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ABSTRACT 
 

The extensive use of high-end automated assets in an automotive sector is the current paradigm 

shift as a prerequisite of Industry 4.0. In tandem, the life cycle assessment is the prerequisite for 

such automated systems to optimize the return on this significant investment. Today’s market 

places increasing emphasis on quality efficiency and environmental performance. Scientific 

understanding of the degradation process and its phenomena is essential for designing and 

achieving optimal performance. Even before designing high-performance, environmentally 

friendly gadgets, a product’s life cycle optimization is critical. Machine downtime due to 

maintainability and system component replacement is quite often associated with elevated 

expenses. Present work is motivated towards developing a computationally efficient system health 

prognostics methodology directed towards enhanced performance within optimized cost and 

safety standards. System’s health assessment under actual operating conditions and its future state 

prediction very often helps in developing an effective maintenance plan. Data-driven models are 

employed to take advantage of condition based maintenance (CBM), which provides an optimized 

maintenance strategy for estimating the system's remaining useful life (RUL).  

The proposed work utilizes data driven models to predict the RUL of a clutch actuator motor in 

an electric automated manual transmission (e-AMT) application. In an e-AMT car, the 

electromechanical actuator works in tandem with a permanent magnet direct current (PMDC) 

motor to facilitate automated clutch operation, and any failure or decrease in performance of this 

motor potentially cause the vehicle to stall. Motor degradation is characterized by a deviation in 

their performance parameters from their initial values. The change in parameters in turn will cause 

degradation in performance of the clutch along with the motor which is a part of the clutch 

assembly, eventually leading to function failure of the system. Current methods for forecasting 

failures triggered by electronic component faults rely on defining monotonically deviating 

parameters and modeling their evolution over time. This dissertation establishes a prognostics 

approach that uses machine learning features derived for an electrical motor response to solve this 

issue. Exponential degradation modeling and the three variants of particle filter (PF) are applied 

in the development of an efficient reliability methodology for predicting automotive motor failure. 

Subsequently, the robust and reliable techniques for motor RUL prediction will support scheduling 

an optimal maintenance plan. 
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First, the degradation model to exhibit the state of health of the clutch was developed. The initial 

step has been in the selection of an appropriate prognostic parameter. Unusual patterns in the 

sensor data set collected from experiments indicated that current (Ia) is one such prognostic 

parameter to indicate the state of the health of the clutch. A novel condition indicator (CI) and a 

threshold for a conditionally independent noisy signal from the motor subjected to cumulative 

degradation were established. A dominating feature characterizing the motor health was discerned 

amongst time, frequency and time-frequency domain and identified while analyzing the time-

series signal composed of an agglomeration of different frequencies that produce higher octaves. 

Tests for monotonocity and trendability metrics affirmed a distinguishing CI. Principal component 

analysis (PCA) allowed the fusion of features for the selection of the best-performing CI. The 

proposed CI was used in an exponential degradation model to predict the RUL of the motor 

accurately. 

The second part of the thesis involves the application of three variants of particle filter (PF) with 

various resampling techniques to account for heavy-tailed observations and non-Gaussian 

characteristic of noise to improve the accuracy of RUL estimation. The prediction of the motor’s 

RUL is pursued by a model-based filtering method that relies on an empirical model and a 

stochastic filtering technique. The empirical model describes the degradation in clutch health with 

the progression of the fault in a motor component. The stochastic filtering technique on the other 

hand was used to first solve the ‘motor health state’ estimation problem, followed by a prediction 

problem in which the estimated motor health state is extrapolated forward in time to predict RUL. 

A comparative analysis of the results showed major enhancement in the prediction accuracy 

respectively and in the efficacy of RUL estimation due to traditional PF, unscented particle filter 

(UPF), and improved unscented particle filters (i-UPF) vis-a-vis the ordinarily fitted exponential 

degradation model.   

Further, the verification and validation of the prognostic models have been performed utilizing the 

benchmark Li-ion battery data from the repository of NASA, Prognostics Centre of Excellence 

(PCoE). The resulting accuracy within the existing 10% results itself validates the superiority of 

the proposed scheme. This work shows the effectiveness of adaptive filtering techniques towards 

efficient predictive maintenance (PdM) by employing analytics, which are methods and 

techniques that use asset data, such as condition and loading data, or experience, to detect or 

predict changes in the physical condition of the equipment. By integrating PdM in current 

industrial practices, the use of these analytics contributes to a larger shift towards Industry 4.0. 



   

 
ix 

 

TABLE OF CONTENTS 

Contents Page No.  

Certificates                       i-iii 

Acknowledgement                                v-vi 

Abstract                             vii-viii 

Table of Content                             

List of Table                       xiii 

List of Figures                          xv-xviii 

Nomenclature                 xix-xx 

Chapter 1 1 

Introduction and Literature Review 1 

1.1 Introduction to Electric Automated Manual Transmission (e-AMT) Technology 2 

1.2 Motivation and Problem Statement 3 

1.3 Literature Review 4 

1.3.1 Maintenance Philosophy 5 

1.3.2 Condition based Maintenance in Auto Industry 7 

1.3.2.1 Time domain analysis 12 

1.3.2.2 Frequency Domain Analysis 14 

1.3.2.3 Time-Frequency Analysis 14 

1.3.3 Modelling Approaches 16 

1.3.3.1 Stochastic Modelling Approach 17 

1.3.3.2 Adaptive Approach 19 

1.4 Objectives of the Work 22 

1.5 Organized Structure of the Thesis 22 

Chapter 2 25 

Remaining Useful Life Methodology 25 

2.1 Introduction 25 

2.2 Definition of RUL 27 

2.3 Theory of RUL Estimation 27 

2.4 Past RUL Works 32 



   

 
x 

 

Chapter 3 37 

Experimental Setup and Data Acquisition 37 

3.1 Introduction 37 

3.2 Preparation of Experimental Setup 38 

3.3 Data Generation 43 

3.4 Role of Motor 47 

3.4.1 Advantages of PMDC motor 47 

3.5 Evaluation Criterion 50 

Chapter-4 53 

Data driven Methodology-Mathematical Background and Associated 
Computation 53 

4.1 Introduction 53 

4.2 Overview of the Data Pre-Processing 54 

4.2.1 Data Processing 56 

4.2.1.1 Feature Extraction 57 

4.2.1.2 Smoothing 58 

4.2.2 FIR and Health Indicator Determination 59 

4.2.3 Feature Fusion using PCA 59 

4.3 Stochastic Approach 61 

4.3.1 Exponential Degradation Modelling and RUL Prediction 61 

4.3.2 RUL Computation 62 

4.4 Adaptive Filtering Technique 62 

4.4.1 Particle Filter 63 

4.4.2 Unscented Particle Filter and Improved Unscented Particle Filter 65 

4.4.2.1 Unscented Particle Filter (UPF) 66 

4.4.2.2 Improved Unscented Particle Filter (i-UPF) 68 

4.4.3 Resampling Methodology 68 

4.4.3.1 Multinomial resampling 69 

4.4.3.2 Stratified resampling 69 

4.4.3.3 Systematic resampling 70 

4.4.3.4 Residual resampling 70 

4.4.4 RUL Estimation Strategy 71 



   

 
xi 

 

Chapter 5 73 

Data Analysis for RUL Estimation 73 

5.1 Introduction 73 

5.2 Experimental Details 73 

5.2.1 Waveforms of the Accelerated Life Cycle Test Data 74 

5.2.1.1 Strategy I: (50%-70%) 75 

5.2.1.2 Strategy II: (75%-80%) 77 

5.2.1.3 Strategy III: (80%-85%) 81 

5.3 Results and Discussion 84 

5.3.1 Feature Extraction and Smoothing 84 

5.3.2 FIR and Condition Indicator 87 

5.3.3 Stochastic Approach 90 

5.3.3.1 Exponential Degradation Model and RUL Computation 90 

5.3.3.2 Performance Analysis 93 

5.3.4 Adaptive filtering 96 

5.3.4.1 Strategy-I: (50%-70%) 96 

A. Particle Filter 97 

B. Unscented Particle Filter 99 

C. Improved Unscented Particle Filter 100 

5.3.4.2 Strategy-II: (75%-80%) 102 

A. Particle Filter 102 

B. Unscented Particle Filter 104 

C. Improved Unscented Particle Filter 105 

5.3.4.3 Strategy-III: (80%-85%) 107 

A. Particle Filter 107 

B. Unscented Particle Filter 109 

C. Improved Unscented Particle Filter 110 

5.3.5 Comparison of Prognostic Accuracy Results 112 

5.4 Summary 114 

Chapter 6 115 

Comparison of Particle Filter Variants towards RUL Estimation 115 

6.1 Introduction 115 



   

 
xii 

 

6.2 Results and Discussion 116 

6.2.1 Comparative Results of Resampling Study 116 

6.2.2 Optimal Choice of c-value 122 

6.2.3 Comparative RUL prediction results of Strategy–I dataset 124 

6.2.4 Comparative RUL prediction results of Strategy–II dataset 125 

6.2.5 Comparative RUL prediction results of Strategy–III dataset 126 

6.3 Verification and Validation 128 

6.3.1 Battery Data Set - B0005 128 

6.3.2 Battery Data Set - B0006 130 

6.3.3 Battery Data Set - B0007 131 

6.3.4 Battery Data Set - B0018 132 

6.4 Summary 134 

Chapter 7 135 

Overall Conclusion and Future Scope of Work 135 

7.1 Overall Conclusion 135 

7.2 Future Scope of Work 136 

References 139 

About the Author 158 

List of Publications                                 162 

  



   

 
xiii 

 

LIST OF TABLES 
 

Table No. Title Page No. 

   

Table 1.1 Industrial Maintenance Practices 5 

Table 2.1 Data-driven prognostic models for RUL estimation 28 

Table 3.1 Sensors used during experimentation 43 

Table 3.2 Sample dataset from HIL experiment 46 

Table 3.3 Specifications of Motor 49 

Table 3.4 Specifications of Motor Controller 50 

Table 4.1 List of extracted features considered in the study 57 

Table 5.1 Empirically fitted values of the exponential degradation model 91 

Table 5.2 Prognostic Accuracy Results 95 

Table 5.3 Empirically fitted cubic polynomial parameters 96 

Table 5.4 Empirically fitted parameters 102 

Table 5.5 Empirically fitted parameters 107 

Table 5.6 Prognostic Accuracy results for Strategy-I 112 

Table 5.7 Prognostic Accuracy results for Strategy-II 113 

Table 5.8 Prognostic Accuracy results for Strategy-III 113 

Table 6.1 Comparison of Quantitative Resampling Results from Strategy-I 118 

Table 6.2 Comparison of Quantitative Resampling Results from Strategy-II 119 

Table 6.3 Comparison of Quantitative Resampling Results from Strategy-III 121 

Table 6.4 Choice of best Resampling for Strategy-I dataset 124 

Table 6.5 Choice of best Resampling for Strategy-II dataset 125 

Table 6.6 Choice of best Resampling for Strategy-III dataset 126 

Table 6.7 B0005-Prognostic Accuracy Results 130 

Table 6.8 B0006-Prognostic Accuracy Results 131 

Table 6.9 B0007-Prognostic Accuracy Results 132 

Table 6.10 B0018-Prognostic Accuracy Results 134 

 

   

  



   

 
xiv 

 

 



   

 
xv 

 

LIST OF FIGURES 

 
Figure No. Title Page No. 

   
Fig. 1.1 e-AMT vehicle drive train 2 
Fig. 1.2 e-AMT motor prognostics 3 
Fig. 1.3 Increase in asset reliability in using PdM 7 
Fig. 1.4 Visualizing the prognostics workflow to RUL as a decision 

making 
8 

Fig. 1.5 Diagram featuring Prognostics and Diagnostics 9 
Fig. 1.6 Schematic of the major contributions 21 
Fig. 2.1 Schematic of RUL Prediction 25 
Fig. 2.2 Data-driven remaining useful life estimation approaches in the 

present study 
28 

Fig. 3.1 Components of an e-AMT set-up 37 
Fig. 3.2 System Schematic of e-AMT consisting of ECU, Sensors and 

Actuators 
39 

Fig. 3.3 Transmission Control Unit Architecture 40 
Fig. 3.4 Experimental Set-up 41 
Fig. 3.5(a) Schematic diagram of 12V, 0.5kW PMDC clutch motor 

actuator assembly with electronic control unit 
44 

Fig. 3.5(b) Clutch sensor position during engagement-disengagement 44 
Fig. 3.6(a) PMDC Motor 48 
Fig. 3.6(b) Circuit diagram of a PMDC motor 48 
Fig. 4.1 Schematic of data-driven RUL estimation methodologies 53 
Fig. 4.2 Prognostics Protocol Module 55 
Fig. 4.3 Flowchart of the proposed approach 56 
Fig. 4.4 Illustration of particle filter variants in motor health prognosis 63 
Fig. 5.1 Sample representation of a 50% -70% duty cycle input to the 

motor 
75 

Fig. 5.2 Sample representation of motor current response for 50% -
70% duty cycle 

75 

Fig. 5.3 Sample plot of actuator position (degrees) during 50% -70% 
duty cycle 

76 

Fig. 5.4(a) Magnified sample plot representing clutch Disengagement 76 
Fig. 5.4(b) Magnified sample plot representing clutch Engagement 76 
Fig. 5.5 Variation of duty, current and actuator position for a sample 

clutch engagement cycle 
77 

Fig. 5.6 Variation of duty, current and actuator position for a sample 
clutch dis-engagement cycle 

77 

Fig. 5.7 Sample representation of a 75% -80% duty cycle input to the 
motor 

78 



   

 
xvi 

 

Fig. 5.8 Sample representation of motor current response for 75% -
80% duty cycle 

78 

Fig. 5.9 Sample plot of actuator position (degrees) during 75% -80% 
duty cycle 

79 

Fig. 5.10(a) Magnified sample plot representing clutch Disengagement 79 
Fig. 5.10(b) Magnified sample plot representing clutch Engagement 79 
Fig. 5.11 Variation of duty, current and actuator position for a sample 

clutch engagement cycle 
80 

Fig. 5.12 Variation of duty, current and actuator position for a sample 
clutch dis-engagement cycle 

80 

Fig. 5.13 Sample representation of an 80% -85% duty cycle input to the 
motor 

81 

Fig. 5.14 Sample representation of motor current response for 80% -
85% duty cycle 

82 

Fig. 5.15 Sample plot of actuator position (degrees) during 80% -85% 
duty cycle 

82 

Fig. 5.16(a) Magnified sample plot representing clutch Disengagement 83 
Fig. 5.16(b) Magnified sample plot representing clutch Engagement 83 
Fig. 5.17 Variation of duty, current and actuator position for a sample 

clutch engagement cycle 
83 

Fig. 5.18 Variation of duty, current and actuator position for a sample 
clutch engagement cycle 

84 

Fig. 5.19 Steps of data pre-processing 85 
Fig. 5.20(a) Smoothened features of the sensor data using classical time 

domain, frequency domain and time-frequency domain 
methods Strategy-I  

86 

Fig. 5.20(b) Smoothened features of the sensor data using classical time 
domain, frequency domain and time-frequency domain 
methods Strategy-II 

86 

Fig. 5.20(c) Smoothened features of the sensor data using classical time 
domain, frequency domain and time-frequency domain 
methods Strategy-III 

87 

Fig. 5.21(a) Ranking of the important pre-processed features Strategy-I 88 
Fig. 5.21(b) Ranking of the important pre-processed features Strategy-II 88 
Fig. 5.21(c) Ranking of the important pre-processed features Strategy-III 89 
Fig. 5.22 Condition indicators for all three strategies obtained after 

feature fusion 
90 

Fig. 5.23  Bayesian updating of model parameters 91 
Fig. 5.24(a) Predicted RUL using exponential degradation model Strategy-

I 
92 

Fig. 5.24(b) Predicted RUL using exponential degradation model Strategy-
II 

92 



   

 
xvii 

 

Fig. 5.24(c) Predicted RUL using exponential degradation model Strategy-
III 

92 

Fig. 5.25(a) Plot of estimated RUL and true RUL for Strategy-I 94 
Fig. 5.25(b) Plot of estimated RUL and true RUL for Strategy-II 94 
Fig. 5.25(c) Plot of estimated RUL and true RUL for Strategy-III 95 
Fig. 5.26 State prediction scheme using Particle Filter for Strategy-I 98 
Fig. 5.27 Histogram of RUL for Strategy-I 98 
Fig. 5.28 State prediction scheme using Unscented Particle Filter for 

Strategy-I 
99 

Fig. 5.29 Histogram of RUL for Strategy-I 100 
Fig. 5.30 State prediction scheme using Improved Unscented Particle 

Filter for Strategy-I 
101 

Fig. 5.31 Histogram of RUL for Strategy-I 101 
Fig. 5.32 State prediction scheme using Particle Filter for Strategy-II 103 
Fig. 5.33 Histogram of RUL for Strategy-II 103 
Fig. 5.34 State prediction scheme using Unscented Particle Filter for 

Strategy-II 
104 

Fig. 5.35 Histogram of RUL for Strategy-II 105 
Fig. 5.36 State prediction scheme using Improved Unscented Particle 

Filter for Strategy-II 
106 

Fig. 5.37 Histogram of RUL for Strategy-II 106 
Fig. 5.38 State prediction scheme using Particle Filter for Strategy-III 108 
Fig. 5.39 Histogram of RUL for Strategy-III 108 
Fig. 5.40 State prediction scheme for Unscented Particle Filter for 

Strategy-III 
109 

Fig. 5.41 Histogram of RUL for Strategy-III 110 
Fig. 5.42 State prediction scheme for Improved Unscented Particle 

Filter for Strategy-III 
111 

Fig. 5.43 Histogram of RUL for Strategy-III 111 
Fig. 6.1 Comparison of resampling plots in case of i-UPF for Strategy-

I dataset 
119 

Fig. 6.2 Comparison of resampling plots in case of i-UPF for Strategy-
II dataset 

120 

Fig. 6.3 Comparison of resampling plots in case of i-UPF for Strategy-
III dataset 

122 

Fig. 6.4 Optimal choice of c-value for Strategy-I 123 
Fig. 6.5 Optimal choice of c-value for Strategy-II 123 
Fig. 6.6 Optimal choice of c-value for Strategy-III 123 
Fig. 6.7 Comparison of PF, UPF and i-UPF using Strategy-I dataset 

for motor RUL prediction 
125 

Fig. 6.8 Comparison of PF, UPF and i-UPF using Strategy-II dataset 
for motor RUL prediction 

126 



   

 
xviii 

 

Fig. 6.9 Comparison of PF, UPF and i-UPF using Strategy-III dataset 
for motor RUL prediction 

127 

Fig. 6.10(a) PF based state prediction for B0005 battery 129 
Fig. 6.10(b) PF based RUL estimation for B0005 battery 129 
Fig. 6.11(a) UPF based state prediction for B0005 battery 129 
Fig. 6.11(b) UPF based RUL estimation for B0005 battery 129 
Fig. 6.12(a) i-UPF based state prediction for B0005 battery 129 
Fig. 6.12(b) i-UPF based RUL estimation for B0005 battery 129 
Fig. 6.13(a) PF based state prediction for B0006 battery 130 
Fig. 6.13(b) PF based RUL estimation for B0006 battery 130 
Fig. 6.14(a) UPF based state prediction for B0006 battery 130 
Fig. 6.14(b) UPF based RUL estimation for B0006 battery 130 
Fig. 6.15(a) i-UPF based state prediction for B0006 battery 131 
Fig. 6.15(b) i-UPF based RUL prediction for B0006 battery 131 
Fig. 6.16(a) PF based state prediction for B0007 battery 131 
Fig. 6.16(b) PF based RUL estimation for B0007 battery 131 
Fig. 6.17(a) UPF based state prediction for B0007 battery 132 
Fig. 6.17(b) UPF based RUL estimation for B0007 battery 132 
Fig. 6.18(a) i-UPF based state prediction for B0007 battery 132 
Fig. 6.18(b) i-UPF based RUL prediction for B0007 battery 132 
Fig. 6.19(a) PF based state prediction for B0018 battery 133 
Fig. 6.19(b) PF based RUL estimation for B0018 battery 133 
Fig. 6.20(a) UPF based state prediction for B0018 battery 133 
Fig. 6.20(b) UPF based RUL estimation for B0018 battery 133 
Fig. 6.21(a) i-UPF based state prediction for B0018 battery 133 
Fig. 6.21(b) i-UPF based RUL prediction for B0018 battery 133 

 

  



   

 
xix 

 

NOMENCLATURE 
 

The principal abbreviations used in this thesis are presented for easy reference. Additionally, most 

symbols are identified where they are used, or first used if use is different than given below.    

List of Abbreviations Description 

RUL remaining useful life 

e-AMT electric automated manual transmission 

HIL hardware-in-loop 

ECU electronic control unit 

CBM condition based maintenance 

OEM original equipment manufacturer 

PdM predictive maintenance 

PHM prognostics and health management 

CPS cyber physical systems 

PMSM permanent magnet synchronous motor 

PMDC permanent magnet direct current motor 

CLR cumulative loss ratio 

PID proportional integral derivative 

SHM structural health monitoring 

FMEA failure mode effect and analysis 

CI condition indicator 

PF particle filter 

UPF unscented particle filter 

i-UPF improved unscented particle filter 

UT unscented transform 

NN neural network 

MLP multi layered perceptron 

GA genetic algorithm 

FFT fast Fourier transform 

MCSA motor current signature analysis 

PCA principal component analysis 

GMM Gaussian mixture models 



   

 
xx 

 

HMM hidden Markov model 

EKF extended Kalman filter 

UKF unscented Kalman filter 

EPF extended particle filter 

ESS effective sample size 

SPC sequential Monte Carlo 

TTF time-to-failure 

SOH/ SOC state-of-health/ state-of-charge 

EOL/ EOD end-of-life/ end-of-discharge 

ECM electronic control modules 

TCU transmission control unit 

PWM pulse width modulation 

ADAS advanced driver assistance systems 

ALCT accelerated life cycle test 

MIDC modified Indian drive cycle 

ESA electrical signature analysis 

FIR feature importance ranking 

  

  


