for	63
	LANDSAT-7 and LANDSAT-8	

Figure 3.13	Temporal thermal box plot for the month of October-November	63
	for LANDSAT-7 and LANDSAT-8	
Figure 3.14	Spatial thermal profile for May 2013	64
Figure 3.15	Spatial thermal profile for November 2013	64
Figure 3.16	Spatial thermal profile for February 2015	65
Figure 3.17	Spatial thermal profile for May 2015	65
Figure 3.18	Spatial thermal profile for October 2015	65
Figure 3.19	Spatial thermal profile for February 2017	66
Figure 3.20	Spatial thermal profile for May 2017	66
Figure 3.21	Spatial thermal profile for October 2017	66
Figure 3.22	Spatial thermal profile for February 2018	67
Figure 3.23	Spatial thermal profile for October 2018	67
Figure 3.24	Spatial thermal profile for May 2013	68
Figure 3.25	Spatial thermal profile for October 2013	68
Figure 3.26	Spatial thermal profile for February 2015	69
Figure 3.27	Spatial thermal profile for June 2015	69
Figure 3.28	Spatial thermal profile for November 2015	69
Figure 3.29	Spatial thermal profile for February 2017	70
Figure 3.30	Spatial thermal profile for June 2017	70
Figure 3.31	Spatial thermal profile for November 2017	70
Figure 3.32	Spatial thermal profile for February 2018	71
Figure 3.33	Spatial thermal profile for May 2018	71
Figure 3.34	Spatial thermal profile for October 2018	71
Figure 3.35	Season-wise median air temp and surface water temp for L-8 datasets	73
Figure 3.36	Season-wise median air temp and surface water temp for L-7 datasets	73

Figure 3.37	Thermal and RGB image of a LANDSAT-7 scene;	75
	Ghazipur situated in the non-scan line region	
Figure 3.38	Thermal and RGB image of a LANDSAT-8 scene	76
Figure 4.1	Location map showing the confluence points	82
Figure 4.2	Flowchart of the work	84
Figure 4.3	Functional block diagram of the sensor system set-up	86
Figure 4.4	Portable sensor system set up	86
Figure 4.5	Correlation graph between the temperature observed from the	88
	portable thermal sensor and satellite-derived temperature	
Figure 4.6	Map of the in-situ temperature measurement point	89
Figure 4.7	Spatial distribution of river thermal profile	90-91
Figure 4.8	February 2019 image depicting confluence point variation	92
Figure 4.9	November 2018 image depicting confluence point variation	92
Figure 4.10	Temporal temperature profile graph for Confluence Point 1	98
Figure 4.11	Temporal temperature profile graph for Confluence Point 2	98
Figure 4.12	Temporal temperature profile graph for Confluence Point 3	99
Figure 5.1	Geolocation map of the study area from Mirzapur to Ghazipur.	107
	The blue vector represent the river and red patches illustrates	
	the river stretch considered for this analysis	
Figure 5.2	Flowchart of the work procedure	110
Figure 5.3	Box plot representation for river temperature in the	112
	Ghazipur stretch	
Figure 5.4	Box plot representation for river temperature in the	113
	Varanasi stretch	
Figure 5.5	Box plot representation for river temperature in the	113
	Mirzapur stretch	

Figure 5.6	Box plot representation of the river temperature	114
	for the analysis of the second wave COVID-19	
	lockdown effect in Ghazipur region	
Figure 5.7	Box plot representation of the river temperature	115
	for the analysis of the second wave COVID-19	
	lockdown effect in Varanasi region	
Figure 5.8	Box plot representation of the river temperature	115
	for the analysis of the second wave COVID-19	
	lockdown effect in Mirzapur region	
Figure 5.9	River temperature variation for the Varanasi	117
	stretch during the time-period of	
	February 2019 and February 2020	
Figure 5.10	River temperature variation for the Varanasi	117
	stretch during the time-period of May 2019 and May 2020	
Figure 5.11	River temperature variation for the Varanasi	118
	stretch during the time-period of	
	November 2019 and October 2020	
Figure 5.12	River temperature (° C) variation for the	119
	Varanasi stretch using LANDSAT-8 datasets during the	
	time period of (a) May 2019, (b) May 2020, (c) and (d) May 2021	
Figure 6.1	Location map showing the study region	130
Figure 6.2	Flowchart of the methodology adopted for the work	133
Figure 6.3	Extraction of pure water pixels	135
Figure 6.4	Pure water pixel inclusion and rejection scenarios	137
	for a small stretch of the study area	
Figure 6.5	Scatterplot linking observed water temperature and	138
	LANDSAT image water temperature	
Figure 6.6	Field sampling values for 25 th December 2018	139

Figure 6.7	Field sampling values for 10 th January 2019	139
Figure 6.8	Field sampling values for 11 th February 2019	140
Figure 6.9	River stage value (obtained from Prayagraj CWC station)	141
Figure 6.10	Narrow and wide cross section chosen within the study	142
	reach for measuring river velocity	
Figure 6.11	(A) Thermal Profile of river Ganga of a sub-reach within the study zone	144
Figure 6.11	(B) Thermal Profile for Feb and June 2014	145
Figure 6.12	Variation of temperature at reach-scale for the different study dates	146
	[Horizontal dark lines inside the boxes indicate median values.	
	The width of the boxes indicates the distribution of the temperature	
	corresponding to the interquartile range (Q3(75%)- Q1(25%))].	
	Graph (a) is for February month and (b) for May 2018 and June months	5
Figure 6.13	Graphical representation of parameters for February 2015	148
Figure 6.14	Graphical representation of parameters for June 2015	149
Figure 6.15	Graphical representation of parameters for February 2016	150
Figure 6.16	Graphical representation of parameters for June 2016	151
Figure 6.17	Graphical representation of parameters for February 2017	152
Figure 6.18	Graphical representation of parameters for June 2017	153
Figure 6.19	Field sampling values for 5 th April 2021	157
Figure 6.20	Field sampling values for 7 th April 2021	158
Figure 6.21	Field sampling values for 15 th April 2021	158
Figure 6.22	On-field photographs while doing the in-situ sampling in April 2021	159
Figure 7.1	Geo-location map of the region for which the work has been done	166
Figure 7.2	Unfolding structure of RNN	173
Figure 7.3	LSTM cell structure	175
Figure 7.4	Scatter plot showing the relation between in-situ	179
	and satellite observed temperature	
Figure 7.5	Sarima model predicted air temperature for the city river stretch	180

Figure 7.6	Prophet model predicted air temperature for the city river stretch	181
Figure 7.7	Sarima model predicted air temperature for the non-city river stretch	181
Figure 7.8	Prophet model predicted air temperature for the non-city river stretch	181
Figure 7.9	Comparison between the model derived and the satellite-derived	183
	datasets for the city stretch river temperature	
Figure 7.10	Comparison between the model derived and the satellite-derived	184
	datasets for the non-city stretch river temperature	
Figure 7.11	Comparison between the model derived and the satellite-derived	185
	datasets for the city nighttime radiance	
Figure 7.12	Comparison between the model derived and the satellite-derived	186
	datasets for the non-city nighttime radiance	
Figure 7.13	LSTM predicted river temperature for the city stretch for the	188
	year (a) 2022 (b) 2025	
Figure 7.14	LSTM predicted river temperature for the non-city stretch for the	189
	year (a) 2022 (b) 2025	
Figure 7.15	LSTM predicted nighttime radiance for the region surrounding the	190
	city river stretch for the year (a) 2022 (b) 2025	
Figure 7.16	LSTM predicted nighttime radiance for the region surrounding	191
	the non-city river stretch for the year (a) 2022 (b) 2025	
Figure 8.1	Flowchart of the methodology	203
Figure 8.2	River stretch for the microbial colony zone(s)	204
	identification	
Figure 8.3	Summertime temperature fluctuations	206
Figure 8.4	Wintertime temperature fluctuations	207
Figure 8.5	Scatter link between microbial colony count and temperature	208
Figure 8.6	Microbial colony count for summer season	209
Figure 8.7	Microbial colony count for winter season	209

LIST OF TABLES

Table. No	. Table title	Page No.
Table 2.1	TIR band of different sensors for quantifying water temperature	29
Table 3.1	Meteorological parameters for LANDSAT 7 images	48
Table 3.2	Meteorological parameters for LANDSAT 8 images	49
Table 3.3	Relationship between Air temp. and L8, L7 satellite	72
	water surface estimated temp.	
Table 4.1	Characteristic of the confluence points	83
Table 4.2	Summary of satellite datasets used	83
Table 4.3	Spatial variation of river temperature	93
Table 4.4	Relative surface water temperature variation for the year 2013	94
Table 4.5	Relative surface water temperature variation for the year 2014	95
Table 4.6	Relative surface water temperature variation for the year 2015	95
Table 4.7	Relative surface water temperature variation for the year 2016	95
Table 4.8	Relative surface water temperature variation for the year 2017	95
Table 4.9	Relative surface water temperature variation for the year 2018	96
Table 4.10	Relative surface water temperature variation for the year 2019	96
Table 4.11	Relative surface water temperature variation for the year 2020	96
Table 5.1	The time period for meteorological data	109
Table 5.2	List of satellite images	109
Table 5.3	Temperature pattern for non-point and point region in Varanasi stretch	120
Table 6.1	Date of acquisition of the median air temperature values for the	131
	whole study stretch and River stage at Prayagraj	
	Hydrological station (CWC station) along with velocity values	
Table 6.2	OA and kappa values of the Classification and Regression Trees for	134
	water and sand bars pixels of the eight studied dates	

Table 7.1	Summary of the Landsat datasets used in this study	168
Table 7.2	VIIRS Satellite image acquisition dates	169
Table 7.3	Descriptive statistical values of in-situ river temperature	178
Table 7.4	RMSPE values showing the efficiency of Prophet and Sarima models	182
Table 7.5	Performance analysis of the LSTM model(s)	187
Table 7.6	p-value of the LSTM model(s) for predicted years	192
Table 8.1	Microbial counts for the selected points	205

PREFACE

Water is the elixir of life. For centuries, the rivers have played a pivotal role in sustaining life on earth. They have been the source of water and several essential nutrients. The river and its ecosystem have been significantly impacted by the stream's water temperature. The temperature pattern of the river has been crucial for understanding the underlying river dynamics. Several factors like river morphology, river-bed structure, flow discharge, and meteorological conditions influence the fluctuations of the river temperature. The river type also affects the temperature change; for example, in braided rivers, the temperature distribution has been highly heterogeneous because of the channel complexity, habitat diversity, and presence of groundwater inputs. The thermal pattern of the river also varies because of anthropogenic activities like agricultural waste and non-point and point-source pollutant discharge from industrial, commercial, and housing sectors.

The proper analysis of the river temperature has been imperative. The conventional methods for temperature measurements have been expensive, labour intensive, and time-consuming. The spatial and temporal heterogeneity of the river temperature makes it difficult for traditional techniques to determine the thermal pattern accurately. Remote sensing technology has been incorporated to mitigate this heterogeneity. The satellite imageries procured from this technology have a large spatial extent and short temporal repetition. Several pieces of information can be deduced from these images by applying algorithms. The satellite images have become very effective in estimating the river thermal variation owing to these advantages.

In this work, the river's thermal pattern fluctuation and a few causative factors for this variation have been analysed using mainly LANDSAT series satellite imageries and field data. The present analysis has been performed on the River Ganga for the Mirzapur-Ghazipur stretch. This stretch has been situated in the mid-Ganga plain region, and it has been the adobe for approximately 80 different varieties of fish. The initial study has been a comparative analysis of the LANDSAT series remote sensing satellite (LANDSAT-7 and LANDSAT-8). The LANDSAT satellite consists of thermal bands having different spatial resolutions (120m for LANDSAT-5, 60m for LANDSAT-7, and 100m for LANSAT-8). The work shows that the LANDSAT-8 satellite datasets have a better correlation with the in-situ datasets than the LANDSAT-7 datasets despite having a poorer resolution than LANDSAT-7. The LANDSAT satellite images have been primarily used for the entire thesis work. The following study has been performed to determine the effects of the incoming polluted waters on the river's thermal pattern. The river thermal pattern has been determined by LANDSAT-8 thermal images. The river temperature near the confluence points of the polluted discharge depicts the higher temperature values as compared to the mid-stream temperature. The relative temperature difference between the confluence points and a selected pristine point has been maximum for the February seasons under consideration. In this work, the advantage of the portable sensor has also been mentioned. The portable sensor setup can be used to better validate the satellite-derived algorithm for thermal analysis. The in-situ temperature can be recorded in accordance with the satellite overpass. The subsequent analysis examines the impact of the approximate zero discharge scenario on the river thermal pattern. This scenario came into existence because of the COVID-19-induced lockdown. There are three cities in the entire study stretch, and the river stretch situated nearby these cities have been selected for this work. The temperature has been measured using LANDSAT-8 satellite imageries for the period of prelockdown, lockdown, and post-lockdown scenarios. This study illustrates that the river temperature has decreased during the lockdown period (May 2020) in the three city stretches. In

the second lockdown (May 2021), the factories have been primarily open, so the waste has been discharged from the factories during this period, increasing the temperature as compared to the previous lockdown scenario. In the next analysis, some of the river geomorphological parameters like sandbar width, active river width, and river depth have been studied in context with river temperature fluctuation. The river temperature has been calculated using the thermal bands of the LANDSAT-8 satellite images for the entire study stretch. The sandbar width has a positive effect on the river temperature. The active river width and river depth negatively influence the river's thermal pattern. Lastly, the effect of global warming on the possible future river temperature scenario has been analysed. The ERA-5 dataset has been used to measure this region's air temperature. The SARIMA and Prophet models have been applied to predict the future trend of air temperature. The LSTM model has been used for the prediction of the future river temperature. The analysis shows that the predicted future temperature of the river will increase more in the noncity stretch than in the city stretch in the predicted future. The sandbar intrusion will have a higher impact on the non-city stretch, enhancing the temperature further. It is inferred from the above discussion that the temperature of a large river fluctuated due to anthropogenic activities, river geomorphology, and global warming.

The present study can be helpful in identifying the suitable area(s) or zone(s) of rich aquatic habitat and their spatio-temporal variation with respect to dynamic river thermal patterns. Identifying such zones can aid environmental policymakers (river scientists and government authorities) in formulating suitable conservation plans for river rejuvenation based on the scientific findings of this research. Further, the effect of global warming must be considered while framing such conservation plans and policies. Besides, the methodology and findings of the present work might be applied successfully to other rivers assimilating the adverse impact of thermal variations.