
Chapter 2

Materials, Methods, and

Technology Background

2.1 Materials

As discussed in Chapter 1, metal oxides-based semiconductors have been quite pop-

ular in the gas sensing community. Except for other existing gas sensors, metal-oxide

(MOX)-based gas sensors exhibit gas sensing phenomena by changing the electrical

properties of the sensing materials. Such gas sensors are cheaper and provide high

selectivity. In our published works to date, we have used three publicly available

datasets along with one dataset captured in our own department’s laboratory. All

these datasets had been recorded using the gas sensor array consisting of MOX-based

gas sensors. Before discussing these datasets, complete detail of MOX gas sensors

would be beneficial.
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2.1.1 Metal Oxide Semiconductors

In comparison to elemental semiconductors, metal oxide semiconductors show unique

properties due to the disparity of charge carrier transport caused by the interaction

between the metal and oxide orbitals. In metal oxides, the electrons have smaller

effective masses than holes, resulting in high mobility to improve carrier transport.

Thus, such metal oxide semiconductors, e.g., SnO2 and ZnO, represent n-type con-

ductivity. However, p-type conductivity can also be achieved in metal oxides if the

holes have an effective mass significantly smaller than electrons. As we found in the

literature, since 1993, Nickel Oxide (NiO) has been known as the first p-type metal

oxide semiconductor [145]. Besides NiO, Cu2O and CuMO2(M = Al,Ga, orIn)

are also p-type metal oxide semiconductors [146].

2.1.2 Working of MOX Gas Sensors

In MOX gas sensors, the sensing material is printed on the base material of the

device. This arrangement is mounted over a heater used to induce the thermal exci-

tation for sensing material. This heater generates a temperature of several hundred

degrees of Celsius. Thus, being thermally excited, the covalent bonds are broken,

resulting in free electrons in the sensing material. These free electrons flow within

the sensing material and provide a measurable current. However, this phenomenon

occurs when the sensing material is placed in an inert environment.

On the other hand, if the sensing device is placed in the clean air, the present

oxygen is adsorbed on the sensing material. The adsorbed oxygen traps the free

electrons of the sensing material, causing an increase in the resistance of the sensing

material. This phenomenon tries to stop the flow of free electrons. When this device

is exposed to the reducing gases/odors (e.g., methane, propane, etc.), it reacts with
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the adsorbed oxygen on the sensing material. This reaction makes the free electrons

trapped by the adsorbed oxygen accessible again within the sensing material. It

reduces the resistance of sensing material, allowing more flow of electrons resulting in

significant current. This increase in the flow of free electrons is directly proportional

to the concentration of exposed gases/odors.

2.1.3 Responses of MOX Gas Sensors

As we have studied in the last subsection, the change in resistance of the sens-

ing material is directly proportional to the change in concentration of the exposed

gas/odor. To detect the gas, we observe this change in resistance. While detecting

the exposed gas/odor, the observed change in resistance (decrease or increase), de-

pends on the types of conductivity of sensing material (n-type or p-type) and the

nature of exposed gas/odor (reducing or oxidizing). Although, in each case, the

change in resistance is correlated with the concentration of gas/odor. A schematic

response curve for the MOX gas sensor has been shown in Fig. 2.1. The MOX

gas sensors detect the gases/odors by measuring the sensing materials’ electrical

properties (resistance, conductance, etc.).

The characterization of gas sensing uses some salient parameters: sensitiv-

ity, selectivity, response time, recovery time, stability, detection limit, and optimal

working temperature [147]. As shown in Fig. 2.1, the curve between response and

recovery time represents considerable information. The constant part depicts the

approximate steady-state values. Since the inception of MOX gas sensors, only

steady-state responses have been used to classify and quantify the gases for decades.

Also, the steady-state responses are popularly knowns as the gold standard in gas

sensing [86, 148]. However, the approximated steady-state is achieved after a long
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Figure 2.1: Response of a MOX (TGS2610) Gas Sensor for Ethylene at 125 ppm

time, which constrains the use of steady-state responses to classify the gases in the

real-time scenario. This constraint opens the door to using dynamic responses. After

decades, the dynamic responses had come into the picture. Since the dynamic re-

sponses are achieved by sampling the curve from response to recovery time, it results

in high-dimensional data. When the steady-state responses are used, processing the

data with less computational power is possible. But the sampled dynamic responses

contain not only transient responses but also steady-state responses. Such high di-

mensional dataset requires additional pre-processing steps to prepare the data for

classifying gases/odors.

2.1.4 Steady-State and Sampled Dynamic/Transient Responses

Steady-State Response: As indicated by the steady-state response, a static value

is obtained when the gas sensor reaches a steady state. Hence, each gas exposure

at a particular concentration results in a single-valued data point. The gas concen-

tration is varied to obtain a dataset consisting of more steady-state responses for

gas analysis. When instead of a single gas sensor, a gas sensor array is used for gas
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sensing, it provides a steady-state response consisting of data points equal to the

number of gas sensors used in the array. Thus, obtained steady-state responses are

information-rich and better characterize the sensed gas or gases. As shown in Fig.

2.2, for a single gas sensor single steady-state region provides one static value, while

using an array with four gas sensors, we can achieve four steady-state values making

the resulting data vector more comprehensive.

Figure 2.2: Steady-State and Transient Regions of Sensor Array Responses
Captured for Carbon Monoxide and Ethylene

Sampled Dynamic/Transient Response: It has also been shown in Fig. 2.2

that there are two transient regions, one in the response phase and the second

in the recovery phase. Between these transient regions, the steady-state is found.

While using the gas sensor responses for real-time gas classification, there are three

possibilities to collect the datasets:

1. When the transient found in the response phase is sampled.

2. When the responses are sampled, which include transient in the response phase

and static responses.
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3. The complete responses are sampled from transient in the responses phase to

transient in the recovery phase.

Thus obtained datasets are high-dimensional and complex. Also, the consid-

erable duration and high sampling rate can further enlarge the data making it vast

and complicated. While using the traditional way to classify the gases using such

dynamic responses, they can not be applied without proper data pre-processing that

requires additional computational power. Hence, the transient or mixed responses

can be used to classify the gases in a real-time scenario but at the expense of com-

putational power. Also, the dynamic responses have extensive drift compared to the

steady-state responses.

We have used four different datasets obtained from four different array of

MOX gas sensors to demonstrate the presented works in this thesis. Three of them

are publicly available to academic purposes while the fourth was recorded in the

laboratory of our own institutes’s department. Further, these datasets have been

discussed in detail to understand the modality of each dataset.

2.1.5 Dataset-1

This extensive dataset was recorded to study the most challenging drift issue in

gas sensing. It was collected over the span of 36 months for six gases/odors, viz.,

ethanol, ethylene, ammonia, acetone, acetaldehyde, and toluene. A gas sensor array

consisting of sixteen gas sensor elements was used for the purpose mentioned above

under a well-tuned working ambiance. The authors have used an ensemble learning-

based machine learning approach to demonstrate the classification of considered

gases/odors. In this experiment, the authors use four categories of commercially

available Taguchi Gas Sensors, viz., TGS 2600, TGS 2602, TGS 2610, and TGS
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2620. There have been used four gas sensors for each category. The corresponding

gas sensor array was placed in a chamber of 60ml volumetric capacity where the

desired gas/odor was exposed using a gas delivery system to record the responses.

With this system, each response is obtained with sixteen time-series data vectors.

The complete dataset consists of 13910 samples captured over the span of three

years (see Table 2.1). The data acquisition takes 300s to complete measurement

considering the gas injection phase for 100s and the recovery phase for 200s [86].

2.1.6 Dataset-2

This dataset was recorded to study the calibration transfer between gas sensor ar-

rays. Four gases/odors, viz., ethanol, ethylene, carbon monoxide, and methane,

were exposed to five replicas of a gas sensor array consisting of eight gas sensor

elements for data collection. They have applied the master-slave technique to study

the transferability of the calibration models. This dataset was made publicly avail-

able for academic purposes along with the publication of the above hypothesis. This

dataset consists of 640 samples collected over the span of 22 days, exposing four

gases mentioned above at ten different concentration levels to the five replicas of

the considered gas sensor array (see Table 2.2 & Table 2.3). In this experiment,

the authors use four categories of commercially available Taguchi Gas Sensors, viz.,

TGS 2602, TGS 2610, TGS 2611, and TGS 2612. There have been used two gas

sensors for each category at the two different levels of the heater voltage [149].

2.1.7 Dataset-3

This dataset was captured while designing a gas sensing system for bioinspired early

detection. The corresponding system comprises sixteen MOX gas sensor elements
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Table 2.1: Related Content of Dataset-1.

Gas/Odor or
Analyte

Discrete Concentration Doses
Month-Number of Recorded

Samples

Ethanol

10, 20, 25, 30, 40, 50, 60, 70,
75, 80, 90, 100, 110, 120, 125,
130, 140, 150, 160, 170, 175,
180, 190, 200, 210, 220, 225,
230, 240, 250, 275, 500, 600.

1-84, 2-6, 3-10, 4-82, 9-11, 10-
1, 11-360, 13-5, 14-52, 15-12,
16-28, 19-264, 20-250, 21-649,

23-30, 30-61, 36-600.

Ethylene

10, 20, 25, 30, 35, 40, 50, 60,
70, 75, 90, 100, 110, 120, 125,
130, 140, 150, 160, 170, 175,
180, 190, 200, 210, 220, 225,

230, 240, 250, 275, 300.

1-88, 2-10, 3-140, 4-170, 8-20,
9-4, 11-146, 12-334, 13-10, 14-
43, 16-40, 17-20, 18-3, 19-100,
20-451, 21-662, 23-30, 30-55,

36-600.

Ammonia

50, 60, 70, 75, 80, 90, 100, 110,
120, 125, 130, 140, 150, 160,
170, 175, 180, 190, 200, 210,
220, 225, 230, 240, 250, 260,
270, 275, 280, 290, 300, 350,
400, 450, 500, 600, 700, 750,

800, 900, 950, 1000.

1-76, 2-7, 10-100, 13-216, 15-
12, 16-20, 19-110, 21-360, 22-
25, 23-15, 30-100, 36-600.

Acetone

12, 25, 38, 50, 60, 62, 70, 75,
80, 88, 90, 100, 110, 120, 125,
130, 140, 150, 170, 175, 180,
190, 200, 210, 220, 225, 230,
240, 250, 260, 270, 275, 280,
290, 300, 350, 400, 450, 500,

1000.

2-70, 3-7, 10-525, 13-275, 15-
12, 16-63, 19-140, 20-466, 21-
630, 22-123, 23-20, 24-28, 30-

50, 36-600.

Acet-
aldehyde

5, 10, 13, 20, 25, 30, 35, 40, 45,
50, 60, 70, 75, 80, 90, 100, 120,
125, 130, 140, 150, 160, 170,
175, 180, 190, 200, 210, 220,
225, 230, 240, 250, 275, 300,

500.

2-30, 4-4, 10-105, 12-192, 13-
48, 14-18, 15-12, 16-46, 19-29,
21-744, 22-15, 23-18, 24-25, 30-

50, 36-600.

Toluene
10, 15, 20, 25, 30, 35, 40, 45,
50, 55, 60, 65, 70, 75, 80, 85,

90, 95, 100.

2-74, 4-5, 19-9, 20-458, 21-568,
23-18, 24-1, 30-100, 36-600.

and had been tested using two gases/odors, viz., ethanol, acetone, and their binary

mixture for the proposed hypothesis. This dataset was made publicly available for

academic purposes along with the publication of the above experimentation. This

dataset consists of 58 samples captured while exposing the gases/odors mentioned



Chapter 2. Materials, Methods, and Technology Background 41

Table 2.2: Related Content of Dataset-2 (1/2).

Gas/Odor or
Analyte

Discrete Concentration Doses
Number of Recorded

Samples

Ethanol
12.5, 25.0, 37.5, 50.0, 62.5, 75.0, 87.5,

100.0, 112.5, 125.0
160

Ethylene
12.5, 25.0, 37.5, 50.0, 62.5, 75.0, 87.5,

100.0, 112.5, 125.0
160

Carbon
Monoxide

25.0, 50.0, 75.0, 100.0, 125.0, 150.0,
175.0, 200.0, 225.0, 250.0

160

Methane
25.0, 50.0, 75.0, 100.0, 125.0, 150.0,

175.0, 200.0, 225.0, 250.0
160

Table 2.3: Related Content of Dataset-2 (2/2).

Days for Testing the Gas Sensor Array Replica
(Within Duration of 22 Days)

Replica Number

4th, 10th, 15th, 21st 1
1st, 7th, 11th, 16st 2
2nd, 8th, 14th, 17st 3

3rd, 9th 4
18th, 22nd 5

above and their binary mixture at different concentration levels. In this experiment,

the authors use five categories of commercially available Taguchi Gas Sensors, viz.,

TGS 2600, TGS 2602, TGS 2610, TGS 2611, and TGS 2620. There have been used

2 (R4, R16), 2 (R3, R11), 8 (R1, R2, R5, R7, R9, R13, R14, R15), 2 (R6, R12),

and 2 (R8, R10) gas sensors for the respective categories at the two different voltage

levels and load resistors [150].

2.1.8 Dataset-4

This dataset was captured using an integrated gas sensor array of four gas sensing

elements. It was fabricated using thick-film technology and aimed to study the sen-

sitivity and response time. The sensing elements mentioned above were fabricated

on a base material of tin oxide using the doping of cadmium sulfide, molybdenum
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oxide, and zinc oxide. The fourth one was used as undoped tin oxide. The sensor

characteristics were acquired using this integrated gas sensor array which was ex-

posed to four gases/odors, acetone, carbon tetrachloride, ethyl methyl ketone, and

xylene [151]. This dataset consists of two sets having 42 and 16 samples, respec-

tively. The extraction of these samples is elaborated by Rajput et al. (2010) lucidly

[152].

2.2 Methods

The data analytics for classifying and quantifying the gases/odors employ various

pattern recognition techniques. However, several traditional pattern recognition

techniques are promising in specific applications dealing with discriminating and

estimating gases/odors. But the dominance of neural networks is still sustained for

each task at hand in the context of gas sensor response analysis due to their diverse

suitability. Moreover, neural networks have few limitations compared to their peers

for the same purposes.

2.2.1 Artificial Neural Networks (ANN)

Artificial Neural Networks (ANNs) are the traditional ones that use only fully

connected layers or dense layers. These layers require input in the form of one-

dimensional vectors. Due to full connection, these layers generate huge trainable

parameters, which make the computational process sluggish. Moreover, such net-

works learn only linear variance-based salient discriminable features inherently con-

fined in the 1D vectors. A typical ANN for classifying the gases/odors has been

shown in Fig. 2.3. Each node in the input layer represents the response vector
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obtained through the gas sensor array. At the same time, each node in the output

layer results in a probability estimate corresponding to the target. For the final

classification of the input vector, the target with the highest probability estimate is

considered the desired target. As shown in Fig. 2.3, the layer between input and

output is popularly known as the hidden layer, which may be used in numbers as

desired but results in the complex architecture. Each hidden layer node represents a

mathematical function called “perceptron.” Hence, each fully connected layer (hid-

den layer) is a parallel arrangement of perceptrons. Thereby, ANNs are also called

multilayer perceptron (MLP) networks. A schematic diagram of a perceptron is

shown in Fig. 2.4.

Figure 2.3: A General Architecture of Artificial Neural Network

Except for input and output value, a perceptron or neuron or the unit cell

of neural networks has three parameters: Weight, Bias, and Activation Function.

Weight is the parameter of amplification or attenuation to the input value. Each

weight corresponding to the inputs is generated randomly following some stochastic

process. With these weights, the weighted sum of the inputs is used as the input to

a bounded input bounded output (BIBO) Activation Function that provides the
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Figure 2.4: Perceptron Architecture

final output of the perceptron. Activation functions are used to learn the nonlin-

ear relationship between the input and output. However, no activation function is

ideal to use for every problem. It must have some properties according to the task.

Consider the case when all inputs become zero due to some noise effect or other

inconvenience; consequently, the weighted sum also becomes zero. Several activa-

tion functions cannot be defined explicitly for zero input value in such cases. An

offset value (constant) is added to the weighted sum to avoid the situation when an

activation function gets zero input value. This value is popularly known as the Bias

and is typically taken 1 (by default). Several activation functions are frequently

used by researchers, which are as follows:

One of the primitive activation functions is a linear function. Because of its

constant gradient, it is independent of inputs and cannot utilize the updated weights

and biases to improve the performance. Thus, it is not suitable to use in hidden

layers. However, many single-layered ANNs perform satisfactorily by using it as an
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activation function. Usually, the linear activation functions are used in output layers

where the continuous outputs are estimated. The most widely used activation func-

tion is sigmoid. It has several advantages due to being continuously differentiable

and one of the non-linear functions. But it has the problem of vanishing gradient.

Also, the range of sigmoid functions is [0,1], which is not centered on the origin.

Due to its asymmetric nature, it can only provide positive values. In contrast to

these issues, it is frequently used in output layers for binary classification problems.

Moreover, the hyperbolic tangent (tanh) is also a significant activation function that

resolves the asymmetricity issue in the sigmoid activation function. It ranges from -1

to +1 and is centered on the origin. This property makes it suitable for optimization

and is frequently used in hidden layers. Although, it also faces vanishing gradient

issues. The most widely used activation function for hidden layers is rectified linear

units (ReLU). It is computationally efficient compared to the discussed activation

functions. As mentioned earlier, the sigmoid function is used as the output acti-

vation function for binary classification; a quite similar activation function is the

softmax activation function, which is essentially used as the output activation func-

tion for multiclass classification problems. It generates the probability estimates for

each input corresponding to each target. Furthermore, various modifications of some

of these activation functions also exist in the literature to overcome the limitations

of discussed activation functions.

2.2.2 ANN Compatibility with Array Response Modalities

As discussed earlier, if the input data vectors are obtained using the steady-state

responses, each vector consists of data points equal to the number of gas sensors used

in the array. Typically, a gas sensor array may have 4 to 16 gas sensors, as observed

by reviewing the literature. However, no thumb rule is existed in the literature to
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use an optimal number of gas sensors in the array. With this fact, if a gas sensor

array has four gas sensors results in input data vectors having only four data points.

These small data vectors require a simple ANN to classify the target gases/odors.

On the other hand, while using the transient responses, the resulted input data

vectors have huge sizes depending on the sampling rate and duration. Such data

vectors are significantly correlated and cannot be recommended to use directly to

save computational power and time. Because processing the raw input data vectors

as it is, requires a highly complex ANN architecture. Also, raw input data vectors

may overfit the training model. Several pre-processing methods are applied to raw

data vectors in such cases for various purposes: dimensionality reduction, feature

selection, feature extraction, etc.

With the evolution of convolution and pooling layers, ANNs transformed into

the new paradigm called deep neural networks (DNNs). In neural networks, the

word “deep” used for two different inferences: firstly, for indicating more than two

hidden layers in ANNs; and secondly, for demonstrating the use of convolutional and

pooling layers. The ANNs involving convolution and pooling layers are popularly

known as convolutional neural networks (CNNs). The CNNs have set a benchmark

in the field of neural networks. They are worldwide famous for image classification

problems. The forthcoming section discusses how the researchers have started to

use CNNs in the field of gas sensing. Also, we have discussed our motivation to use

CNNs for gas sensing in a novel way that has never been used before.

2.3 Technology Background

Except for CNNs, traditional pattern recognition techniques, including ANNs, re-

quire 1D data vectors for classifying the targets. Moreover, for providing better
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performance, these are highly dependent on the handcrafted (manually extracted)

features. These features subsequently face the problem of feature selection or fea-

ture ranking. Determining relevant features also adds a computational burden to

accomplishing the task at hand. A CNN is a panacea for all such problems where

the extraction of features is handled manually. CNN’s capability of automatically

extracting high-level features makes it a superperformer. As quoted earlier, it is

a well-known worldwide technique that got attention from the image classification

tasks. An image is a 2D structure (binary and grayscale images) or a 3D structure

(color, multispectral, and hyperspectral images) of the data. For example, a pioneer

CNN has been used to classify the MNIST data [153] which consists of grayscale

images of handwritten digits. On the other hand, CNN has been utilized to classify

Hyperspectral Images [154].

The pioneered CNN is also called a 2D-CNN due to its two-dimensional op-

erationality for convolution and pooling operation. However, using the contextual

outlines, its one-dimensional and three-dimensional forms developed later. Fur-

thermore, every version of CNN has significance depending on the application, but

2D-CNNs have been more frequently customized to utilize their importance in di-

verse areas. For illustration, the first use of a 2D-CNN in the gas sensing area was

published in 2017, and the related works in the gas sensing area witness that 2D-

CNNs have been efficiently used for various purposes. Before discussing the use of

a 2D-CNN for gas sensing, it would be worth detailing a general architecture of a

2D-CNN first.
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2.3.1 A General Architecture of 2D-CNN

Originally, CNNs were designed to extract the salient features from the 2D input

vectors while dealing with classification problems. They are specialized architectures

of neural networks. Compared to traditional neural networks CNNs are computa-

tionally efficient. The general and most straightforward architecture of 2D-CNN has

been shown in Fig 2.5. It has two specialized components in the form of convolution

and pooling layers, making it different from traditional architectures.

Figure 2.5: A Simplest Architecture of 2D-CNN

The convolution layer plays a role in implementing certain operations to ex-

tract the features similar to perceptron in ANNs. In convolution operation, a filter or

kernel (a set of weights) operates on the input data covering all corresponding recep-

tive fields to generate the respective feature maps. A schematic diagram performing

a 2D convolution operation is shown in Fig. 2.6.

While working on images, the receptive fields are highly correlated. Therefore

pooling layers are used to down-sample the resulting feature maps, which reduces

the dimensionality and thereby the trainable parameter. In this way, pooling lay-

ers make the architecture computationally efficient. Pooling is performed to keep
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Figure 2.6: 2D Convolution Operation

the maximum, average, and minimum values of the pooled window. A schematic

diagram performing a 2D max-pooling operation is shown in Fig. 2.7.

Figure 2.7: 2D Max-Pooling Operation

2.3.2 Motivation for Using 2D-CNN for Gas Classification

As evident from the discussion done till now, 2D-CNN was developed to be operated

on 2D data structures (especially images). With the evolution to date, 2D-CNN is

applied to images in two styles. In the first case, a whole image is used as the input;

in the second case, a group of pixels (patch) is used as the input. For illustration,

see Fig. 2.8.

Using the second case, we have used 2D-CNN in various works, which have

been published outside the scope of the thesis presented [155–158]. In these works,
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Figure 2.8: 2D-CNN for Image Classification

a group of pixels (patch) is used as the input to classify the targets. These small

patches are squared 2D data structures and have shapes such as (5 × 5), (7 × 7),

(9× 9), and so on [154]. We have inferred from here that a minor patch having size

(5 × 5) can be used as the input to the 2D-CNN. As quoted earlier, a gas sensor

array typically has 4 to 16 gas sensor elements, resulting in 4 to 16 data points

for each sample recorded for each observation. Thus, the obtained response vectors

can be represented in 2D-squared structures having shapes ranging from (2× 2) to

(4 × 4). With this size, our response vectors are still incompatible with the 2D-

CNN. To overcome this constraint, we have successfully proposed specialized data

transformation techniques. However, 2D-CNNs have already been applied to gas

sensing since 2017. But authors/researchers have used highly complex architectures

for gas sensing. Such highly complex architectures are worth using while working

with actual image datasets. In contrast, in gas sensing, the data is transformed to

represent in a 2D format to mimic the actual image synthetically. Also, the found 2D-

CNNs for gas classification to date can be applied to only dynamic responses; they
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fail when only the steady-state responses are available to classify the gases/odors.

We have also overcome this constraint.

2.4 Conclusion

In the gas sensing area, a variety of technology is available to design the gas sensor

depending on several gas detection principles. Broadly, the researchers have cate-

gorized the gas sensors into two types. Out of those, one kind of gas sensor detects

the gases based on the variation in electrical properties of the sensing materials, and

another kind of gas sensor utilizes non-electrical properties for gas sensing. How-

ever, MOX gas sensors that fall under the first category are much more prevalent

in the gas sensing research community. It doesn’t mean that the MOX gas sensors

serve accurately everywhere. The MOX gas sensors have several merits: low cost,

fast response, long lifetime, suitable for miniaturization, etc. Also, it has several

demerits: poor selectivity, drifted responses, highly dependent on temperature and

humidity, etc. But the synergy of MOX gas sensor-based array and advanced pattern

recognition techniques are setting benchmarks in the areas of gas sensing. Almost

all pattern recognition techniques have been used to classify the gases/odors using

responses obtained from MOX gas sensors. However, neural networks have played a

dominant role for decades. Traditionally, ANNs are used to classify the gases/odors,

but such networks have only fully-connected layers, which provide considerable pa-

rameters to train the network. The evolution of advanced layers for convolution

and pooling made the neural networks less complex. These layers offer parameter

sharing and sparse connections to the traditional architectures. Moreover, ANNs are

applied to manually processed data for feature enhancement. But the convolutional
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neural networks that use the convolution and pooling layers can extract high-level

features automatically to provide outperforming results.

With this inference, we have customized the convolutional neural networks

well-known for image classification for gas sensing. Since gas sensor responses are

inherently available in 1D vectors, we have proposed specialized data transforma-

tion techniques that make the gas sensor responses compatible with 2D-CNN. Also,

we have developed a simpler 2D-CNN capable of discriminating gases/odors using

the gas sensor array’s dynamic and static responses. In the customized CNN, we

do not use pooling layers since they necessarily serve the purpose only while using

the CNNs for image classification. However, pooling layers may utilize their sig-

nificance for highly complex and highly correlated non-imaging datasets. With our

customized CNN, we have novely contribute for application of CNN for classifica-

tion of gases/odors independent of gas sensor array responses modalities. Also, we

have propose the optimization approach for gas sensor nodes suitable for resource-

constraint environment. Moreover, we have devised a hybrid CNN architecture that

can compensate the drift effects without using additional statistical algorithm for

drift correction.
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