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Chapter-4 

Data driven Methodology-Mathematical Background and Associated Computation 

4.1 Introduction 

To survive in the competitive market, optimization not only on product performance and price, 

but on product life must be addressed. The present chapter addresses the two associated data-

driven methodologies for motor health prognosis namely: 

a) Stochastic Approach - Exponential Degradation Model 

b) Adaptive filtering Techniques - Particle filter, Unscented Particle filter and Improved 

Unscented Particle filter  

Review of data driven approaches as presented in chapter 1 evidenced that the generated data 

from the experiment in the previous chapter 3 is highly nonlinear and temporal. The ability to 

handle the nonlinearity associated with the real-time data obtained during continuous monitoring 

and thereby the RUL prediction necessitates the use of the two approaches. The Fig. 4.1 provides 

a schematic from data collection to model development. 

 

Figure 4.1 Schematic of data-driven RUL estimation methodologies 

Most degradation phenomena are complicated (owing to nonlinearities, stochasticity, non-

stationarity, etc.) and difficult to represent analytically in practice. The time series data features 

using signal processing for engineering applications have been earlier studied (Antonino-Daviu 

2020; Mohanty 2014) in order to obtain a robust signal characteristic. A random signal with time 

varying statistical property is said to possess a strictly nonstationary characteristic. The presence 

of nonstationary stochastic property is mostly observed when there occurs a stochastic change in 

statistical property or integrating type non-stationarity (Tangirala 2015). The inherent trend could 

be visually observed, while the signal characteristic can be identified only after signal processing. 
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Data obtained from the experiments were analyzed after a longer duration and the non-stationary 

dataset for the dynamical system indicated that the data lacks ergodicity. The entropy offers a 

measure of uncertainty as well as the maximum amount of useful information one can get out of 

a dataset. Furthermore, if the entropy offers a monotonic measure, the dataset is said to 

possess finite learning ability that aids in devising intelligent machines (Looney et al. 2015). To 

get around this, researchers may further employ learning methods to create a conceptual 

framework that depicts the degradation in the form of latent health risks, including such PF models 

or exponential degradation models. Setting the assumptions and defining the technique's limits are 

necessary for each modelling and implementation process. To construct the conceptual framework 

in adaptive filtering, several elements must be defined, such as the number of states, the data set, 

the amount of training data, and so on. Furthermore, the measurements must be persistent but not 

limited in size. In practice, however, the data size has an impact on algorithms learning and 

inference capability. 

In the realms of failure diagnostics and prognostics, the stochastic approach provides an efficient 

online fault prognosis by updating the most recent observations for dynamical systems 

automatically. Currently, the electromechanical actuator's inputs are routed through a 32bit 

controller with sufficient set-points, limiting the controller's ability to work beyond a safe limit. 

As a result, anticipating the system RUL with any further change in the system's input-output 

parameter values is a challenge. Adaptive filtering techniques have proven to be a good tool for 

incorporating the necessary adjustments made by the controller during operation, whilst it enables 

to mimic the actual product's degradation utilizing continuous measurements offered by the 

various sensors. 

4.2 Overview of the Data Pre-Processing 

The proposed methodology (see Fig. 4.2) involves the use of the data driven approach (Coble 

2010; Jouin et al. 2016; Lei et al. 2018; Zhu et al. 2020) for meaningful interpretation of the 

changes occurring during the period of transient operation. Fig. 4.2 describes the prognostics 

protocol module from data import to RUL prediction on the basis of model accuracy. Chapter 3 

elaborates the ALCT approach towards data collection for three different working conditions.  
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Figure 4.2 Prognostics Protocol Module 

The initial step to the proposed approach commences with the feature extraction, which is then 

followed by the filtering, and smoothening. Assuming only 60% of the data has been used for 

training purposes the feature importance ranking (FIR) has been developed. The raw data was 

processed to extract the statistical features followed by smoothening to attenuate the effect of 

noise. Monotonocity and trendability metrics were applied on the part of the smoothened features 

(training data) for ranking statistical features (Qian and Niu 2016). Feature fusion (Aymaz and 

Kose 2018; Jardine et al. 2006) was carried out using parameters of the training dataset and PCA. 

Matrix diagonalization was carried out for estimation of the eigen values and vectors. The largest 

Eigen vector was selected for fusion technique which represented the ideal signal. The PCA (Yang 

et al. 2019) based fused features were applied for the selection of the appropriate CI. Thus, selected 
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features from FIR with a target score qualified for the PCA enabled feature fusion to produce a 

healthy CI. Degradation model fitting was carried out on the health indicator. The proposed 

approach used a known threshold value of the CI for determining the RUL (Chen et al. 2020). Step 

wise description for the same can be visualised in Fig. 4.3 below.  

 

Figure 4.3 Flowchart of the proposed approach 

Each step of data processing, from the generation of the CI through the RUL finding, is described 

in depth in the subsections below. 

4.2.1 Data Processing 

Raw data from the sensor loggers were pre-processed to be applied to the degradation model. 

Statistical features, as described in Table 4.1 were extracted from the noisy current signal dataset. 

The moving average filtering was implemented on the statistical features of the dataset. The 

filtering was intended to smoothen the prime characteristic of the statistical features. The 

smoothened datasets were normalized using statistical parameters (mean and standard deviation). 

Detailed explanation to feature extraction and smoothening process are described hereunder.  
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4.2.1.1 Feature Extraction 

The statistical characteristics (see Table 4.1) of the current (Ia) signal were determined using the 

logged dataset in time, frequency and the time-frequency domains. The equations provided in 

Table 4.1 depicts the statistical features employed in this study. 

Table 4.1. List of extracted features considered in the study 

Features Equations Features Equations 
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Where Xi, μ, σ, and N respectively represent the raw sensor data, mean of the data, standard 

deviation, and the total number of cycles. The time domain features are considered for the less 

complexity in calculations. However, significant changes in the statistical properties of the 

features were observed for faulty conditions of the motor in contrast to the normal operating 

regime. These features need to be sensitive to the faults besides being significant in relation to the 

noise. Such dynamic feature of the system helps in prior diagnosis of the faults. The time domain 

features obtained by increased order of moments also help in categorizing the system’s health 

state. Thus, the noisy masked signal in time domain may offer sufficient results for diagnosis of 

the system. Although much had been spoken about the benefits of frequency domain and its use 

in identifying the change in process variables (Pappachan et al. 2017), but the drawback of the 
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time to frequency domain transformation appears in terms of the increase in response time besides 

increased computational efforts. Thus, the transformed data in frequency domain poses a challenge 

in modelling the noise for a stochastic signal. The power of the spectrum for current signal was 

estimated using spectral entropy and the uncertainty was determined by information entropy of 

the stochastic signal. Further, the Shannon entropy principle states that the unlikely events will 

have higher entropy than the most likely ones. For a known time-frequency power spectrum S(t, 

f), the probability distribution (P(m)) and spectral entropy (H) are: 

𝑃(𝑚) =
∑ ௌ(௧,௠)೟

∑ ∑ ௌ(௧,௙)೟೑
       (4.1) 

𝐻 = − ∑ 𝑃(𝑚) 𝑙𝑜𝑔ଶ 𝑃 (𝑚)ே
௠ୀଵ      (4.2) 

The Shannon entropy therefore finds significance in the event of complex noisy data. Since the 

fourth moment (kurtosis) of the dataset reflects the peak of the signal, the complex signals 

produced by an electromechanical actuator in transient state will display high amplitude 

characteristic. This way, for the sampling of data at 10 milli-seconds interval, kurtosis (see Eq. 3) 

gave a better representation of the data characteristic. The kurtosis is given by;

 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
భ

ಿ
∑ (𝐗೔ିµ)రಿ

೔సభ

ቀ
భ

ಿ
∑ (𝐗೔ିµ)మಿ

೔సభ ቁ
మ      (4.3) 

4.2.1.2 Smoothing 

The features extracted from the dataset are usually associated with noise. These noises may 

adversely affect the performance of degradation model predicting RUL. The "causal" moving 

average filter of window length M involves the average of every N consecutive samples of the 

waveform while ignoring the future values. They are used to compensate the unavailability of 

future sample points during the real-time smoothening of data. This kind of linear time invariant 

filtering technique is applied to low pass filter that restricts higher frequency signals. The 

expression for moving average filter is: 

𝑦(𝑖) =
ଵ

ெାଵ
∑ 𝐗(𝑖 − 𝑗)ெିଵ

௝ୀ଴       (4.4) 

Where, ଵ

ெାଵ
 is a coefficient, known as window length and M denotes sample size. The order of 

the causal moving average is determined on the basis of global trend and local variations.  
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4.2.2 FIR and Health Indicator Determination 

Monotonocity (Coble 2010; Liao 2014, Gomes et al. 2016) and Trendability (Coble 2010) metrics 

were used to rank the features. The non-self-healing property and underlying positive/negative 

trend were characterized using monotonocity. The variables pm and pn used in Eq. (5) respectively 

represent positive and negative differences between the features, whereas, n shows the number of 

observations. Monotonocity is low in the presence of noise, and it is found to be 1, if it increases 

or decreases. The linear correlation amongst the features and their absolute values are the measure 

of trendability. The monotonocity and trendability are expressed as:  

p p
( )

1 1
m nMonotonocity x

n n

 
 

       (4.5) 

 minTrendability corrcoef      (4.6) 

Whereas, FIR has been defined as: FIR = Monotonocity + Trendability       (4.7) 

Post normalization, higher scores above 0.6 for the are qualified to be well behaved, however, the 

value of unity (1) is considered to be desirable for the fitness metric. Peng et al. (2005) addressed 

the importance of feature selection in pattern recognition problems by introducing maximal 

statistical dependency criterion based on mutual information. Unsupervised situation (Hamaide 

and Glineur 2021; Peng et al. 2005) often makes use of the criterion of minimal classification error 

metric thereby inducing statistical dependency. Statistical dependency is realized using relevance 

which is a measure of correlation. Trendability makes use of correlation coefficient in assisting 

the best possible characteristic feature from a nonstationary signal. For the selection of a good 

condition indicator, the metrics (i.e., monotonocity and trendability) need to be consistent, i.e., 

either increasing or constant but not decreasing.  

The involvement of Eigen vector for feature fusion simplified the selection of health indicator and 

is discussed in the subsequent section.  

4.2.3 Feature Fusion using PCA 

The training dataset was finalized on the basis of fitness function (FIR). Statistical 

characteristics of the training dataset were estimated and the best features were selected in 

accordance to the FIR. The selected best features were normalized using parameters (mean and 

standard deviation) of the training dataset and PCA was implemented thereupon. The overview of 

the PCA (Yang et al. 2019) is described below: 
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The PCA is an unsupervised dimensionality reduction technique. Estimation of the mean, 

covariance, eigen values and vectors is carried out to implement the PCA.  

The covariance Cx is determined for the matrix X that has mean centred and scaled sensor data: 

 1

1
T

xC XX
M




       (4.8) 

The eigenvalues and eigenvectors are determined by using matrix diagonalization as: 

det( ) 0iX I         (4.9) 

x i i iC V V         (4.10) 

Vi is the eigen vectors of the sample covariance matrix Cx. The λi represents eigen values. I is the 

identity matrix. 

The eigen vector represent the direction in which the variables strongly correlate. The eigen 

vector with the largest eigen value represents the first principal component and it possesses the 

maximum variance. These principal components share a relation of orthogonality and a few 

principal components are usually sufficient to explain the behaviour of the dataset, which, in turn, 

assist in overcoming the challenge of overfitting due to redundant variables. The steps for fusion 

of the features using PCA are described below: 

Step 1: 60% of smoothened features data was chosen to form a data cluster  

Step 2: Determination of FIR metric for the data cluster chosen in step 1  

Step 3: FIR score larger than 0.6 was selected to obtain the training dataset from the data cluster 

of step 1 

Step 4: Calculation of the statistical parameters of the ‘training dataset’ for normalization  

Step 5: Determination of the eigen vectors for the normalized training dataset 

Step 6: The entire smoothened features data was now normalized using the parameters of training 

dataset 

Step 7: The entire data obtained from step 6 is multiplied with the eigen vector to yield the 

principal components 

Step 8: Plotting and visualization of the principal components  
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The first principal component held the maximum variance, therefore, used as a tool to obtain the 

promising CI for the degrading motor. Data fusion works (Ompusunggu et al. 2012) has been 

earlier attempted for wet friction clutches in which the three captured degradation signals are 

utilised to obtain an single health index. It is the CI, which depicts the actual trend in the 

degradation behaviour of the motor that will be used for estimating the RUL by means of the 

degradation modelling and subsequently the adaptive filtering approach. 

4.3 Stochastic Approach 

4.3.1 Exponential Degradation Modelling and RUL Prediction 

Linear, polynomial, power and exponential models are available in literature to fit the data 

characteristics of the degrading systems. The continuously changing pattern of the data signal over 

the period of observation reflected the prevalence of cumulative (Gebraeel 2006) deteriorating 

behavior of the motor. Therefore, exponential degradation model has been adopted to model the 

behavior of the system. Assessment of the prior distribution (Gebraeel 2009) of the stochastic 

parameters is the initial step to progress towards modelling. The online estimation and updating 

(Yu et al. 2017; Zhou et al, 2011; Gebraeel 2006) of the parameters of this model is carried out 

using Bayesian framework (Gebraeel et al. 2005). Maximum Likelihood Estimation and 

expectation maximization (Saxena et al. 2008; Celaya et al. 2011) are commonly applied 

approaches to estimate the parameters of continuously changing signal. These parameters are the 

respective state variables that change with respect to time. Thus, it constitutes a model for non-

linear dynamic system with online tracking algorithm.  

The general form of the exponential degradation model is:  

   
2

exp
2

t
S t t t

   
 

    
 

     (4.11) 

Where, 𝚽 is a constant term representing the initial level of degradation, stochastic parameter θ is 

a lognormal random variable with mean μ0 and variance σ0
2, β is a normal random variable with 

mean μ1 and variance σ1
2, and ε(t) = σW(t) is an error term with mean 0 and variance σ2t. W(t) is 

a Brownian error. The random error term ε(t) explains the noise and the randomness. The variables 

θ, β and ε(t) are mutually independent and modelled as a stochastic process. Stochasticity {S(t), 

t>0} is presumed to be present in the underlying model parameters that helps in accurately 

specifying the path followed by the model. The present study considers the error to be continuous 
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stochastic process to capture the complexity in the data. The following steps have been adopted in 

degradation modelling. 

Step I: Estimation of the prior distribution of stochastic parameters of degradation signal, p(θ, β) 

Step II: Updation of the prior distributions using Bayesian method  

Step III: Computation of the posterior, p(θ, β | S(ti)) for RUL estimation 

4.3.2 RUL Computation 

For the stochastic signal, S(ti) of the motor describing the path of the degradation signal: 

( ) ( | , ) ( ) i 1, 2, 3...,i i iS t t t      . 𝚽 is the deterministic parameter, and stochastic 

coefficient, β follows a prior distribution with normally distributed error, N(0, σ2). The apriori 

failure threshold ‘x_threshold’ in advance at time ‘t’, the expected RUL, ‘RUL’ at any arbitrary 

time instant can be expressed as: 

   | , ( )T thresholdRUL P T t P t t x            (4.12) 

The uncertainty associated can be computed using expressions likewise as: 

lower lower
RUL RUL RUL

upper upper
RUL RUL RUL

  

  
     (4.13) 

4.4 Adaptive Filtering Technique 

The methodology of motor RUL estimation using adaptive filtering technique comprises of three 

variants of particle filters. The flowchart in Fig. 4.4 consists of three stage description of the 

filtering process. Importing the developed CI is the initial step. Next follows the PF, UPF and i-

UPF stages that includes the respective particle generation, the weight updating followed by the 

resampling and thereafter the motor’s state prediction. The third stage is the motor RUL 

calculation, which is done utilizing the predicted states and the failure threshold. The subsequent 

sections will provide a detailed description of the allied PF variants. Then the four resampling 

techniques are discussed. RUL estimation is discussed at last. 
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Figure 4.4 Illustration of particle filter variants in motor health prognosis 

4.4.1 Particle Filter 

PF approach to filtering involves linearizing the fitted models using Taylors expansion series to 

achieve the nearest approximations. The approximated nonlinear functions yielded less accurate 

estimations, thereby giving rise to approximating the distribution by introducing the state-space 
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model. The state variables follow a Markov first-order process. For Bayesian recursive filtering, 

the PF uses the posterior distribution (An et al. 2013a)of the state as per Bayes rule:  

( | ) ( | ) ( )j
t t t t tp x y L y x p x       (4.14) 

where X is a vector of unknown parameters (a, b, c, d) and j
ty  is a vector of observed data with 

the likelihood expressed as L(y | x )j
t t and p(xt) being the prior of the pdf.  

A nonlinear state transition function (see Eq.15) is obtained using previous state vector, xt-1 and 

additive process noise, j
tu ~ N(0, σu) to state, and can be expressed as: 

1( )j j j
t t tx h x u         (4.15) 

Predicting the measurement data for each particle j with nonlinear state vector j
tx and adding a 

measurement noise, j
tv ~ N(0, σv) to it 

( )j j j
t t ty f x v         (4.16) 

The measurement equation (see Eq. 16) describes a relation between the observed ( j
ty ) and 

unobserved state ( | 1...Mj
tx j  ) variables. For prognostics, the state equation, on the other hand, 

reflects the dynamics of the state variables. The standard PF consists of three steps: particle 

generation, updating the weights, and resampling, which can be seen as expressed below. 

Sequential importance sampling (SIS) is used for particle generation and weight computation (Guo 

et al. 2015a). At each time step t, 

1. Initialize particle generation - Initially, when t = 0, the weights are the same for all the 

(uniformly distributed) particles (j=1….M) and are generated according to the prior probability 

distribution, p(x0). It is expressed as: 0

1
w

M
 . The SIS finds the particles for tth moment and adds 

them to t-1th moment i.e.,  1 0: 1 1,wj j
t t tx x   . The proposal distribution (importance density) can 

be obtained using the prior, which is expressed as: 

 1 0: 1 1:( | ) | , yj j
t t t t tp x x p x x        (4.17) 

The estimation and update are the two steps that follow the Bayesian conditional probability in a 

PF approach (Arulampalam et al. 2002)(Zhang et al. 2018).  
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2. Computing the particle weights and updating– The updating of particle weights helps to 

construct the posterior pdf that can be expressed below as: 

   
 

1

1

| |j j j
t t t tj j

t t j
t

p y x p x x
w w

p x


      (4.18) 

The normalized weights can be rewritten in the form: 

1

j
j t

t M
j

t
j

w
w

w





      (4.19) 

The third step is the resampling in which the set of assigned particles  ,wj j
t tx is replaced with 

another new set  1 1,wj j
t tx   (Li et al. 2015c) which is further used for obtaining the posterior pdf. 

3. Resample the particles – The resampling is purely performed based on the weight of the 

particles. More is the weight of the particles, the likelihood of the particles within the range is 

higher. Therefore, evaluating the likelihood and CDF value for each particle is processed.  

 2

2
1

y x1
L(y | x ) exp

22

jT
t tj

t t
t tt



   
 
 

     (4.20) 

It is evident when the effective sample size, N-eff is below the given threshold, N-th the low weight 

particles are excluded, and resampling occurs. Thus, to proceed further: 

2

1

1

( )
M

j
t

j

N eff
w



 


       (4.21) 

The particles and unknown parameters are used to process the updating step in a sequential 

way. The paramount importance is in estimating the hidden states as the online data becomes 

available and modeling the measured data along with noise for the observed states. For a normally 

distributed measurement noise, the normally distributed likelihood function is used to update the 

measurement data. 

4.4.2 Unscented Particle Filter and Improved Unscented Particle Filter 

The requirement of predictability of the state dynamics under optimal bias is achieved via 

unscented transform (UT) and evaluating the sigma points. Recursive estimation of parameters 

(the mean, x and covariance, Px) in a dynamic transient process with random variable(x) uses a 



   

 
66 

 

nonlinear function given as (x)g . UT uses 2 n 1x weighted samples and can be described 

under the following steps: 

i. Evaluate sigma points (χ) 

1 1 1 1 1 1, ( ) , ( )i i i i i i
t t t x t t x tx x n P x n P       

         (4.22) 

2n ( 1)x          (4.23) 

Where α and λ are constants. nx denotes the number of sigma points that are found using the mean 

and covariance of the x. 

ii. Propagating the sigma points using nonlinear transform 

( )i ig   for, 1...2 xi n       (4.24) 

iii. Evaluating the parameters of the transformation function 

2
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
 

   




     (4.25) 

Weights of the sample mean, w(m) and sample covariance, w(c) are calculated using the following 

equations: 

0

2
0 (1 )

1

2( )

m

x
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x

m c
i i

x
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w
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w w
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


  





 


    


 



      (4.26) 

The constant α≥0, and β denotes the prior distribution of x thus, incorporating higher order 

moments. For a Gaussian distribution β = 2. Smaller values are preferred in case of stronger 

nonlinearity. 

4.4.2.1 Unscented Particle Filter (UPF) 

The UPF attempts to produce an approximated posterior probability density function using a UT 

and an EKF approach. The information gain is achieved when the sigma points are propagated via 

UT.  
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i. Initial steps for implementing UPF are initialization (Eq. 4.27) and computing sigma points 

(see Eq. 4.28) 

 
  

0 0

0 0 0 0 0[ ]T

x E x

P E x x x x




  
      (4.27) 

1 1 1 1 1 1, ( ) , ( )t t t x t t x tx x n P x n P       
         (4.28) 

ii. The second step is the time update (to propagate particles in future steps) and are computed as: 
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  (4.29) 

iii. Finally, in the measurement update step (that adds the recent observations to tune the 

parameters automatically) the equations are calculated as:  
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The Qu and Qv are the prior known noise covariances for process and measurement set. Gt is 

Kalman gain 
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4.4.2.2 Improved Unscented Particle Filter (i-UPF) 

The i-UPF algorithm considers the latest set of observations to obtain the posterior for which it 

uses UKF to generate the proposal distribution. The improvement is in the reduced execution time. 

The idea of using particles in two-step frameworks (i.e., one generated from transition prior, M-

c*M and another from UKF, c*M) is the strategy in implementing i-UPF. The knowledge for the 

selection of the number of particles in each step is quite cumbersome. However, our study 

introduces this aspect as one variable, 'c'. The proper selection of 'c' (Fasheng and Yuejin 2009) is 

by computing the mean and variances across multiple runs. It can be well designated as: 

i. The initialization step is to draw the particles from a known prior and computing the system 

state vector's mean and covariance incorporating the noise. 

ii. The second step is to follow the steps of UPF as described under section 4.3.2.1 to finally obtain 

the mean tx  and covariance tP  at time t for one set of particles from UKF. The subsequent step 

is to draw samples from the remaining set, i.e., transition prior. 

iii. The third step is to draw another set of remaining particles from the transition prior and 

computing the tx  and tP . 

iv. Finally, with the involvement of resampling, the final particles and weights are calculated. 

The state and the covariance are then expressed as: 

1

M
j j j

t t t
j

x w x


         (4.31) 

  
1

M Tj j j j j j
t t t t t t

j

P w x x x x


        (4.32) 

4.4.3 Resampling Methodology 

The motivation in using resampling methods in the present study is three-fold: the accuracy, 

robustness, and the ease of computational complexity (Kootstra and de Boer 2009) through a 

practical application. Accuracy is attained with the declining particle degeneracy (Jouin et al. 

2016; Tulsyan et al. 2016). The increased ability to handle the heavy-tailed particles thereby 

contributes towards eradicating particle impoverishment (Li et al. 2015c), which adds to the 

results' robustness. An acceptable tradeoff between robustness and accuracy represents the novelty 

in the present work by overcoming the major obstacle in PF implementation. Both the 

deterministic and dynamic resampling schedule is chosen, and resampling is said to perform 
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whenever the variance of the importance weights exceeds the threshold. Comparative study with 

the resampling(Guo et al. 2015; Pugalenthi and Raghavan 2018) methods in PF shall provide a 

much better understanding in the purview of the above mentioned three aspects along with the 

increased efficacy of the algorithms. The notion of effective sample size (ESS) of a sequence of 

weighted observations is thereby required for this adaptive integration of the resampling 

technique. The present study uses the four traditional multinomial resampling, stratified 

resampling, residual resampling, and systematic resampling for the single distribution sampling 

(Li et al. 2015b) and considering only the weight (Li et al. 2012b) of the particles. 

4.4.3.1 Multinomial resampling 

One of the efficient methods in eradicating particle degeneracy was proposed in the formulation 

of multinomial resampling. Ideally, the weights should be equal during sampling. Below is the 

detailed operation of the steps: 

i. The wt
j represents the resampled j-th particle for the expected j

tN  number of times i.e., 

( | )j j j
t t tE N w Nw       (4.33) 

ii. Generating N random numbers iu  from uniformly distributed (0 1]set. 

iii. Replicating particles from  ,wj j
t tx  using iu for i-th random sample, to obtain the ordered 

set, 
1

1 1

,
j j

i t t
t t

u w w


 

 
  
 
       (4.34) 

The computational complexity is of the order O(N). The number of times a particle gets replicated 

(0 N], thereby increasing variance in the resampled particles, which can be reduced in the 

subsequent resampling methods. 

4.4.3.2 Stratified resampling 

i. The separately distributed subintervals are divided from within [0 1] range.  

ii. The number of random numbers is equal to the subintervals, N. The independently 

drawn random numbers from each subinterval are 
1

,i

i i
u

N N

    
 

iii. Particles {xt
j, wt

j} are replicated based on the cumulative sum of the normalized weights 

as seen in Eq. 6 
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The deterministic relationship between the random numbers reduces the variance within the 

resampled particles. The computational complexity is again found to be the same as multinomial 

type, i.e., O(N). 

4.4.3.3 Systematic resampling 

The procedure to generate random numbers is the same as that of the stratified resampling. The 

significant difference is in using a single random number throughout the resampling and then 

adding the same to the initial point. 

i. The subintervals are equidistantly distributed in [0 1] range. 

ii. Sample data u is obtained in the range 
1

0,u
N

    
 

iii. Calculate 
1

, 1, 2....i

i
u u i N

N


       (4.35) 

The variance of the resampled particles is smaller than that of the stratified resampling. The much 

stronger deterministic relationship and the generation of a smaller number of random numbers 

prefer its use over stratified, thereby enhancing the algorithm's performance and reducing the 

computational complexity. 

4.4.3.4 Residual resampling 

The attainment of reduced computational complexity with the use of two-stage resampling is 

aimed. The jth particle is resampled j j
t tN R times. 

i. Deterministic replication is carried out for particles with a weight greater than 1/N, thereby 

reducing the consequences by a multiple of 1/N, i.e., j j
t tN Nw  

ii. Random sampling with the remaining weights (a.k.a., residuals), i.e., j j
t tR N N  . 

The importance weight can be expressed as: 
j

j j t
t t

N
w w

N
      (4.36) 

The order for computation time is    j j
t tO N O R . The first stage is multinomial type whereas, 

in the second stage, the variation in the number of times a particle is resampled is attained, 

reflecting the reduced time in computing. 

The criterion for resampling is in proper threshold selection, which can be defined as 0.5 times the 

size of the particle-set. The performance of the three PF algorithms with the use of four resampling 
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techniques is presented while estimating the RUL of the motor. RUL_error as a metric is 

considered for evaluating the prognostic performance which is defined as a ratio of the difference 

in their absolute value of true RUL and predicted RUL to the true value of the RUL. 

RUL_error
tRUL eRUL

tRUL


      (4.37) 

4.4.4 RUL Estimation Strategy 

Prognosis deals with the estimated parameters and the observed states for predicting the remaining 

time, given the threshold value. The predicted states are used to calculate the failure and they are 

subtracted from the current time step. Extrapolation of the measurement equation is the basis for 

estimating the RUL.  

The approximated Bayesian posterior probability for (t-1)th time instant can be expressed as: 

 (j) (j)
1 1: 1 1 1 1
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( | y )
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t t t t t
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       (4.38) 

Where Dirac delta δ(·) represents the summation of particle weights adding to unity. The state can 

be predicted thereafter as: 1 1 1
1

M
j j

t t t
j

x w x  


       (4.39) 

For a known failure, once the predicted value reaches the specified threshold, xthreshold the pdf of 

the RUL can be estimated as: 
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j
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
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The state transition equation produces possible future states following the time-dependent 

degradation to make further predictions that can be expressed below as: 

 1 ; 2 ; 3 ; 4t t t t tx p p p p       (4.41) 
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3 2f(t) 1 * t 2 * t 3 * t 4 ~ (0, )t t t t t t t up p p p u u N        (4.43) 

The predicted posterior density function is approximated using the uniformly distributed particle 

set and can be expressed as: 
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 (4.44) 

The estimated posterior gives rise to a predicted pdf that can be evaluated using the expression 

 (j) (j)
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For a degradation dataset, the RULt pdf at cycle t is expressed as 

 (j) (j)
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