Table of Contents

Certificate		ii
Declaration	by the Candidate	iii
Copyright T	ransfer Certificate	iv
Dedication		v
Acknowledg	gement	vi
Table of Co	ntents	vii-xii
List of Figu	res	xiii-xvii
List of Tabl	es	xviii-xix
Preface		XX
Chapter 1	INTRODUCTION	1
1.1	Problem Statement	5
1.2	Objective and Scope	7
1.3	Insight about the Steel Braced Frames	9
	1.3.1 Concentrically braced frames (CBFs)	9
	1.3.2 Eccentrically braced frames (EBF)	10
	1.3.3 Division of braced frames depending on seismic zones	10
	and construction era	
1.4	Literature Review and Literature Gap	13
	1.4.1 Solutions available for the retrofitting/ upgrade of the	14
	existing NCBFs	
	1.4.2 Understanding the behaviour of steel braced frames	16
	1.4.3 Researches done on 'All-Steel BRBs'	20

	1.4.4 Identification of research gap	22
1.5	Layout of the Chapters Following the Introduction	23
	1.5.1 Section 1: Linear Analysis of Braced Frames	23
	1.5.2 Section 2: Non-Linear Analysis of Older Braced Frame	29
	1.5.3 Original Contributions (Chapter 9)	37
	1.5.4 Summary and Conclusions (Chapter 10)	37
Section 1	LINEAR ANALYSIS OF STEEL STRUCTURES	38
Chapter 2	BUCKLING ANALYSIS OF SPACE FRAME USING	39
	EXPERIMENTAL AND NUMERICAL TECHNIQUES	
2.1	Details of the Model	39
2.2	Methodology	40
2.3	Result and Discussion	42
2.4	Concluding Remarks	47
Chapter 3	RENOVATION TECHNIQUE FOR PROMOTION OF	48
	LOADING CLASS OF AN OLD STEEL TRUSS BRIDGE	
3.1	Case Study of the Bridge	48
	3.1.1 History, location, importance and structure	48
	3.1.2 Major issues encountered with the existing bridge	49
	3.1.3 Current status of the bridge	49
	3.1.4 Requirement and deficiencies	50
3.2	Methodology for Renovation	50
3.3	Analysis and Design	52
	3.3.1 Loading considerations and the analysis procedure	52
	3.3.2 Details of strengthening	54
3.4	Results and Discussion	56

	3.4.1. 70R (W) loading check	57
	3.4.2. 40T bogie load check	58
	3.4.3. Class A (with 500 kg/m2 on remaining area, as per IRC-	59
	6) load check	
3.5	Economy	60
3.6	Concluding Remarks	60
Chapter 4	LINEAR BUCKLING ANALYSIS OF BRACED	61
	FRAMES: THE EFFECT OF BRACING LOCATION	
4.1	Modelling and Methodology	61
4.2	Results and Discussion	64
	4.2.1 Effect of location of brace on Pcr value of steel frames	64
	4.2.2 Comparison of fully braced cases with cases of frame	68
	braced with one single brace, for each frame configuration	
	4.2.3 Story-wise variation for a particular number of bays [B1	69
	(S1, S2, S3); B2 (S1, S2, S3); B3 (S1, S2, S3)]	
	4.2.4 Diagonal braces having same slenderness as that of beam	70
	and column	
	4.2.5 Comparison of considered braced frames with braced	71
	chevron (Ch) brace	
	4.2.6 H/V Ratio	74
4.3	Concluding Remarks	75
Chapter 5	LINEAR BUCKLING ANALYSIS OF CHEVRON	76
	BRACED STEEL FRAMES AFTER INCLUDING	
	LINTELS OR THE LINTEL BANDS	
5.1	Methodology	76

5.2	Results and Discussion	78
	5.2.1 Lintel banded frames and X braced frames	78
	5.2.2 Chevron Braced Frames	80
	5.2.3 Chevron braced frames after including strut (St) or lintel	81
	bands (LB)	
	5.2.4 Combination of modified bracing and conventional	83
	bracing at different stories	
5.3	Concluding Remarks	85
Section 2	NON-LINEAR ANALYSIS OF OLDER BRACED	86
	FRAMES	
Chapter 6	USE OF VERTICAL AND DIAGONAL MEMBERS TO	87
	UPGRADE THE STEEL BRACED FRAMES	
6.1	Eccentrically Braced Frames	87
	6.1.1 Methodology and Design Considerations	87
	6.1.2 Results and Discussion	92
6.2	Concentrically Braced Frames	97
	6.2.1 Methodology and Specifications of Specimens	98
	6.2.2 Results and Discussion	99
6.3	Concluding Remarks	106
Chapter 7	TRANSFORMING CHEVRON BRACE	107
	CONFIGURATION INTO A MULTI-LEVEL	
	ECCENTRIC-CHEVRON (MLEC)	
7.1	Theory and Specimen Configuration	107
7.2	Existing Braced Frame Design Considerations	110
7.3	Results and Discussion	112

	7.3.1 Single-bay, single-story chevron CBFs	113
	7.3.2 Single-bay, single-story chevron EBFs	114
	7.3.3 Single-bay, two-story chevron CBFs and EBFs	115
	7.3.4 Hysteretic behaviour	117
	7.3.5 Deformation pattern	117
	7.3.6 Plastic dissipation and total output energy	119
7.4	Concluding Remarks	120
Chapter 8	CONVERSION OF NON-DUCTILE CHEVRON BRACE	121
	INTO STIFFENED-CASING DUAL-SLEEVE	
	BUCKLING RESTRAINED BRACE	
8.1	Methodology	121
8.2	Results and Discussion	127
	8.2.1 BRBF having in-plane deformation of core of BRB	129
	(S1_BRB_ip)	
	8.2.2 BRBF having in-plane deformation of core (having	130
	wide-ends) of BRB (<i>S1_BRB_ipW</i>)	
	8.2.3 BRBF having out-plane deformation of core of BRB	132
	(S1_BRB_int)	
8.3	Some other Important Considerations	134
8.4	Concluding Remarks	135
Chapter 9	ORIGIONAL CONTRIBUTIONS	136
9.1	Introduction	136
9.2	Linear Analysis of Steel Frames	136
9.3	Non-linear Analysis of Older Steel Braced Frames	138

Chapter 10	SUMMARY AND CONCLUSIONS	141
10.1	Section 1: Linear Analysis of Steel Structures	142
	10.1.1 Experimental and numerical buckling analysis of steel	142
	frames	
	10.1. 2 Renovation technique for promotion of the loading	142
	class of an old steel truss bridge	
	10.1. 3 Linear buckling analysis of braced frames under axial	143
	and lateral loadings: the effect of bracing location	
	10.1.4 Linear buckling analysis of chevron braced steel frames	145
	after including lintels or the lintel bands	
10.2	Section 2: Non-Linear Analysis of Older Braced Frames	146
	10.2.1 Use of vertical and diagonal members to upgrade the	146
	steel braced frames	
	10.2.2 Transforming chevron brace configuration into a multi-	148
	level eccentric-chevron (MLEC)	
	10.2.3 Conversion of non-ductile chevron brace into stiffened-	149
	casing dual-sleeve buckling restrained brace	
10.3	Scope for further works	150
References		
Bibliography	,	
Publications in Journals		
Publications in Conference Proceedings		

List of Figures

Figure 1.1 Deformed state of the chevron (Ch) braced frame	2
Figure 1.2 Critical stress vs slenderness ratio (Steel)	3
Figure 1.3 Derivation of classical Euler buckling load, modes	4
Figure 1.4 Buckling of strut for different boundary conditions (IS:800 2007)	5
Figure 1.5 Deformation of concentric (Ch) and eccentric (Che) chevron NCBFs	9
Figure 1.6 Concept of conventional brace (as strut) and BRB	12
Figure 1.7 a) Geometry of the Specimen, b) Experimental Setup	23
Figure 1.8 a) Picture of Bridge, b) moving vehicle load (shown by arrows) in	25
STAAD model	
Figure 1.9 a) Numbering of braces (in Abaqus Model); b) One bay - two stories	27
frame (B1S2) with brace in Br1 location; c) Two bay - two stories frame	
(B2S2) with brace in Br3 location	
Figure 1.10 a) One bay two storied frame with lintel bands, b) X bracing, c)	29
Vertical loading (V) in chevron braced frame with lintel bands and d) Lateral	
loading (H) in eccentric chevron braced frame with lintel	
Figure 1.11 Modified EBF with additional diagonal at central height (h/2)	30
Figure 1.12 Braced frame having added diagonals and verticals	31
Figure 1.13 a) Experimental loading setup b) Numerical and experimental	33
hysteresis loops c) Buckling analysis of X-braced portal frame	
Figure 1.14 a) and b) show deformed concentric and eccentric chevron NCBFs	34
respectively; c) and d) respectively show concentric and eccentric chevron	
braced frame having lintel bands	
Figure 1.15 Analyzed two-story Concentric Chevron braced frame (Ch_S2)	35

Fig. 1.16 Final state of deformation of beams and braces	36
Figure 2.1 Geometry of the frame considered for experimentation (dimensions	40
in mm)	
Figure 2.2 Buckling test experimental setup	41
Figure 2.3 Mode shapes for 12.7 mm buckling bars	42
Figure 2.4 Mode shapes for 8 mm buckling bars	43
Figure 3.1 Picture of the selected steel truss bridge situated in Uttarkashi, India	49
Figure 3.2 Retrofitting of slab to control the vibration	50
Figure 3.3 a) Side elevation and b) front elevation view of the bridge	50
Figure 3.4 Conceptualization of concrete-filled prestressed (CFP) truss bridge	51
Figure 3.5 Moving vehicle load trains (shown by arrows) in STAAD model	52
Figure 3.6 Details of the main structural members	55
Figure 3.7 Details of the intermediate members	56
Figure 4.1 a) Numbering of braces; b) One bay - two stories frame (B1S2) with	62
brace in Br1 location; c) Two bay - two stories frame (B2S2) with brace in	
Br3 location	
Figure 4.2 Types of braces used for comparison	62
Figure 4.3 For B1S2 frame, a) Vertical force V, b) Lateral force H1 and c)	63
Lateral force H2; d) Lateral force H1 for 45° oriented brace corresponds to	
lateral force H2 shown for the 135° oriented brace	
Figure 4.4 Pcr values (lateral loading)	72
Figure 4.5 Pcr values (vertical loading)	72
Figure 5.1 a) One bay two storied frame with lintel bands, b) X bracing, c)	77
Vertical loading in chevron braced frame with lintel bands and d) Lateral	
loading in eccentric chevron braced frame with lintel	

Figure 5.2 Buckling modes of lintel banded steel frames. A) B1S1 frame, B)	79
B1S2 frame, C) B1S5 frame. i) V0, ii) V with LB, iii) H0, iv) H with LB	
Figure 5.3 Bar chart of H/V ratio including chevron braces in the steel frames	81
Figure 5.4 H/H0 and V/V0 ratio of the chevron braced frames	81
Figure 5.5 Case 1(A, B) of Table 5.4. i) and ii) have Ch(c)+LB; iii) and iv) have	84
Ch(e)+LB	
Figure 5.6 Case number 2 (A, B) of Table 5.4. i) and ii) of A) have Ch(c)+LB;	84
iii) and iv) of A) have Ch(e)+LB; i) and ii) of B) have Ch(e)+LB only	
Figure 6.1 a) Experimental arrangement, b) Displacement loading protocol	88
Figure 6.2 Comparison of hysteresis curves for X-braced frame	89
Figure 6.3 Selected eccentrically braced frame	90
Figure 6.4 a) Central deflection of beam b) Hysteresis loop	91
Figure 6.5 Modified eccentric chevron braced frame configurations	92
Figure 6.6 a) Deflected shape of Che-D90 configuration b) Rotation of the link	93
Figure 6.7 a) Hysteresis loop comparison with initial state, b) Plastic dissipation	94
Figure 6.8 a) Deflected shape of Che-D4 configuration b) Rotation of the link	94
Figure 6.9 a) Hysteresis loop comparison with initial state, b) Plastic dissipation	95
Figure 6.10 a) Deflected shape of Che-D0 configuration b) Rotation of the link	96
Figure 6.11 a) Hysteresis loop comparison with initial state, b) Plastic	96
dissipation	
Figure 6.12 a) Chevron braced frame (Ch), b) Cyclic Loading protocol	98
Figure 6.13 Modified chevron braced frame configurations	99
Figure 6.14 a) Hysteresis loop for 'Ch' braced frame, b) Energy dissipation	100
Figure 6.15 a) Deformation profile of chevron braced (Ch) frame (yielding	100
zones shown by dark shades), b) beam deflection	

Figure 6.16 a) Deformed shape of Ch-D90 braced frame, b) beam deflection	101
Figure 6.17 a) Hysteresis loop for Ch-D90 braced frame, b) Energy dissipation	101
Figure 6.18 a) Deformed shape of Ch-D4h braced frame, b) beam deflection	102
Figure 6.19 a) Hysteresis loop for Ch-D4h braced frame, b) Energy dissipation	102
Figure 6.20 a) Hysteresis loop for Ch-D braced frame, b) Energy dissipation	103
Figure 6.21 a) Deformed shape of Ch-D braced frame, b) beam deflection	103
Figure 6.22 a) Hysteresis loop for Ch-V braced frame, b) Energy dissipation	104
Figure 6.23 a) Deformed shape of Ch-V braced frame, b) beam deflection	105
Figure 6.24 Time history plot for plastic dissipation in various configurations	106
Figure 7.1 Displacement loading protocol	108
Figure 7.2 a) Old concentric chevron (Ch), b) Concentric chevron with lintel	109
band (ChLN) c) Old eccentric chevron (Che) d) Eccentric chevron with lintel	
band (CheLN)	
Figure 7.3 Energy curves for single story (S1) and two-story (S2) MRFs	112
Figure 7.4 Behaviour of old concentrically braced frame and its updated multi-	113
level counterpart (Dark part in deformed specimen shows inelastic region)	
Figure 7.5 Behaviour of old eccentrically braced frame and its updated multi-	115
level chevron counterpart	
Figure 7.6 Behaviour of old eccentrically braced frame and its updated multi-	116
level counterpart for two-story frames	
Figure 7.7 Floor beam deflections for chevron CBFs	118
Figure 7.8 Floor beam deflection and link rotation in chevron EBFs	118
Figure 8.1 Meshing of the chevron braced frames and the displacement loading	122
on them	
Figure 8.2 Details of the modified state of the existing brace (not to scale)	126

Figure 8.3 Details of geometry and cross-sections of casing (not to scale)	126
Figure 8.4 Analyzed single-story concentric chevron braced frame (Ch_S1)	127
Figure 8.5 Stresses in bare frame and comparison of energy dissipation (PD)	128
Figure 8.6 Stresses in BRBF (S1_BRB_ip) and deformation of its BRB core	129
Figure 8.7 Hysteresis curve of BRBF (S1_BRB_ip) and deflection of its beam	130
Figure 8.8 Stresses in BRBF (S1_BRB_ipW) and deformation of its BRB core	131
Figure 8.9 Hysteresis curve of BRBF (S1_BRB_ipW) and deflection of beam	131
Figure 8.10 Stresses in BRBF (S1_BRB_int) and deformation of its BRB core	132
Figure 8.11 Hysteresis curve of BRBF (S1_BRB_int) and deflection of beam	133
Figure 8.12 Rotation of the brace just outside the buckling restraining	134
mechanism	

List of Tables

Table 2.1 Comparison between experimented and simulated results	44
Table 2.2 Simulated results for experimented cases of the buckling member BC	44
Table 2.3 Effective length (Le) by original length (L) ratio (Le/L= K) and	45
moment of inertia ratio for connecting member (I) by main member (I0)	
Table 2.4 Simulation results for main member having 10 mm size square with	46
connecting members of various sizes	
Table 3.1 Axial and bending stress interaction ratio, IR Check for class 70R	57
Table 3.2 Maximum deflection under class 70R loading	58
Table 3.3 Axial and bending stress interaction ratio, IR Check for 40T bogie	58
Table 3.4 Axial and bending stress interaction ratio, IR Check for class-A	59
Table 3.5 Maximum deflection under class-A loading	59
Table 3.6 Details of Steel take-off	60
Table 4.1 Bucking loads (kN) of single-storied frames having an individual brace	64
Table 4.2 Bucking loads (kN) of two-storied frames having an individual brace	65
Table 4.3 Bucking loads (kN) of three-storied frames having an individual brace	66
Table 4.4 Maximum Pcr for singly or fully braced frames using diagonal brace	69
Table 4.5 Maximum Pcr for single location X-braced and fully X-braced frames	70
Table 4.6 Diagonal brace having same slenderness as that of the beams and	70
columns (Fully braced)	
Table 4.7 For B1S3, per brace Pcr (kN) for single bracing per story	71
Table 4.8 Comparison of Pcr (kN) with fully braced chevron up to five stories	71
Table 4.9 Pcr (kN) for single story fully braced frames having multiple bays	73

Table 4.10 Best arrangements giving higher Pcr (location-wise bracing, 1 means	73
brace and 0 means no brace)	
Table 4.11 Comparison of H/V ratio for fully braced frames	74
Table 4.12 H/V ratios for the separate cases of varying bays and varying stories	75
Table 5.1 Critical load values (Pcr) of the bare frames	78
Table 5.2 H/H0 and V/V0 ratio for lintel banded or cross braced frames	79
Table 5.3 H/H0 and V/V0 ratio of chevron braced frame using lintel/ lintel bands	82
Table 5.4 Combination of the modified braces with the X braces at different	83
storey levels	
Table 6.1 Member sections and their material properties (Adapted from the	88
experimental results reported by Wakabayashi et. al. 1980)	
Table 6.2 Critical load values of the considered braced frames	92
Table 6.3 Critical load values of the considered braced frames	105
Table 7.1 Material properties and member sections	108
Table 7.2 Euler buckling loads (in Ton, t) under vertical load (V) and Lateral load	109
(H)	
Table 8.1 Member sections and their material properties	123
Table 8.2 Description of various arrangements of the generated BRBs	125
Table 8.3 Specifications of BRB specimens axial load analysis results	125

Symbols/ Abbreviations have been explained wherever they appear first in a Chapter