CERTIFICATE

It is certified that the work contained in the thesis titled **"Data Driven Prognostic Methodology to Study the Failure of Motor"** by **"Ahin Banerjee"** has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Prof. Prabhat Kumar Singh Dikshit

(Supervisor & Chairman) HOD, Department of Civil Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi–221005

DECLARATION BY THE CANDIDATE

I, **Mr. Ahin Banerjee**, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of **Prof. Prabhat Kumar Singh Dikshit** at Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, *etc.*, reported in journals, books, magazines, reports dissertation, thesis, *etc.*, or available at websites and have not included them in this thesis and have not cited as my own work.

Date: Place: Varanasi

(Ahin Banerjee)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

Prof. Prabhat Kumar Singh Dikshit (Supervisor) Department of Civil Engineering IIT (BHU), Varanasi- 221005

Prof. Prabhat Kumar Singh Dikshit (Head of Department) Department of Civil Engineering IIT (BHU), Varanasi- 221005

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: "Data Driven Prognostic Methodology to Study the Failure of Motor".

Name of the Student: Mr. Ahin Banerjee

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University), Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Ph.D. degree.

Date:

Place: Varanasi

(Ahin Banerjee)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institutes copyright notice are indicated.

DEDICATED TO MY LOVING FAMILY & FRIENDS

It is with great pleasure and felicity that I would like to express thanks to all people who have made this thesis possible.

I express my sincere gratitude and indebtness to my supervisor Dr. P. K. S. Dikshit, Professor and Head, Department of Civil Engineering, Indian Institute of Technology (Banaras Hindu University) at Varanasi. I would like to offer special thanks to my venerated late supervisor Dr. Sanjay Kumar Gupta, who, although no longer with us, continues to inspire me by his example and dedication he served over the course of his career. I feel privileged to express my deep sense of gratitude to both the supervisors for their valuable guidance, endless support and constant encouragement throughout the course of my research work. Their truly scientific intuition and broad vision inspired and enriched my growth as a student and researcher. The critical comments, rendered by them during the discussions are deeply acknowledged. I humbly acknowledge a lifetime gratitude to them.

The author expresses sincere thanks to Mr. Prasanta Sarkar, General Manager, Advanced Engineering Division, ERC TATA Motors, Pimpri-Chinchwad, Pune and Late Dr. S. K Gupta for their impetus of collaborative research work which provided the opportunity to carry out experiments in the highly sophisticated laboratory of TATA Motors. At TATA Motors, I gained exposure to the real-time problems faced by the industry and learnt the way to approach towards problem solving, therefore, gratitude is extended to TATA Motors.

I wish to express deep regards to Prof. Chandrasekhar Putcha, California State University, Fullerton, USA for his kind support at all moments during the progress of my research.

I am thankful to RPEC members Prof. Subir Das, Department of Applied Mathematics, and Dr. Supriya Mohanty, Department of Civil Engineering, Indian Institute of Technology (BHU) at Varanasi, for their valuable assessments of my research progress. I will be indebted for their continued support.

The cooperation and constant encouragements from my fellow friends: Rudra, Sayan, Jonak, Rana, Pinaki, Arpan, Swakshar, Subrata, Pankaj, Tanmoy, Debjit, Kasturi, Mohan, Sakshi, Hari, Krishna, Mannu, Ranjeesh, Verma, Nitesh, Bhupendra, Shivani, Mahato, Dr. Shasank, Dr. Ajay, Sameer, Deepak, Dr. Koushik, Jamal, Shubham Dixit, Andreas and juniors for the thoughtprovoking discussions, their support, and sincere help that made my stay in BHU a memorable one. Special thanks to my friends Pawan, Dilip, Amar Penta, Saalai Thenegan, Girish, Ketan, Gajanan, Ratheesh, Mansa, Sumit, Gitesh and Vaibhav during my stay at Pune, India. I feel lucky to be blessed with their wonderful comradeship.

My parents have been my best mentors, preparing me for life in its various aspects. There are no words to express my gratitude for all the selfless efforts they made. I would like to thank my wife Debanshee for her love, moral support and motivation during my research work. I would like to thank my elder brother Mr. Tuhin Banerjee for his love, moral support, encouragement and motivation to get me through my Ph.D.

Finally, I bow with reverence and gratitude to thank the almighty who has enriched me with such an excellent opportunity and infused the power in my mind to fulfill the work assigned to me.

Date:

Place: Varanasi

(Ahin Banerjee)

ABSTRACT

The extensive use of high-end automated assets in an automotive sector is the current paradigm shift as a prerequisite of Industry 4.0. In tandem, the life cycle assessment is the prerequisite for such automated systems to optimize the return on this significant investment. Today's market places increasing emphasis on quality efficiency and environmental performance. Scientific understanding of the degradation process and its phenomena is essential for designing and achieving optimal performance. Even before designing high-performance, environmentally friendly gadgets, a product's life cycle optimization is critical. Machine downtime due to maintainability and system component replacement is quite often associated with elevated expenses. Present work is motivated towards developing a computationally efficient system health prognostics methodology directed towards enhanced performance within optimized cost and safety standards. System's health assessment under actual operating conditions and its future state prediction very often helps in developing an effective maintenance plan. Data-driven models are employed to take advantage of condition based maintenance (CBM), which provides an optimized maintenance strategy for estimating the system's remaining useful life (RUL).

The proposed work utilizes data driven models to predict the RUL of a clutch actuator motor in an electric automated manual transmission (*e*-AMT) application. In an *e*-AMT car, the electromechanical actuator works in tandem with a permanent magnet direct current (PMDC) motor to facilitate automated clutch operation, and any failure or decrease in performance of this motor potentially cause the vehicle to stall. Motor degradation is characterized by a deviation in their performance parameters from their initial values. The change in parameters in turn will cause degradation in performance of the clutch along with the motor which is a part of the clutch assembly, eventually leading to function failure of the system. Current methods for forecasting failures triggered by electronic component faults rely on defining monotonically deviating parameters and modeling their evolution over time. This dissertation establishes a prognostics approach that uses machine learning features derived for an electrical motor response to solve this issue. Exponential degradation modeling and the three variants of particle filter (PF) are applied in the development of an efficient reliability methodology for predicting automotive motor failure. Subsequently, the robust and reliable techniques for motor RUL prediction will support scheduling an optimal maintenance plan. First, the degradation model to exhibit the state of health of the clutch was developed. The initial step has been in the selection of an appropriate prognostic parameter. Unusual patterns in the sensor data set collected from experiments indicated that current (I_a) is one such prognostic parameter to indicate the state of the health of the clutch. A novel condition indicator (CI) and a threshold for a conditionally independent noisy signal from the motor subjected to cumulative degradation were established. A dominating feature characterizing the motor health was discerned amongst time, frequency and time-frequency domain and identified while analyzing the time-series signal composed of an agglomeration of different frequencies that produce higher octaves. Tests for monotonocity and trendability metrics affirmed a distinguishing CI. Principal component analysis (PCA) allowed the fusion of features for the selection of the best-performing CI. The proposed CI was used in an exponential degradation model to predict the RUL of the motor accurately.

The second part of the thesis involves the application of three variants of particle filter (PF) with various resampling techniques to account for heavy-tailed observations and non-Gaussian characteristic of noise to improve the accuracy of RUL estimation. The prediction of the motor's RUL is pursued by a model-based filtering method that relies on an empirical model and a stochastic filtering technique. The empirical model describes the degradation in clutch health with the progression of the fault in a motor component. The stochastic filtering technique on the other hand was used to first solve the 'motor health state' estimation problem, followed by a prediction problem in which the estimated motor health state is extrapolated forward in time to predict RUL. A comparative analysis of the results showed major enhancement in the prediction accuracy respectively and in the efficacy of RUL estimation due to traditional PF, unscented particle filter (UPF), and improved unscented particle filters (*i*-UPF) vis-a-vis the ordinarily fitted exponential degradation model.

Further, the verification and validation of the prognostic models have been performed utilizing the benchmark Li-ion battery data from the repository of NASA, Prognostics Centre of Excellence (PCoE). The resulting accuracy within the existing 10% results itself validates the superiority of the proposed scheme. This work shows the effectiveness of adaptive filtering techniques towards efficient predictive maintenance (PdM) by employing analytics, which are methods and techniques that use asset data, such as condition and loading data, or experience, to detect or predict changes in the physical condition of the equipment. By integrating PdM in current industrial practices, the use of these analytics contributes to a larger shift towards Industry 4.0.

TABLE OF CONTENTS

Contents	Page No.
Certificates	i-iii
Acknowledgement	v-vi
Abstract	vii-viii
Table of Content	
List of Table	xiii
List of Figures	xv-xviii
Nomenclature	xix-xx
Chapter 1	1
Introduction and Literature Review	1
1.1 Introduction to Electric Automated Manual Transmission (e-AMT) Tec	hnology 2
1.2 Motivation and Problem Statement	3
1.3 Literature Review	4
1.3.1 Maintenance Philosophy	5
1.3.2 Condition based Maintenance in Auto Industry	7
1.3.2.1 Time domain analysis	12
1.3.2.2 Frequency Domain Analysis	14
1.3.2.3 Time-Frequency Analysis	14
1.3.3 Modelling Approaches	16
1.3.3.1 Stochastic Modelling Approach	17
1.3.3.2 Adaptive Approach	19
1.4 Objectives of the Work	22
1.5 Organized Structure of the Thesis	22
Chapter 2	25
Remaining Useful Life Methodology	25
2.1 Introduction	25
2.2 Definition of RUL	27
2.3 Theory of RUL Estimation	27
2.4 Past RUL Works	32

Chapter 3	37
Experimental Setup and Data Acquisition	37
3.1 Introduction	37
3.2 Preparation of Experimental Setup	38
3.3 Data Generation	43
3.4 Role of Motor	47
3.4.1 Advantages of PMDC motor	47
3.5 Evaluation Criterion	50
Chapter-4	53
Data driven Methodology-Mathematical Background an	d Associated
Computation	53
4.1 Introduction	53
4.2 Overview of the Data Pre-Processing	54
4.2.1 Data Processing	56
4.2.1.1 Feature Extraction	57
4.2.1.2 Smoothing	58
4.2.2 FIR and Health Indicator Determination	59
4.2.3 Feature Fusion using PCA	59
4.3 Stochastic Approach	61
4.3.1 Exponential Degradation Modelling and RUL Prediction	ı 61
4.3.2 RUL Computation	62
4.4 Adaptive Filtering Technique	62
4.4.1 Particle Filter	63
4.4.2 Unscented Particle Filter and Improved Unscented Partic	cle Filter 65
4.4.2.1 Unscented Particle Filter (UPF)	66
4.4.2.2 Improved Unscented Particle Filter (i-UPF)	68
4.4.3 Resampling Methodology	68
4.4.3.1 Multinomial resampling	69
4.4.3.2 Stratified resampling	69
4.4.3.3 Systematic resampling	70
4.4.3.4 Residual resampling	70
4.4.4 RUL Estimation Strategy	71

Chapter 5	73
Data Analysis for RUL Estimation	73
5.1 Introduction	73
5.2 Experimental Details	73
5.2.1 Waveforms of the Accelerated Life Cycle Test Data	74
5.2.1.1 Strategy I: (50%-70%)	75
5.2.1.2 Strategy II: (75%-80%)	77
5.2.1.3 Strategy III: (80%-85%)	81
5.3 Results and Discussion	84
5.3.1 Feature Extraction and Smoothing	84
5.3.2 FIR and Condition Indicator	87
5.3.3 Stochastic Approach	90
5.3.3.1 Exponential Degradation Model and RUL Computation	90
5.3.3.2 Performance Analysis	93
5.3.4 Adaptive filtering	96
5.3.4.1 Strategy-I: (50%-70%)	96
A. Particle Filter	97
B. Unscented Particle Filter	99
C. Improved Unscented Particle Filter	100
5.3.4.2 Strategy-II: (75%-80%)	102
A. Particle Filter	102
B. Unscented Particle Filter	104
C. Improved Unscented Particle Filter	105
5.3.4.3 Strategy-III: (80%-85%)	107
A. Particle Filter	107
B. Unscented Particle Filter	109
C. Improved Unscented Particle Filter	110
5.3.5 Comparison of Prognostic Accuracy Results	112
5.4 Summary	114
Chapter 6	115
Comparison of Particle Filter Variants towards RUL Estimation	115
6.1 Introduction	115

6.2 F	Results and Discussion	116
6.2.1	Comparative Results of Resampling Study	116
6.2.2	Optimal Choice of <i>c</i> -value	122
6.2.3	Comparative RUL prediction results of Strategy-I dataset	124
6.2.4	Comparative RUL prediction results of Strategy-II dataset	125
6.2.5	Comparative RUL prediction results of Strategy-III dataset	126
6.3 V	Verification and Validation	128
6.3.1	Battery Data Set - B0005	128
6.3.2	Battery Data Set - B0006	130
6.3.3	Battery Data Set - B0007	131
6.3.4	Battery Data Set - B0018	132
6.4 S	Summary	134
Chapter	• 7	135
Overall	Conclusion and Future Scope of Work	135
7.1 Ove	rall Conclusion	135
7.2 Futu	are Scope of Work	136
Reference	es	139
About the	e Author	158
List of Pu	blications	162

LIST OF TABLES

Table No.	Title	Page No.
Table 1.1	Industrial Maintenance Practices	5
Table 2.1	Data-driven prognostic models for RUL estimation	28
Table 3.1	Sensors used during experimentation	43
Table 3.2	Sample dataset from HIL experiment	46
Table 3.3	Specifications of Motor	49
Table 3.4	Specifications of Motor Controller	50
Table 4.1	List of extracted features considered in the study	57
Table 5.1	Empirically fitted values of the exponential degradation model	91
Table 5.2	Prognostic Accuracy Results	95
Table 5.3	Empirically fitted cubic polynomial parameters	96
Table 5.4	Empirically fitted parameters	102
Table 5.5	Empirically fitted parameters	107
Table 5.6	Prognostic Accuracy results for Strategy-I	112
Table 5.7	Prognostic Accuracy results for Strategy-II	113
Table 5.8	Prognostic Accuracy results for Strategy-III	113
Table 6.1	Comparison of Quantitative Resampling Results from Strategy-I	118
Table 6.2	Comparison of Quantitative Resampling Results from Strategy-II	119
Table 6.3	Comparison of Quantitative Resampling Results from Strategy-III	121
Table 6.4	Choice of best Resampling for Strategy-I dataset	124
Table 6.5	Choice of best Resampling for Strategy-II dataset	125
Table 6.6	Choice of best Resampling for Strategy-III dataset	126
Table 6.7	B0005-Prognostic Accuracy Results	130
Table 6.8	B0006-Prognostic Accuracy Results	131
Table 6.9	B0007-Prognostic Accuracy Results	132
Table 6.10	B0018-Prognostic Accuracy Results	134

LIST OF FIGURES

Figure	No.
1 igui c	1 10.

Title

Page No.

Fig. 1.1	<i>e</i> -AMT vehicle drive train	2
Fig. 1.2	e-AMT motor prognostics	3
Fig. 1.3	Increase in asset reliability in using PdM	7
Fig. 1.4	Visualizing the prognostics workflow to RUL as a decision making	8
Fig. 1.5	Diagram featuring Prognostics and Diagnostics	9
Fig. 1.6	Schematic of the major contributions	21
Fig. 2.1	Schematic of RUL Prediction	25
Fig. 2.2	Data-driven remaining useful life estimation approaches in the	28
Fig. 3.1	Components of an a AMT set up	37
Fig. 3.1	System Schematic of a AMT consisting of ECU Sensors and	30
11g. <i>3.2</i>	Actuators	59
Fig. 3.3	Transmission Control Unit Architecture	40
Fig. 3.4	Experimental Set-up	41
Fig. 3.5(a)	Schematic diagram of 12V, 0.5kW PMDC clutch motor	44
	actuator assembly with electronic control unit	
Fig. 3.5(b)	Clutch sensor position during engagement-disengagement	44
Fig. 3.6(a)	PMDC Motor	48
Fig. 3.6(b)	Circuit diagram of a PMDC motor	48
Fig. 4.1	Schematic of data-driven RUL estimation methodologies	53
Fig. 4.2	Prognostics Protocol Module	55
Fig. 4.3	Flowchart of the proposed approach	56
Fig. 4.4	Illustration of particle filter variants in motor health prognosis	63
Fig. 5.1	Sample representation of a 50% -70% duty cycle input to the motor	75
Fig. 5.2	Sample representation of motor current response for 50% -	75
D ' 5 0	70% duty cycle	- (
Fig. 5.3	Sample plot of actuator position (degrees) during 50% -/0% duty cycle	76
Fig. 5.4(a)	Magnified sample plot representing clutch Disengagement	76
Fig. 5.4(b)	Magnified sample plot representing clutch Engagement	76
Fig. 5.5	Variation of duty, current and actuator position for a sample	77
0	clutch engagement cycle	
Fig. 5.6	Variation of duty, current and actuator position for a sample	77
	clutch dis-engagement cycle	
Fig. 5.7	Sample representation of a 75% -80% duty cycle input to the motor	78

Fig. 5.8	Sample representation of motor current response for 75% - 80% duty cycle	78
Fig. 5.9	Sample plot of actuator position (degrees) during 75% -80% duty cycle	79
Fig. 5 $10(a)$	Magnified sample plot representing clutch Disengagement	79
Fig. 5.10(a)	Magnified sample plot representing clutch Engagement	79
Fig. 5.11	Variation of duty, current and actuator position for a sample	80
11g. J.11	clutch engagement cycle	80
Fig. 5.12	Variation of duty current and actuator position for a sample	80
1 Ig. <i>5</i> .12	clutch dis-engagement cycle	00
Fig. 5.13	Sample representation of an 80% 85% duty cycle input to the	81
1 Ig. <i>5</i> .15	motor	01
Fig 5.14	Sample representation of motor current response for 80%	87
Fig. 5.14	85% duty cycle	02
Fig. 5.15	Sample plot of actuator position (degrees) during 80% -85%	82
1.18.0.10	duty cycle	02
Fig. 5.16(a)	Magnified sample plot representing clutch Disengagement	83
Fig. 5.16(b)	Magnified sample plot representing clutch Engagement	83
Fig. 5.17	Variation of duty, current and actuator position for a sample	83
-	clutch engagement cycle	
Fig. 5.18	Variation of duty, current and actuator position for a sample	84
	clutch engagement cycle	
Fig. 5.19	Steps of data pre-processing	85
Fig. 5.20(a)	Smoothened features of the sensor data using classical time	86
	domain, frequency domain and time-frequency domain	
	methods Strategy-I	
Fig. 5.20(b)	Smoothened features of the sensor data using classical time	86
	domain, frequency domain and time-frequency domain	
	methods Strategy-II	
Fig. 5.20(c)	Smoothened features of the sensor data using classical time	87
	domain, frequency domain and time-frequency domain	
	methods Strategy-III	
Fig. 5.21(a)	Ranking of the important pre-processed features Strategy-I	88
Fig. 5.21(b)	Ranking of the important pre-processed features Strategy-II	88
Fig. 5.21(c)	Ranking of the important pre-processed features Strategy-III	89
Fig. 5.22	Condition indicators for all three strategies obtained after	90
0	feature fusion	
Fig. 5.23	Bayesian updating of model parameters	91
Fig. 5.24(a)	Predicted RUL using exponential degradation model Strategy-	92
	I	
Fig. 5.24(b)	Predicted RUL using exponential degradation model Strategy-	92
	II	

Fig. 5.24(c)	Predicted RUL using exponential degradation model Strategy- III	92
Fig. 5.25(a)	Plot of estimated RUL and true RUL for Strategy-I	94
Fig. 5.25(b)	Plot of estimated RUL and true RUL for Strategy-II	94
Fig. 5.25(c)	Plot of estimated RUL and true RUL for Strategy-III	95
Fig. 5.26	State prediction scheme using Particle Filter for Strategy-I	98
Fig. 5.27	Histogram of RUL for Strategy-I	98
Fig. 5.28	State prediction scheme using Unscented Particle Filter for Strategy-I	99
Fig. 5.29	Histogram of RUL for Strategy-I	100
Fig. 5.30	State prediction scheme using Improved Unscented Particle Filter for Strategy-I	101
Fig. 5.31	Histogram of RUL for Strategy-I	101
Fig. 5.32	State prediction scheme using Particle Filter for Strategy-II	103
Fig. 5.33	Histogram of RUL for Strategy-II	103
Fig. 5.34	State prediction scheme using Unscented Particle Filter for Strategy-II	104
Fig. 5.35	Histogram of RUL for Strategy-II	105
Fig. 5.36	State prediction scheme using Improved Unscented Particle Filter for Strategy-II	106
Fig. 5.37	Histogram of RUL for Strategy-II	106
Fig. 5.38	State prediction scheme using Particle Filter for Strategy-III	108
Fig. 5.39	Histogram of RUL for Strategy-III	108
Fig. 5.40	State prediction scheme for Unscented Particle Filter for Strategy-III	109
Fig. 5.41	Histogram of RUL for Strategy-III	110
Fig. 5.42	State prediction scheme for Improved Unscented Particle Filter for Strategy-III	111
Fig. 5.43	Histogram of RUL for Strategy-III	111
Fig. 6.1	Comparison of resampling plots in case of <i>i</i> -UPF for Strategy-I dataset	119
Fig. 6.2	Comparison of resampling plots in case of <i>i</i> -UPF for Strategy- II dataset	120
Fig. 6.3	Comparison of resampling plots in case of <i>i</i> -UPF for Strategy- III dataset	122
Fig. 6.4	Optimal choice of <i>c</i> -value for Strategy-I	123
Fig. 6.5	Optimal choice of <i>c</i> -value for Strategy-II	123
Fig. 6.6	Optimal choice of <i>c</i> -value for Strategy-III	123
Fig. 6.7	Comparison of PF, UPF and <i>i</i> -UPF using Strategy-I dataset	125
	for motor RUL prediction	
Fig. 6.8	Comparison of PF, UPF and <i>i</i> -UPF using Strategy-II dataset for motor RUL prediction	126

Fig. 6.9	Comparison of PF, UPF and <i>i</i> -UPF using Strategy-III dataset	127
	for motor RUL prediction	
Fig. 6.10(a)	PF based state prediction for B0005 battery	129
Fig. 6.10(b)	PF based RUL estimation for B0005 battery	129
Fig. 6.11(a)	UPF based state prediction for B0005 battery	129
Fig. 6.11(b)	UPF based RUL estimation for B0005 battery	129
Fig. 6.12(a)	<i>i</i> -UPF based state prediction for B0005 battery	129
Fig. 6.12(b)	<i>i</i> -UPF based RUL estimation for B0005 battery	129
Fig. 6.13(a)	PF based state prediction for B0006 battery	130
Fig. 6.13(b)	PF based RUL estimation for B0006 battery	130
Fig. 6.14(a)	UPF based state prediction for B0006 battery	130
Fig. 6.14(b)	UPF based RUL estimation for B0006 battery	130
Fig. 6.15(a)	<i>i</i> -UPF based state prediction for B0006 battery	131
Fig. 6.15(b)	<i>i</i> -UPF based RUL prediction for B0006 battery	131
Fig. 6.16(a)	PF based state prediction for B0007 battery	131
Fig. 6.16(b)	PF based RUL estimation for B0007 battery	131
Fig. 6.17(a)	UPF based state prediction for B0007 battery	132
Fig. 6.17(b)	UPF based RUL estimation for B0007 battery	132
Fig. 6.18(a)	<i>i</i> -UPF based state prediction for B0007 battery	132
Fig. 6.18(b)	<i>i</i> -UPF based RUL prediction for B0007 battery	132
Fig. 6.19(a)	PF based state prediction for B0018 battery	133
Fig. 6.19(b)	PF based RUL estimation for B0018 battery	133
Fig. 6.20(a)	UPF based state prediction for B0018 battery	133
Fig. 6.20(b)	UPF based RUL estimation for B0018 battery	133
Fig. 6.21(a)	<i>i</i> -UPF based state prediction for B0018 battery	133
Fig. 6.21(b)	<i>i</i> -UPF based RUL prediction for B0018 battery	133

NOMENCLATURE

The principal abbreviations used in this thesis are presented for easy reference. Additionally, most symbols are identified where they are used, or first used if use is different than given below.

List of Abbreviations	Description
RUL	remaining useful life
e-AMT	electric automated manual transmission
HIL	hardware-in-loop
ECU	electronic control unit
CBM	condition based maintenance
OEM	original equipment manufacturer
PdM	predictive maintenance
PHM	prognostics and health management
CPS	cyber physical systems
PMSM	permanent magnet synchronous motor
PMDC	permanent magnet direct current motor
CLR	cumulative loss ratio
PID	proportional integral derivative
SHM	structural health monitoring
FMEA	failure mode effect and analysis
CI	condition indicator
PF	particle filter
UPF	unscented particle filter
<i>i</i> -UPF	improved unscented particle filter
UT	unscented transform
NN	neural network
MLP	multi layered perceptron
GA	genetic algorithm
FFT	fast Fourier transform
MCSA	motor current signature analysis
РСА	principal component analysis
GMM	Gaussian mixture models

HMM	hidden Markov model
EKF	extended Kalman filter
UKF	unscented Kalman filter
EPF	extended particle filter
ESS	effective sample size
SPC	sequential Monte Carlo
TTF	time-to-failure
SOH/ SOC	state-of-health/ state-of-charge
EOL/ EOD	end-of-life/ end-of-discharge
ECM	electronic control modules
TCU	transmission control unit
PWM	pulse width modulation
ADAS	advanced driver assistance systems
ALCT	accelerated life cycle test
MIDC	modified Indian drive cycle
ESA	electrical signature analysis
FIR	feature importance ranking