Contents

				Page No.
Lis	st of F	igures		xix
Lis	st of T	ables		XXV
Lis	st of A	Abbrevia	ations	xxvii
Lis	st of S	Symbols		xxix
Pro	eface			xxxi
1				
1	Intr	oducti	on and Literature Review	1
	1.1	Introd	luction	2
	1.2	Motiv	ration	3
	1.3	MIMO	O System	3
		1.3.1	Channel Capacity of MIMO Links	4
			1.3.1.1 Channel State Information (CSI) at Transmitter	5
		1.3.2	Spectral Efficiency	6
		1.3.3	Mutual Coupling at Channel End	7
			1.3.3.1 Mutual Coupling in the Transmitting Mode	8
			1.3.3.2 Mutual Coupling in the Receiving Mode	9
	1.4	Anten	ina Structures Used in Portable Devices	10
	1.5	Mono	pole Antenna	12
		1.5.1	Principle of Monopole Antenna	12
		1.5.2	Printed Planar Monopole Antenna	13
		1.5.3	Mathematical Formulation for Resonant Frequency	15
	1.6	MIMO	O Antenna Implementing Challenges	18
	1.7	MIMO	O Antenna Performances Metrics	19
		1.7.1	Conventional Performances as Efficiency	20
			1.7.1.1 Total Efficiency	20
			1.7.1.2 Multiplexing Efficiency	21
		1.7.2	Non-Conventional Performance Metrics	21
			1.7.2.1 Isolation (Coupling)	22
			1.7.2.2 Envelope Correlation Coefficient (ECC)	22
			1.7.2.3 Diversity Gain (DG)	23

			1.7.2.4 Mean Effective Gain (MEG)	23
			1.7.2.5 Total Active Reflection Coefficient (TARC)	24
			1.7.2.6 Channel Capacity Loss (CCL)	25
	1.8	MIMC	Antenna Diversity Dimensions	26
	1.9	Electro	omagnetic Coupling in MIMO Antenna	27
		1.9.1	Electromagnetic Coupling Sources	28
		1.9.2	Space Wave and Surface Wave Coupling	29
	1.10	Mutua	l Coupling Reduction Techniques	31
	1.11	State-o	of-the-Art Review on MIMO Antenna	32
		1.11.1	Review on Two-Element MIMO Antenna	32
		1.11.2	Review on Four-Element MIMO Antenna	37
		1.11.3	Review on Eight-Element MIMO Antenna	40
		1.11.4	Review on Integrating Different Antennas on a Common Aperture	42
	1.12	Object	ive, Scope, and Structure of the Thesis	43
<u> </u>				
_	Real	izatior	of 12-Element MIMO Antenna for 5G Smartphones	47
	2.1	Introdu	uction	48
	2.2	Details	s of 2-Element MIMO Antenna	50
		2.2.1	Design Evolution and Corresponding S-parameters	50
		2.2.2	Input Impedance	53
		2.2.3	Current Distribution Plot	54
		2.2.4	Ground and Radiator Stubs Length	55
	2.3	Result	s and Discussion	56
		2.3.1	S-parameter Results	56
		2.3.2	Radiation Pattern	56
		2.3.3	Efficiency and Gain	58
		2.3.4	Diversity Performances	58
			2.3.4.1 ECC, DG, and MEG Ratio	59
			2.3.4.2 TARC and CCL	59
		2.3.5	Comparison and Review	61
	2.4	Effect	of Communication Environment	63
	2.5	Config	guration of 12-Element MIMO Antenna	63
	2.6	Summ	ary	66

3	Wid	eband	20-Element 3D-MIMO Antenna for Localization Syste	m 67
	3.1	Introd	uction	68
	3.2	Detail	s of Antenna Design	70
		3.2.1	Single-Element Antenna	70
		3.2.2	Quad-Element MIMO Antenna	71
		3.2.3	Surface Current Distribution	72
	3.3	Result	s and Discussion	74
		3.3.1	S-parameters	74
		3.3.2	Radiation Pattern	75
		3.3.3	Efficiency and Gain	76
		3.3.4	Diversity Performances of the MIMO Antenna	76
			3.3.4.1 ECC	76
			3.3.4.2 TARC and CCL	77
		3.3.5	Comparison and Review	78
	3.4	The 3	D-MIMO Antenna System	78
		3.4.1	20-Element MIMO Antenna Configuration	78
		3.4.2	Results and Discussion	80
			3.4.2.1 S-parameters	80
			3.4.2.2 Efficiency and Gain	80
			3.4.2.3 Comparison Review with 3D-MIMO Antenna	81
	3.5	Summ	ary	82
4	Ultr	a-wide	eband 32-Element 3D-MIMO Antenna for	Vehicular
	App	lication	ns	85
	4.1	Introd	uction	86
	4.2	2 Details of MIMO Antenna		89
		4.2.1	Design Evolution of Eight-Element MIMO Antenna	90
		4.2.2	Fundamental Resonant Frequency	91
		4.2.3	Effect of Decoupling Structures on Shared Ground	92
	4.3	Result	s and Discussion	93
		4.3.1	S-parameters	93
		4.3.2	Radiation Performances	94
		4.3.3	Gain and Efficiency	96

		4.3.4	Diversity Performances (ECC and TARC)	97
		4.3.5	Comparison and Review	97
	4.4	Details	s of 3D-MIMO System	98
		4.4.1	Configuration of 32-Element MIMO Antenna	98
		4.4.2	Results and Discussion	103
			4.4.2.1 <i>S</i> -parameters	103
			4.4.2.2 Efficiency and Gain	103
			4.4.2.3 Comparison and Review	105
	4.5	Summ	ary	106
5	Inte	gration	n of 5G Sub-6 GHz and mm-Wave Higher-Order	MIMO
	Ante	enna fo	or Smartphone's Back Covers	107
	5.1	Introd	uction	108
	5.2	Details	s of 5G-MIMO Antenna	111
		5.2.1	8-Element MIMO Antenna Structure	111
		5.2.2	1×4 Array-Based 4-Element MIMO Antenna Structure	113
		5.2.3	Higher-Order 5G-MIMO Antenna Configuration	113
		5.2.4	Effect of Decoupling Structures on Common Ground	114
	5.3	Result	s and Discussion	116
		5.3.1	S-parameters Performances	116
		5.3.2	Radiation Performances	117
		5.3.3	Gain, Efficiency, and ECC	119
	5.4	Anten	na Integrated within Back-Cover	121
		5.4.1	MIMO Antenna with Back-Cover	121
		5.4.2	Comparison and Review	123
	5.5	Summ	ary	125
6	Cone	clusion	and Scope for Future Research	127
	6.1		ary and Concluding Statements	128
	6.2		for Future Research Work	132
	References			135
	Publications			149

List of Figures

Fig. 1.1:	MIMO system module with mutual coupling between antenna elements	5
Fig. 1.2:	Mutual coupling between antenna elements (a) transmitting mode and (b) receiving mode	9
Fig. 1.3:	Printed monopole antenna inside portable devices	12
Fig. 1.4:	Basic structure of (a) dipole and (b) monopole antenna	14
Fig. 1.5:	Basic configuration (a) monopole and (b) equivalent dipole	14
Fig. 1.6:	Types of monopole structures (a) wire-monopole, (b) planar-monopole, and (c) printed planar-monopole	15
Fig. 1.7:	Overlapping modes in printed planar monopole structure	15
Fig. 1.8:	Thin cylindrical wire monopole to rectangular planar monopole structure	16
Fig. 1.9:	Cylindrical wire monopole to rectangular printed planar monopole structure	18
Fig. 1.10:	MIMO antenna diversity dimensions (a) spatial diversity, (b) polarization diversity, and (c) pattern/angle diversity	27
Fig. 1.11:	Electromagnetic coupling between two coaxial-fed patch antennas (a) patches on the same substrate with common ground, (b) patches on a unique substrate with partial ground, (c) patches on a partial substrate with common ground, and (d) individual antennas	29
Fig. 1.12:	The structure of the present thesis works	46
Fig. 2.1:	Final configuration of the MIMO antenna with optimized parameters	52
Fig. 2.2:	Design evolution of MIMO antenna (a) Case_1, (b) Case_2, (c) Case_3, and (d) Case_4	52

Fig. 2.3:	S-parameters characteristics of the MIMO antenna for different cases	53
Fig. 2.4:	Input impedance of MIMO antenna considered in Case_4	54
Fig. 2.5:	Surface current distribution of the MIMO antenna at 3.6 GHz (a) without radiating stub, (b) with radiating stub, and (c) vector current plot	55
Fig. 2.6:	View of the prototype (a) top, (b) bottom, and (c) corresponding simulated and measured S-parameters characteristics	57
Fig. 2.7:	Simulated and measured 2-D radiation patterns along xz- plane and yz-plane at 3.6 GHz, when element-1 is excited and element-2 is kept matched terminated (a) co-polarization and (b) cross-polarization	57
Fig. 2.8:	3-D radiation pattern for element-1 of the MIMO antenna at 3.6 GHz and element-2 is kept matched terminated	58
Fig. 2.9:	Efficiency and gain of the MIMO antenna	59
Fig. 2.10:	For two-element MIMO antenna (a) ECC and DG, and (b) ratio of MEG	60
Fig. 2.11:	For two-element MIMO antenna (a) TARC and (b) CCL	61
Fig. 2.12:	Two-element MIMO with large ground (a) configuration, (b) with housing box, (c) corresponding simulated S-parameters characteristics, and (d) radiation efficiency and realized gain	64
Fig. 2.13:	12-element MIMO antenna (a) configuration and (b) corresponding simulated <i>S</i> -parameters characteristics.	65
Fig. 2.14:	12-element MIMO antenna corresponding radiation efficiency and realized gain.	66
Fig. 3.1:	The single proposed antenna (a) configuration and (b) corresponding <i>S</i> -parameter characteristics	71
Fig. 3.2:	The proposed quad-element MIMO antenna with dimension parameters	72
Fig. 3.3:	The parametric studies on the connecting ground strip corresponding <i>S</i> -parameters characteristics.	73

Fig. 3.4:	Current distribution on the surface of the antenna at (a) 4.6 GHz and (b) 8.7 GHz	73
Fig. 3.5:	The prototype of the quad-element MIMO antenna (a) top view, (b) bottom view, and (c) corresponding simulated and measured <i>S</i> -parameters	74
Fig. 3.6:	2-D radiation patterns xz-plane and yz-plane when port_1 is excited and other ports are kept matched terminated at (a) 4.6 GHz and (b) 8.7 GHz	75
Fig. 3.7:	3-D radiation patterns when port_1 is excited and other ports are kept matched terminated at (a) 4.6 GHz and (b) 8.7 GHz	75
Fig. 3.8:	Efficiency and gain of the quad-element MIMO antenna	76
Fig. 3.9:	(a) ECC and (b) TARC and CCL for quad-element MIMO antenna	77
Fig. 3.10:	20-element 3D-MIMO antenna (a) configuration with parameters (b) 3D-view with 3-D radiation pattern, and (c) side-view	79
Fig. 3.11:	20-element 3D-MIMO antenna, corresponding (a) <i>S</i> -parameters and (b) radiation efficiency and peak gain	81
Fig. 4.1:	Modern vehicular wireless communication in IoV/V2X	86
Fig. 4.2:	Eight-element MIMO antenna (a) configuration, (b) zoomed view of stub	89
Fig. 4.3:	Two-element MIMO antenna (a) configuration, (b) corresponding <i>S</i> -parameters	91
Fig. 4.4:	Input impedance for element-1 of the eight-element MIMO antenna	92
Fig. 4.5:	Surface current distribution on the shared ground (a) without any strip, (b) with a combination of strip, and (c) another dual I-shaped strip	93
Fig. 4.6:	(a) Top view, (b) bottom view, (c) simulated <i>S</i> -parameters, and (d) measured <i>S</i> -parameters of the eight-element MIMO antenna	94

Fig. 4.7:	Simulated and measured 2-D radiation patterns for element-1 along xz-plane and yz-plane (a) at 4.82 GHz and (b) at 11.45 GHz, (c) 3-D radiation pattern at 4.82 GHz, when element-1 is excited, and (d) when all elements are excited	95
Fig. 4.8:	Eight-element MIMO antenna (a) efficiency and (b) gain	96
Fig. 4.9:	Eight-element MIMO antenna (a) ECC and (b) TARC	99
Fig. 4.10:	Eight-element MIMO antenna with large metallic sheet (a) confi_2 and (b) reflection coefficient of confi_1 and _2	101
Fig. 4.11:	32-element 3D-MIMO system (a) overall 3D view (b) 2D front view of both unit cell U ¹ and U ³ , and (c) 3D view with radome and metallic sheet	102
Fig. 4.12:	32-element 3D-MIMO system with radome and metallic sheet corresponding (a) reflection, (b) coupling <i>S</i> -parameter, and (c) total efficiency and peak realized gain	104
Fig. 4.13:	3D radiation pattern at 8.2 GHz of the 32-element 3D-MIMO system with radome and metallic sheet, when all elements are excited	105
Fig. 5.1:	The MIMO antenna (a) configuration with shape parameters and (b) zoomed view of 1×4 array	112
Fig. 5.2:	(a) Two-element MIMO antenna configuration corresponding S -parameters and (b) 1×4 array configuration corresponding S_{11} -parameter	115
Fig. 5.3:	Surface current distribution on the shared ground (a) element-1 (#P¹) is kept excited at 4.9 GHz and (b) element-9 (#P⁰) is kept excited at 26.5 GHz, and the rest of the elements are kept matched terminated	116
Fig. 5.4:	The prototype (a) Top view, (b) bottom view, (c) simulated <i>S</i> -parameters, and (d) measured <i>S</i> -parameters	118
Fig. 5.5:	2-D radiation patterns in xz- and yz-plane, when one port is excited, and rest all ports are kept matched terminated (a) element-1 at 4.81 GHz, and (b) element-9 at 26.5 GHz.	119
Fig. 5.6:	3-D radiation patterns, when one port is excited, and rest all ports are kept matched terminated (a) element-1 at 4.81 GHz, (b) element-9 at 26.5 GHz, (c) when all ports are excited at	119

4.81 GHz, and (d) when all ports are excited at 26.5 GHz

Fig. 5.7:	The proposed MIMO antenna (a) gain and efficiency, and (b) ECC	120
Fig. 5.8:	The antenna integrated within dielectric back cover (a) back-cover's top-side view, (b) top-side view of antenna with back-cover, (c) top view of antenna with back-cover, and (d) side view of back-cover's top	122
Fig. 5.9:	The proposed antenna embedded within a 0.75 mm thick dielectric back-cover corresponding simulated <i>S</i> -parameters.	122
Fig. 5.10:	The proposed antenna embedded within a 0.75 mm thick dielectric back-cover corresponding gain and efficiency.	123