

CERTIFICATE

It is certified that the work contained in the thesis titled "Composite open web steel girder bridge with RCC deck" by Mr. Abhishek Sharma (Roll No. 16061001), in partial fulfilment of the requirement for award of degree of Doctor of Philosophy at Indian Institute of Technology (B.H.U) Varanasi, is a record of his own work carried out by under my supervision and guidance and that this work has not been submitted elsewhere for a degree. It is further certified that the student has fulfilled all the requirements of Comprehensive, Candidacy and SOTA.

Signature:

(Prof. Krishna Kant Pathak)

Professor Department of Civil Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi (U.P.)-221005

DECLARATION BY THE CANDIDATE

I, Abhishek Sharma (Roll No. 16061001), certify that the work embodied in this thesis is my own bona fide work and carried out by me under the supervision of *Prof. Krishna Kant Pathak* from 2016 to 2021, at the *Department of Civil Engineering*, Indian Institute of Technology, Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not wilfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

an

Signature of Student (Abhishek Sharma)

Date: 27-09-2021 Place: Varanasi

CERTIFICATE BY THE SUPERVISORS

It is certified that the above statement made by the student is correct to the best of our knowledge.

Prof. Krishna Kant Pathak Professor

Signature of Head of Department विमागाध्यक्ष/HEAD जालपद अभिरमंत्रिकी विभाग Department of Civil Engineering भारतीय प्रौद्योगिकी संख्यान (मी.एव.वू.) Indian Institute of^{il}Tecknology, (BHU) वाराणसी-221005/Varanasi-221005

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis:Composite open web steel girder bridge with RCC deckName of the Student:Abhishek Sharma

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the ward of the Doctor of Philosophy.

Date: 27-09-2021 Place: Varanasi

Signature of Student (Abhishek Sharma)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

Acknowledgement

I express my sincere gratitude and indebtedness to my research supervisor *Prof. Krishna Kant Pathak*, Department of Civil Engineering, Indian Institute of Technology (Banaras Hindu University) for his valuable guidance, encouragement and help throughout the tenure of this research work. I am extremely grateful to him for his keen interest in the investigation and the academic help. In course of time, he motivated, inspired and extended the necessary academic help in carrying out my research work. In spite of his busy schedule, he participated in each minute details of my progress of work and shared my pleasures and anxieties as well on the research findings.

I am immensely rejoiced to owe my deep sense of gratitude to Prof. Pramod Kumar Singh, Prof. V. Kumar, Prof. S.B. Dwivedi, Prof. Anil Aggarwal, Prof. S Mandal, Prof. Rajesh Kumar, Dr. P.R. Maiti, Dr. Rosalin Sahoo and Dr. Brind Kumar for their constant encouragement during research work. I am thankful to Prof. Prabhat Kumar Singh Dikshit, Head, Department of Civil Engineering, for giving me all the facility during my research work.

I am thankful to all non-teaching staff members especially lab attendants of structural laboratory of the Department of Civil Engineering for their kind cooperation and inspiration. I wish to express my deep gratitude to all those who have extended their helping hands in various ways during my tenure at Indian Institute of Technology (Banaras Hindu University), Varanasi, India.

Date: 27-09-2021 Place: Varanasi

Abhishek Sharma

TABLE OF CONTENT

Certificate	i
Declaration by the candidate	ii
Copyright transfer certificate	iii
Acknowledgement	iv
Table of Contents	v
List of Figures	viii
List of Tables	xii
Preface	xiii

Chapter 1	INTRODUCTION	Page No.
1.1	General	1
1.2	Analysis of failure of bridges	3
1.3	Composite construction	5
1.4	Scope of present study	8
1.5	Layout and contribution of thesis	9
Chapter 2	LITERATURE REVIEW	11
2.1	General	11
2.2	Brief history of failure of bridges	11
2.3	Significant failure of bridges due to buckling	17
	2.3.1 Brief history of I-35W bridge	17
	2.3.2 Failure of under-construction Chauras bridge	19
2.4	Developments in composite open web steel girder technology	21
2.5	Laboratory experiments for analysis of composite action	25
	2.5.1 Composite open web steel girder bridge	25
	2.5.2 Composite steel and concrete bridge trusses	28
2.6	Composite open web steel girder bridge	31
2.7	Shear connections in composite truss bridges	41
2.8	Behaviour of shear connectors	46
	2.8.1 Mechanism of flexible shear connectors	47
	2.8.2 Longitudinal shear low in solid and open web steel	48

girder bridges

2.9	Codal provisions for shear connectors	49
	2.9.1 Indian code provisions	49
	2.9.2 Canadian code provisions	51
	2.9.3 American code provisions	52
	2.9.4 Euro code provisions	53
2.10	Literature survey	53
Chapter 3	EXPERIMENTAL DETAILS AND RESULTS	55
3.1	Buckling in steel truss bridge	56
3.2	Material tests	58
	3.2.1 Tensile test of 8.0mm x 8.0mm bar	59
	3.2.2 Compression Test	63
3.3	Model design and fabrication	66
	3.3.1 Design of joints	67
	3.3.2 Deign of supports	69
3.4	Load test of non-composite model	71
3.5	Load test of composite model	77
	3.5.1 Model preparation	77
	3.5.2 Design of shear studs	78
	3.5.3 Fabrication of Composite model	81
	3.5.4 Experimental Setup	84
	3.5.5 Composite model test results	86
Chapter 4	NUMERICAL ANALYSIS AND DISCUSSION	97
4.1	Numerical analysis of Models	97
	4.1.1 Non-Composite Models	97
	4.1.2 Composite Model	98
4.2	Effect of shrinkage strain	100
4.3	Discussion	106
	4.3.1 Validation of the STAAD results	106
	4.3.2 Load-deflection relationship	110
	4.3.3 Load carrying capacity	111
	4.3.4 Stiffness	111

	4.3.5 Mode of Failure	112
	4.3.6 Load sharing between steel top chord and the RCC	
	deck slab	112
	4.3.7 Performance of shear studs	114
Chapter 5	NUMERICAL COMPARISON BETWEEN THROUGH TYPE AND DECK TYPE TRUSS BRIDGES WITH	
5.1	COMPOSITE AND NON-COMPOSITE DECKS General	117 117
5.2	Geometrical details of the bridges	118
5.3	Analysis of the bridges	124
	5.3.1 Modelling	124
	5.3.2 Loading	124
5.4	Numerical Comparison of bridges	128
Chapter 6	CONCLUSIONS AND RECOMMENDATIONS	137
6.1	General	137
6.2	Future Scope of Study	141
References		143
Annexure A		149
Annexure B		150
Annexure C		158
Annexure D		161
List of Publications		165

LIST OF FIGURES

Figure No.	Figure Caption	Page No.
Figure 1.1	Typical cross sections of through and deck type bridges	2
Figure 1.2	Failed Chauras Bridge during casting of deck slab	5
Figure 1.3	Composite deck type steel open web girder bridge	7
Figure 2.1	Failure causes and mode of failure leading to collapse	12
Figure 2.2	Distribution of failed bridges in India from 1977 to 2017	14
Figure 2.3	Causes of bridge failure in India	15
Figure 2.4	Component wise failure of bridges in India	16
Figure 2.5	Yearly distribution of failed bridges	16
Figure 2.6	Distribution of failed bridges as per their age	17
Figure 2.7	Failed superstructure of I-35W bridge	18
Figure 2.8	Failed gusset plate at U10 joint	19
Figure 2.9	Failed Chauras bridge during concreting	20
Figure 2.10	Member stresses at the time of the collapse	20
Figure 2.11	Buckled member U13U14	21
Figure 2.12	Truss arrangement and member dimensions for the test model	26
Figure 2.13	Stress-displacement variation or the steel members and	
	Reinforcement	27
Figure 2.14	Load-displacement relation for (a) middle section	
	(b) end section	28
Figure 2.15	Truss arrangement for experimental study	29
Figure 2.16	Stress-strain relation for the materials used	30
Figure 2.17	Comparison of Eurocode 4 results with analytical results	30
Figure 2.18	Simply supported composite truss bridge of span 36m	33
Figure 2.19	General view of the Lully viaduct composite bridge	34
Figure 2.20	Longitudnal view and standard cross-section	35
Figure 2.21	K-shaped joint geometry with shear studs	35
Figure 2.22	Bogibeel bridge	36
Figure 2.23	View of Ulla river viaduct	37
Figure 2.24	Sarutagawa bridge	38
Figure 2.25	Composite construction with prestressing of upper and lower slabs	39
Figure 2.26	Rigid connectors	42
Figure 2.27	Flexible connectors	43

Figure 2.28	Anchorage shear connectors	43
Figure 2.29	Headed shear connectors	44
Figure 2.30	Non-composite and composite beams	46
Figure 2.31	Mechanism of shear force distribution for stud type shear	
	Connector	47
Figure 2.32	Shear flow in shear connectors	48
Figure 2.33	Densification of shear connectors	49
Figure 3.1	Kotibhel bridge (30 m span)	58
Figure 3.2	Mounting of extensioneter and 120 Ω and 350 Ω strain gauges	60
Figure 3.3	Stress-strain curves of 8 mm x 8 mm square bar	62
Figure 3.4	Dimension of sample for compression test	64
Figure 3.5	Test sample (a) Initial (b) Failed	64
Figure 3.6	Stress-strain curve for the compression test	65
Figure 3.7	Stress-strain curves for tension and compression	65
Figure 3.8	Model details (a) Dimensions (b) 3-D view	66
Figure 3.9	Member forces under joint loads P	67
Figure 3.10	Plates and weld dimensions for joint E and D	69
Figure 3.11	Arrangement of the moel above the supports	71
Figure 3.12	(a) Model just beore failure (b) Model after sudden top chord	
	buckling failure	72
Figure 3.13	Strain recorded from strain gauges	73
Figure 3.14	Stress- average recorded strain variation	74
Figure 3.15	Load deflection curves from the two dial gauges attached	
	To the bottom chord of non-composite model	76
Figure 3.16	Average of experimentally observed and analytically	
	Observed vertical deflection for the non-composite model	76
Figure 3.17	Deck slab on 42 m span open web steel girder bridge on	
	Devidhar fold to Bhatwadi-Panchangaon road at Uttrakhand	78
Figure 3.18	Shear studs and deck reinforcement	82
Figure 3.19	Inverted model in the mould for deck slab curing	83
Figure 3.20	Deck slab before and after plastering	83
Figure 3.21	Finished model	84
Figure 3.22	Setup for the composite model test, showing UTM, data logger	
	And mounted strain gauges	85

Figure 3.23	a) 2 number 120-ohm strain gauges mounted on each steel	
	Member at top and bottom chords. (b) 5 number 350-ohm strain	
	gauges at 6.5 cm c/c mounted of the deck slab	86
Figure 3.24	Model (a) before failure (b) after failure due to rupture of	
	the bottom chords	87
Figure 3.25	Bottom chord rupture at failure	88
Figure 3.26	Deck slab top view after failure	88
Figure 3.27	Load (kN) – strain curves for the four strain gauges pasted on	
	the top members (Strain gauge number: 1,3,5,7)	90
Figure 3.28	Load (kN) – strain curves for the four strain gauges pasted on	
	the bottom members (Strain gauge number: 2,4,6,8)	90
Figure 3.29	Deck slab strain profiles at different loadings	92
Figure 3.30	Stress in deck slabs as per STAAD analysis at 3 t load	92
Figure 3.31	Comparison of recorded strain in deck slab and strain as per	
	STAAD analysis	93
Figure 3.32	Average load – strain curves for top and bottom chords, and	
	The deck slab at truss locations	94
Figure 3.33	Load-deflection curves for dial gauges 1 and 2 for the composite	
	Model	95
Figure 3.34	Average experimental deflection for the composite model, and	
	corresponding STAAD deflection	96
Figure 4.1	Variation of vertical deflection as obtained from various grid	
	Sizes of STAAD and experimental deflection	98
Figure 4.2	Meshing of the deck slab	99
Figure 4.3	Vertical deflections of the truss	99
Figure 4.4	Strain Diagram	102
Figure 4.5	Elevation of 30 m span bridge used for analysis	103
Figure 4.6	Stress contour of 30 m span bridge analysed for live load	
	Condition in STAAD.Pro	103
Figure 4.7	Elevation of 42m span bridge	104
Figure 4.8	Deck slab stress under LL alone	104
Figure 4.9	Loading arrangement for fully loaded deck slab	105
Figure 4.10	Strain in the bottom chord	107
Figure 4.11	Strain in the steel top chord	108

Figure 4.12	Deflection of the bridge model	108
Figure 4.13	Variation of deck slab strain	110
Figure 4.14	Load-deflection relationship for composite and non-composite	
	Models	111
Figure 4.15	Load sharing between top chord, bottom chord, reinforcement	
	And concrete deck	114
Figure 4.16	Variation of shear force (kN) in shear studs as per STAAD	115
Figure 5.1	Bridge system (a) Through type bridge (b) Deck type bridge	117
Figure 5.2	Bridge configuration (a) Through type bridge (b) Deck type bridge	120
Figure 5.3	STAAD model for through type and deck type 60 m span bridge	124

LIST OF TABLES

Table No.	Table Caption	Page No.
Table 3.1	Effective length of compression members	57
Table 3.2	Applied loads and recorded strains	61
Table 3.3	Material properties of 8 mm square bar	62
Table 3.4	Strain from the compression test	63
Table 3.5	Strain measured using strain gauges	72
Table 3.6	Vertical deflection of the non-composite model	75
Table 3.7	Shear studs analysis	79
Table 3.8	Spacing and number of studs	81
Table 3.9	Deck concrete cube test results	84
Table 3.10	Classification of strain gauges mounted on members	86
Table 3.11	Load versus recorded strain data for members	89
Table 3.12	Strain recorded in deck slab	91
Table 3.13	Vertical deflection of the composite model	95
Table 5.1	Cross-sections used in modelling of 60 m span bridges	121
Table 5.2	Primary loads	125
Table 5.3	Load for class A vehicle	126
Table 5.4	Calculation of wind load	127
Table 5.5	Member stresses for non-composite deck type bridge	129
Table 5.6	Member stresses for composite deck type bridge	130
Table 5.7	Member stresses for non-composite through type bridge	130
Table 5.8	Member stresses for composite through type bridge	131
Table 5.9	Maximum stresses at member locations for deck type bridges	132
Table 5.10	Maximum stresses at member locations for through type bridges	132
Table 5.11	Deflection obtained from analysis	133

PREFACE

In the past, several steel open web girder bridges have failed during various stages of construction or in-service conditions. Sudden failure or collapse of the bridge is always a catastrophic disaster, as such a type of collapse does not give any precautionary warning. The possibility of a sudden collapse of truss bridges has always been due to the buckling of nonredundant critical compression members. Unlike compression members, tension members do not usually fail suddenly since they experience noticeable elongation and can take stress up to ultimate stress beyond the yield stress. One way to avoid buckling is to provide a composite RCC deck with the compression members. The use of composite RCC decks in steel bridges is now increasing. A detailed experimental study was conducted to ascertain improvements due to composite RCC deck over non-composite bridge model. Deck-type steel bridge models, with and without composite decks were tested in the laboratory up to failure. The failure in the noncomposite model was observed due to buckling of the top chord member at a stress of 234.6 N/mm², whereas for the model with the composite deck it changed to rupture of the bottom chord in tension at a stress of 614.8 N/mm². The failure load and stiffness of the structure also increased significantly due to the composite action. Shear connectors designed as per IRC 22:2015 transferred the shear effectively and the deck slab participated in load sharing. Further, load sharing in the top chord compression member comprising the steel top chord, the concrete in the deck slab, and the reinforcing steel in it, was also explored. It is found that 72.0% of the composite top chord compressive force is taken by the RCC deck, and in the RCC deck, 30.7% force is taken by the reinforcement. Strain variation in deck slab was also recorded using strain gauges. Strain in deck slab over top chord members was observed to be 54% more than the strain in the middle of the deck slab.

In the literature, detailed provisions for the analysis and design of steel and RCC deck composite open web steel girder bridges do not exist. The model on which the experiment is performed is modelled on STAAD Pro. v8i software. The experimental test results are used to validate the STAAD analysis results. Bottom chord strain and mid-span deflection of the composite bridge model as found from the STAAD analysis and the laboratory experiment closely tally with each other. This validates the standard STAAD analysis results. However, in the top chord member, due to shrinkage cracks in the deck slab concrete and deformation in shear connectors, the experimentally recorded strain is higher by about 100% than the STAAD analysis result. Shear force in studs is considerably large near supports and joints as compared to the midsection. Therefore, the design of shear studs may be carried out based on the shear forces in the studs found from the STAAD analysis. Thus it is recommended that STAAD or any other standard finite element analysis software can be used for the analysis and design of the composite bridges.

Moreover, the impact of a composite deck is also studied for through type and deck type truss bridges. In trusses, deck type and through type truss systems are generally provided with various member arrangements. To study the effectiveness of composite deck with through type and deck Type Bridge, analysis of 60.0 m deck type and through type, non-composite and composite bridges are done. The bridges are modelled using STAAD. Pro v8i software with truss members as beam element and deck slab modelled as four nodded plate element. The loading on the bridge is done as per the provisions of IRC 6:2017 and IRC 24:2010. The composite deck decreases vertical stiffness and increases the stiffness of the bridge. The composite deck effectively reduces the horizontal deflections due to lateral seismic and wind loads in both the truss systems. Stresses in the members made composite with the deck slab were also reduced and hence may result in material saving and decreased steel offtake. In the case of composite deck-type bridges due to load sharing by the deck slab, the stresses in the top chord are reduced significantly hence eliminating the chances of buckling. Advantages of

the composite deck are better utilized in deck type bridge system compared to through type bridge system.