FIGURES

27
54
56
57
58
60
61
62
63
69
71
72
73
74
75
76
, ,
78
79
,,
80
81
JI
83

Fig. 3.13: SEM-EDAX analysis of head sample (A) and residues in 60	84
min (B), 120 min (C) and 240 min (D) leaching with 1 M H ₂ SO ₄ at 368	
K and 50% PD Fig. 2.14. Effect of NeUSO, concentration on the leaching of metals	06
Fig. 3.14: Effect of NaHSO ₃ concentration on the leaching of metals	86
from cathodic powder in 1 M H ₂ SO ₄ at 368 K and 20 g/L pulp density in	
240 min.	07
Fig. 3.15: Effect of time on the leaching of metals using 1 M H ₂ SO ₄ and	87
0.075 M NaHSO ₃ at 368 K and 20 g/L pulp density.	00
Fig. 3.16: Effect of pulp density on the leaching of cathode active	89
material using 1 M H_2SO_4 and 0.075 M NaHSO ₃ at 368 K in 240 min.	0.0
Fig. 3.17: Effect of temperature on the leaching of metals from the	89
cathode material using 1 M H ₂ SO ₄ and 0.075 M NaHSO ₃ in 240 min at	
20 g/L pulp density.	0.1
Fig. 3.18: Effect of temperature on the recovery of different metals from	91
LIBs at different time intervals	0.2
Fig. 3.19: Chemical controlled kinetic model for the leaching of metals	93
(a- Li, b-Co, c-Ni, d-Mn) by NaHSO ₃ -H ₂ SO ₄ in temperature range (308-	
368 K)	0.4
Fig. 3.20: Diffusion controlled kinetic model for the leaching of metals	94
(a- Li, b-Co, c-Ni, d-Mn) by NaHSO ₃ -H ₂ SO ₄ in temperature range (308-	
368 K)	0.5
Fig. 3.21: Empirical model for the leaching of metals (a- Li, b-Co, c-Ni,	95
d-Mn) by NaHSO ₃ -H ₂ SO ₄ in temperature range (308-368 K)	0.6
Fig. 3.22: Arrhenius plot for the leaching of the metals from LIBs in the	96
temperature range 308-368 K	
Fig. 3.23: SEM-EDAX analysis of residue at 240 min with mapping of	97
constituent elements	
Fig. 3.24: Effect of concentration of H_2O_2 on leaching of Li, Co, Ni and	99
Mn from cathode active material using 1M H ₂ SO ₄ , 20 g/L pulp density	
at 368 K in 240 min	
Fig.3.25: Eh-pH diagrams (368 K) for H_2O_2 system: (a) Li-SO ₄ , (b) Co-	101
SO ₄ , (c) Mn-SO ₄ , (d) Ni-SO ₄ , in presence of other elements	
Fig. 3.26: Effect of pulp density on the leaching of metals using 1 M	102
H ₂ SO ₄ and 5% H ₂ O ₂ at 368 K in 240 min.	
Fig. 3.27: Effect of time on the leaching of metals using 1 M H ₂ SO ₄ and	103
5% H ₂ O ₂ at 368 K and 50 g/L pulp density.	
Fig. 3.28 Effect of temperature on leaching of metals in the presence of	104
H ₂ O ₂ as the reductant at 50 g/L pulp density and 1 M H ₂ SO ₄ in 240 min.	
Fig. 3.29: Empirical model in leaching of metals (a- Li, b-Co, c-Ni, d-	105
Mn) by H_2O_2 - H_2SO_4 in temperature range (308-368 K)	

Fig. 3.30: Arrhenius plot for the leaching of Li, Co, Ni and Mn from cathode active material of LIBs at 368 K in presence of H ₂ O ₂	106
Fig. 3.31: XRD analysis of residue after treatment of spent cathode	107
powder in 1 M H_2SO_4 and 5% H_2O_2 in (a) 1 h, (b) 2 h at 368 K and 50	107
g/L pulp density	
Fig. 3.32: SEM-EDAX of leach residue with H_2O_2 in (a) 60 min, (b) 120	108
min at optimized conditions	
Fig. 3.33: Effect of amount of sulfuric acid during baking on the	110
recovery of metals during leaching at 25% PD, 95 °C in 120 min.	
Fig. 3.34: Effect of baking temperature on the recovery of metals during	111
leaching at 25% PD, 95 °C in 120 min.	
Fig. 3.35: Effect of baking duration on the recovery of metals during	113
leaching at 25% PD, 95 °C in 120 min.	
Fig. 3.36: Effect of leaching temperature on the recovery of metals by	115
water leaching of baked cathode active material in 60 min and 25% PD.	
Fig. 3.37 Effect of pulp density on the recovery of metals by water	116
leaching of baked cathode active material in 60 min and 75 °C.	
Fig. 3.38: Effect of time on the recovery of metals water leaching of	117
baked cathode active material at 75 °C. 25% PD	
Fig. 3.39: Effect of addition of glucose on 2 nd stage leaching of leach-I	120
residue	
Fig. 3.40: Effect of temperature on 2 nd stage leaching of leach-I residue	122
using 1 M $H_2SO_4 + 0.5$ M HNO ₃ and 2 % glucose.	
Fig. 3.41: Effect of time on 2 nd stage leaching of leach-I residue using 1	123
M $H_2SO_4 + 0.5$ M HNO ₃ and 2 % glucose.	
Fig. 3.42: Effect of pulp density on 2 nd stage leaching of leach-I residue	124
using 1 M $H_2SO_4 + 0.5$ M HNO ₃ and 2 % glucose.	106
Fig. 3.43: XRD phase analysis of (a) baked cathode material; (b) 1 st	126
stage water leached residue; (c) 2 nd stage acid leached residue in 60 min	
at 50 °C; (d) 2 nd stage acid leached residue in 120 min at 50 °C.	127
Fig. 3.44: SEM-EDAX analysis of untreated (a) and baked (b) cathode	127
active material	128
Fig. 3.45: SEM-EDAX analysis of leach-I residue after water leaching of baked material	120
Fig. 3.46: SEM-EDAX analysis of residue obtained after leach-II (2 nd	128
stage leaching) in 60 min	120
Fig. 3.47: Flowsheet of process intensification by acid baking followed	129
by leaching to extract metallic values from LIB cathode materials	14)
Fig. 3.48: Cobalt oxalate synthesized at pH 1.5 using oxalic acid (a-	131
XRD; b-pink precipitate of CoC ₂ O ₄ .2H ₂ O; c-FESEM of tubular rod like	201

PhD Thesis Index of Tables and Figures HYDROMETALLURGICAL PROCESSING OF SPENT BATTERIES FOR THE RECOVERY OF METALLIC VALUES

Co-oxalate; d-EDAX of Co-oxalate)	
Fig. 3.49: Manganese carbonate synthesized at pH 7.5 (a-XRD; b-brown	133
precipitate of MnCO ₃ ; c-FESEM showing microspheres of Mn-	
carbonate; d-EDAX of MnCO ₃)	
Fig. 3.50: Nickel carbonate synthesized at pH 9 (a-XRD; b-light green	134
NiCO ₃ ; c-FESEM of flakes of nickel carbonate; d-EDAX of NiCO ₃	
powder)	
Fig. 3.51: Lithium carbonate synthesized at pH 13-14 (a-XRD; b-	136
picture of Li ₂ CO ₃ ; c-FESEM of agglomerates of Li-carbonate; d-EDAX	
of Li ₂ CO ₃)	
Fig. 3.52: A general flow-sheet developed for extraction and	137
precipitation of Li, Mn, Ni and Co from waste lithium ion batteries	
Fig. 4.1: Effect of acid concentration (a) HCl and (b) H ₂ SO ₄ on the	142
leaching efficiency of spent Ni-MH battery powder	
Fig. 4.2: Effect of time on the leaching efficiency of electrode powder	143
Fig. 4.3: Effect of pulp density on the leaching efficiency of spent Ni-	144
MH battery powder	
Fig. 4.4: Effect of temperature on the leaching efficiency of spent Ni-	145
MH battery powder	
Fig. 4.5: Effect of temperature on the leaching efficiency of different	148
metals from electrode powder at different time intervals	
Fig. 4.6: Chemical controlled kinetic model of leaching for (a) nickel (b)	149
cobalt (c) iron (d) manganese and (e) zinc in the temperature range 305-	
348 K.	
Fig. 4.7: Diffusion controlled kinetic model of leaching for (a) nickel (b)	150
cobalt (c) iron (d) manganese and (e) zinc in the temperature range 305-	
348 K.	
Fig. 4.8: Arrhenius plot for the leaching of the metals from electrode	151
powder in the temperature range 305-348 K	
Fig. 4.9: SEM-EDAX analysis of residue at 30 min with the mapping of	152
constituent elements	
Fig. 4.10: SEM-EDAX analysis of the residue at 60 min of leaching	153
with the mapping of constituent elements	
Fig. 4.11: Effect of acid concentration on the leaching of REMs from	156
spent battery powder	
Fig. 4.12: Effect of time on the leaching of metal from the electrode	157
powder of spent batteries.	
Fig. 4.13: Effect of pulp density on the leaching of metals from the spent	157
Ni-MH battery powder.	
Fig. 4.14: Effect of temperature on the leaching of REMs from spent	159

battery powder	
Fig. 4.15: Eh-pH diagram of (a) La-S-H ₂ O system at 298 K, [La] =0.02	160
M; (b) La-S-H ₂ O system at 323 K [La] =0.002 M; (c) Ce-S-H ₂ O system	
at 298 K, [Ce] = 0.031 M; (d) Ce-S-H ₂ O system at 348 K,[Ce] = 0.031 M	
Fig. 4.16: Effect of temperature on the recovery of rare earth metals	161
from NiMH battery powder at different time intervals	
Fig. 4.17: Kinetics of leaching of REs together as a group (a) Effect of	162
temperature (b) Chemical control kinetic model in temperature range	
305-348 K (c) Arrhenius plot	
Fig. 4.18: Chemical controlled kinetic model of leaching of (a) Nd (b)	165
Sm (c) Pr and (d) Ce at different temperatures.	
Fig. 4.19: Arrhenius plot for the leaching of the rare earth metals from	166
Ni-MH in the temperature range 305-348 K.	
Fig. 4.20: XRD of the (a) leach residue at 30 min; (b) leach residue at 60	167
min	
Fig. 4.21: SEM-EDAX of the electrode powder sample (a); residue in 30	168
min (b) and residue in 60 min (c)	
Fig. 4.22: XRD phase analysis of mixed rare earth salts.	170
Fig. 4.23: FESEM image of mixed rare earth precipitates at pH~1.8	170
Fig. 4.24: A general flow-sheet developed for extraction and recovery of	171
base and rare earth metals from the spent nickel metal hydride batteries	
Fig. 4.25: Effect of baking parameters on the recovery of metals in	176
water leaching at 20 g/L PD, 75 °C in 120 min, (a) amount of sulfuric	
acid; (b) baking temperature; (c) baking time on all metals; (d) baking	
time on individual rare earths	
Fig. 4.26: Effect of temperature on leaching of (a) base metals, (b) rare	178
earth metals from baked electrode material with 20 g/L PD in 60 min	
Fig. 4.27: Effect of pulp density on leaching of (a) base metals, (b) rare	179
earth metals from baked electrode material at 75°C in 60 min	
Fig. 4.28: Effect of time on leaching of (a) base metals, (b) rare earth	179
metals from baked electrode material at 75°C, 100 g/L PD in 60 min	
Fig. 4.29: XRD phase analysis of (a) baked electrode material; (b) 1 st	184
stage water leached residue	
Fig. 4.30: SEM-EDAX analysis of untreated electrode material	185
Fig. 4.31: SEM-EDAX analysis of baked electrode material	185
Fig. 4.32: SEM-EDAX analysis of leach-I residue after water leaching	186
of baked material	
Fig. 4.33: SEM-EDAX analysis of residue obtained after leach-II (2 nd	186

stage leaching) in 60 min