
Chapter 5

An Integrated Approach to Design

Functionality with Security for

Cyber-Physical Systems

Generally, a CPS is a kind of distributed system with safety-critical functionalities.

Designing a secure, maintainable, and performance-efficient large-scale CPS is chal-

lenging. To design a distributed secure CPS, two major responsibilities need to be

distributed and organized including:

� Distribution of functionality tasks such as monitoring, control, execution, in-

formation gathering, and processing with aggregation of results.

� Distribution of security tasks such as monitoring, data collection, buffering of

security threat events, and aggregation of results for its control.

In a distributed system, to handle the responsibilities of task distribution-aggregation,

communication, and task redistribution in case of a node failure, there is a need of

a coordinating node known as leader [113] [13]. Depending upon the enormity and

complexity of event monitoring for security and functionality delivered in a CPS, a

93

Chapter 5. Integrated Approach to Design Functionality with Security 94

single leader or separate leaders may handle the functionality and security responsi-

bilities. If the system is smaller with few or delay-tolerant tasks, both responsibilities

may be given to the same leader node. By nature, CPSs are complex and large real-

time systems like rail management or smart city. If security and functionality are

handled by one and the same leader, the leader node may face a heavy load to co-

ordinate all the functionality and security activities simultaneously. Consequently,

the deadline of the functional tasks may be overlooked, or security events may be

missed, which is considered a failure in hard real-time systems. Moreover, monitor-

ing and events related to security are pretty different from functionality and may

be needed to integrate and update the existing system for instance, in the railway

management system. By looking at the exigency and grave consequences of security

and the time criticality of security mechanisms, there is a need to have a logical and

physical separation between functionality and security.

Hence, in this chapter, we propose a multi-tier distributed architectural model of

CPS to integrate and organize the functionality and security of a large-scale CPS.

The idea is similar to aspect-orientation [69] as security is designed, implemented,

and maintained separately. It can be integrated along with the cyber part in CPS

to improve the modularity and maintainability of the system. For that, we are

bringing in the concept of leader(s) and leader election in CPS for the first time and

facilitating the logical and physical separation by electing separate functionality and

security leaders. Moreover, as most of the tasks are safety-critical and real-time,

there should be a way to elect a new leader immediately after a leader node is failed

to minimize the adverse effect on real-time task coordination, system performance,

and security. Hence, we propose a fresh fault-tolerant leader election algorithm

to elect the functionality and security leaders for CPS. Instead of electing only a

single leader, a list of leader capable nodes is elected based on a predefined election

criterion. Moreover, the general leader election process is itself vulnerable to initiate

unnecessary leader election process. The proposed algorithm can also deal with this

scenario, where a malicious node tries to initiate the election process unnecessary to

target an unbiased leader. It achieves consensus among leader-capable nodes to start

Chapter 5. Integrated Approach to Design Functionality with Security 95

the election process. The proposed architectural model is evaluated by performing

several experiments. The experimental results show that the proposed architectural

model improves CPS performance in terms of latency, average response time, and

the number of real-time tasks completed within the deadline.

The rest of the chapter is organized as follows. Section 5.1 presents the attack

scenarios. Section 5.2 proposes the multi-tier architectural model and a pre-selected

leader election algorithm for electing the functionality and security leaders. Section

5.3 presents the performance evaluation of the proposed architectural model and a

case study on a smart healthcare system. Section 5.4 presents the summary.

5.1 Attack scenarios

In general CPS architectures [78, 44, 61, 63] the security vulnerabilities may exist

at any of the architecture layers. As a result, security concerns are different at dif-

ferent layers. Different attacks like tampering, spoofing, or denial of service may

be launched at any of the layers to compromise the integrity, confidentiality, and

availability of a node by performing ARP spoofing, false data/command injection

attacks, smurf attacks, social engineering, replay attacks, infecting the firmware, or

sniffing. As a result, the nodes may fail, become non-responsive, or behave in a

faulty manner. Moreover, the sensitive information may be exfiltrated and sent to

illegitimate nodes. Specifically, the attack scenarios (AS) include

AS(1) attack on sensors or actuators

AS(2) attack on field controllers or

AS(3) attack on computing nodes that perform specified functionality

AS(4) initiation of unnecessary leader election process

Chapter 5. Integrated Approach to Design Functionality with Security 96

5.2 The proposed architectural model

The section presents the formal description of the proposed architectural model.

Different layers of the proposed architecture and their responsibilities are also ex-

plained here. Then, the need and role of functional and security leaders and the

proposed leader election algorithm are discussed in detail.

5.2.1 Formal description

The proposed architectural model consists of four layers where security is added

as a cross-cutting concern as shown in FIGURE 5.1. This architectural model is

designed and viewed as a distributed system with heterogeneous nodes as presented

in FIGURE 5.2. Formally, the proposed CPS architecture is defined as a set of nodes

(SN) connected through an arbitrary network topology. SN = {S∪AR∪FC∪CN},

where S = {s1, s2, . . . , se}, AR = {ar1, . . . , arf}, FC = {fc1, fc2, . . . , fcg}, and

CN = {FN ∪SN}, FN = {fn1, . . . , fnh} and SN = {sn1, . . . , snk} where e, f, g, k

and h are integer and k < h. The computing nodes are divided into set of non-

overlapping clusters C = {c1, . . . , cm} such that each cl = {fn ∪ sn} where, fn ⊆

FN, sn ⊆ SN . The clustering is done on the basis of dependent and independent

domains. A cluster in C is selected to make a higher level cluster called decision

support cluster (DSC) to have a global view of system’s functionality and intrusion

monitoring and response requests. A cluster cl communicates and coordinates with

other clusters via DSC. The leaders in each cl are responsible to establish the inter

cluster communication via DSC leaders as shown in FIGURE 5.3.

5.2.2 Layers responsibilities

In the proposed architectural model (FIGURE 5.2), different computational respon-

sibilities of the total work of automation, instrumentation, control and security are

distributed. These responsibilities are performed by different types of homogeneous

or heterogeneous nodes at different layers for different purposes, including sensing,

Chapter 5. Integrated Approach to Design Functionality with Security 97

Physical objects

Computing nodes

 Decision support and configuration nodes

Sensors Actuators

sensors reading actuators effects

Field Controllers

Sensing &
actuation Layer

Cyber Layer

Decision
support Layer

 Controlller Layer

security

Figure 5.1: Layered representation of CPS architecture

 Sensor node

 Actuator node

Field controller

Functional node
Security node

 Bidirectional
 communication

 Unidirectional
 communication

Figure 5.2: Clustered view of the proposed distributed CPS architectural model

Functional node

Security node

 Bidirectional
 communication

Functional Leader
Security Leader

Figure 5.3: Clustered view of cyber layer and decision support layer of the proposed
distributed CPS architectural model with functionality and security leaders

actuation, computing, and coordination. The responsibilities like sensing and ac-

tuation are hard-coded or fixed and performed by hardware entities like sensors,

actuators, and micro-controllers at lower layers. The bottom two layers follow the

fixed distribution. On the other hand, the top two layers follow floating distribution

as the tasks may be distributed or reallocated on any computing node.

Chapter 5. Integrated Approach to Design Functionality with Security 98

Sensor and actuation layer consists of numerous similar or different types of

field devices, including sensor and actuator nodes and represented as gray circles.

These nodes may be deployed for environmental and security monitoring. The layer

is closer to the real world or physical equipment and infrastructure and responsible

for observing and reacting. The sensor nodes perceive the system and environment

state variables’ value, and events send this information to the controller layer. The

actuator nodes receive the control command to execute the required actions directed

by upper layers.

Controller layer consists of multiple programmable field controllers and shown as

boxes. The layer is responsible for performing purely real-time tasks. To respond

to real-time functionality and security requirements, each controller receives, pro-

cesses the sensor data, and instructs the actuator to change its state accordingly.

The layer is also responsible for pushing the state information and control status

onto the cyber layer and updating the control directives from the upper layer if re-

quired. The security at this level is embedded within the controller nodes to perform

authentication of communicating nodes and verify sensor values with set values.

Both sensor and actuation and controller layers follow fixed distribution or have a

limited scope of distribution. Hence, controller nodes are considered fixed leaders.

Moreover, the redundant nodes are applied at these layers to make the system more

fault or breach-tolerant.

Cyber layer interacts with the controller layer to monitor the system states and

sends the control directives to the controllers. It receives massive real-time data

and processes it to extract additional information for context awareness. The layer

consists of several computing nodes, arranged as clusters and represented as ellipses.

The nodes can collaborate and distribute the management-level operational decisions

as tasks among themselves. Moreover, they aggregate and store the data at the local

level and send the aggregated data and results to the decision support layer for a

global view of the system. Clustering is done based on domain (region) separation to

Chapter 5. Integrated Approach to Design Functionality with Security 99

perform specific tasks in each domain and independent of physical proximity. It im-

proves performance, system management, and security by identifying and localizing

the system-level faults, isolating the attacked segment, and preventing the cascading

failures of the region due to security threats. Each cluster performs some dependent

and independent tasks. A region needs to interact with other regions to execute

the dependent tasks but does not need any interaction to execute the independent

tasks. The nodes communicate within the cluster to execute the independent tasks.

Decision support layer consists of multiple computing nodes that mainly commu-

nicate & coordinate with each cluster to obtain a global view of the entire system.

Although, the layer can respond to the requests from the cyber layer in real-time.

However, it primarily performs non-real-time operations for decision support, such

as data correlation and more intense analytics. The layer is responsible for finding,

observing, and predicting the CPS behavior, reliability assessment, machine health

value, maintenance actions, configuration management, change in management pol-

icy and business rules, storage, visualization, auditing, and logging. It does not

directly communicate with the controller layer, but it can direct the lower layer to

send instructions. It provides operational support to lower layers by load balancing

and task prioritization to avoid cascading failure due to overload. The cyber and

decision support layers collect, process, and analyze the data to identify the changes

in the environment and reconfigure the control decisions accordingly at the local

and global situations, respectively. Since, threats may persist at any of the nodes in

cyber-phyiscal layers, security of each layer is handled either on the same layer or

at the upper layer.

5.2.3 Role of functionality and security leaders

The field controllers at the controller layer perform dedicated control tasks to re-

spond to the real-time functionality and security requirements. These are considered

fixed leaders. The security module is also embedded within the controller node. It

authenticates the attached nodes to establish secure communication, verifies the

Chapter 5. Integrated Approach to Design Functionality with Security 100

sensor’s data corresponding to predefined set values to detect the unexpected devi-

ation, identifies the non-responsiveness of attached sensor and actuator nodes, and

intrusion attempts on the controller node itself. Moreover, the redundant or diverse

nodes are deployed at this layer to take up the role of failed leader node. At the top

two layers, the functionality and security tasks are distributed as two core tasks in

each cluster. The functionality nodes are responsible for performing the tasks related

to functionalities such as monitoring, execution, storage, and control. The security

nodes are responsible for authentication, encryption, secure storage [21], and key

management, including key generation, distribution, and storage. Moreover, these

nodes monitor, detect and respond to the malicious events or abnormal behavior

of functionality nodes [111] and the field controller nodes. The security monitoring

nodes take a snapshot of functionality nodes at different times to monitor the dis-

crepancy in their actual and expected behavior and generate alerts. These nodes

are also responsible for responding to the detected malicious events by changing the

system parameters.

The collaboration, coordination, and communication among the functionality and

security nodes are managed by the functionality leader and security leader. The

functionality leader coordinates the distribution and aggregation of functionality

tasks among different functionality nodes. Similarly, the security leader is respon-

sible for coordinating the distribution and aggregation of preventive and responsive

security tasks among different security nodes to identify, prevent and respond to the

malicious behavior of functionality nodes. It maintains a list of normal, suspicious,

and compromised functional nodes along with the list of failed security nodes. These

leader nodes of each cluster are called sub-leaders. If there are n clusters, there will

be 2n sub-leaders. While designing a secure system, the functionality and security

monitoring and response are two independent but coordinated tasks. Hence, the

functionality and security leaders of each cluster act as co-leaders. The co-leaders

are designed as co-routines to yield concurrency and communication. Further, the

security and functionality leaders transfer the control to each other to execute the

system functionalities securely and respond to malicious activities. To coordinate

Chapter 5. Integrated Approach to Design Functionality with Security 101

the system-level activities and to establish communication among the clusters, we

elect the functionality and security leader at the decision support layer also and

call these as super-leaders. The communication request and data collected from

each functionality and security sub-leaders are transferred to super-leaders to make

the system self-aware and reconfigure the functionality and security policies. The

election of sub-leaders and the super-leader avoid a bottleneck situation where a

single leader may face a heavy load to coordinate all the functionality and security

activities of the entire system. As the only system leader coordinates the region-wise

dependent and independent tasks, the independent tasks take more time to complete

because of the increased communication latency and response from an overloaded

leader. Implementing sub-leaders reduces the unnecessary communication latency

in executing region-wise independent tasks. Thus, the decisions at the local level

reduce the upstream bandwidth demand as well. Consequently, the probability of

missing the deadline of functionality tasks or security events is reduced.

5.2.4 The proposed leader election algorithm

In this section, the proposed leader election method is presented to elect the func-

tionality and security leaders. We assume that the system is static and the set of

computing nodes (CN) are arranged in a graph G and defined as G = (CN,L),

where L is the set of links of graph G. D and R are the diameter and radius of

graph G and ⌈D
2
⌉ ≤ R ≤ D. As G represents graph of CN , hence, G as specified

in section 5.2.1, divided into m clusters (sub graphs) such that c1, c2, · · · , cm ⊆ G.

Each cluster cl has a unique id. dl and rdl are the diameter and radius of cl are

defines as ⌈dl
2
⌉ ≤ rdl ≤ dl. ∀l, dl < D. We also assume that each node has a unique

id. A leader election algorithm runs to choose the leader when a system starts for

the first time, or a leader node is failed, malfunctioned, or becomes non-responsive

due to DoS attacks.

As in safety-critical systems, mostly real-time jobs need to be executed. Hence,

the proposed algorithm identifies a list of leader capable nodes based on specified

Chapter 5. Integrated Approach to Design Functionality with Security 102

node selection criteria. Then the highest potential (best) node is designated as the

chief leader, and the remaining nodes are declared as transient leaders. In case

of leader failure, one of the transient leaders instantly takes the responsibility of

coordinating the management activities. The time to select a temporary leader is less

than to elect a chief leader, so the presented algorithm reduces the election overhead.

While selecting the list of potential leaders, the proposed algorithm also handles the

threat scenario, where a malicious node try to initiate the unnecessary leader election

process to hamper the system performance by falsifying the information about leader

failure. For this, if a node other than the transient leaders realizes the leader is failed,

it communicates to the transient leaders to inform the leader’s failure but can not

initiate the leader election process by itself. The election process is started only

when the transient leaders reach the consensus to start the election. The proposed

algorithm always tries to elect good-quality leaders for the system. To do that,

we introduce the concept of rank calculation of the nodes. Here, the higher rank

indicates the higher-good quality. According to the system requirements, several

quality attributes can be considered to calculate the rank of a node, for example,

memory capacity, processing capacity, failure rate, degree, eccentricity, and so on.

Suppose the set of attributes that need to consider to calculate the rank is A and

it contains λ attributes, A = {a1, a2, a3, . . . , aλ}. Here, we assume that every node

knows the possible maximum and minimum values of every attribute. Max(aq)

and Min(aq) represent the maximum value and minimum value of an attribute aq.

Hence, the rank Rki of a node i is calculated using the equation (5.1)

Rki =
λ∑

q=1

ξiq (5.1)

Here, ξiq =

viq−Min(aq)

Max(aq)−Min(aq)
, if aq is a benefit attribute.

Max(aq)−viq
Max(aq)−Min(aq)

, if aq is a cost attribute.

where, viq is the value of attribute aq of a node i. The benefit attributes are those

whose higher values are preferred, while cost attributes are those whose lower values

Chapter 5. Integrated Approach to Design Functionality with Security 103

are preferred during leader election. It is to be noted that while applying this model

to any specific case, the benefit and cost attributes may be decided as required for

the application. The measurement unit of the different attributes can be different,

so we use the max-min normalization to normalize the attributes.

5.2.4.1 Message type

In the proposed election algorithm, we use the following five types of messages.

1. The election message: This message is represented as em⟨eini id, s em id, toe⟩

and consists of the election initiator id, the em message sender’s id and the

type of election. It is used to initiate an election.

2. The acknowledgement message: This message is represented as ack⟨c ack id, eini id⟩

and consists of the ack message creator id and the election initiator id. A node

creates an ack message to respond to getting an em message.

3. The rank message: This message is represented as rank⟨r list⟩. It is created

by child nodes to pass their rank information to the parent node.

4. The leader declaration message: This message is represented as ld⟨l id, t list, toe⟩

and consists of the elected leader id, the list of transient leaders and the type

of election. It is used to declare the elected leader.

5. The failure information message: It is represented as lfmsg⟨failed leader id, tol⟩

and consists of the failed leader’s id and the type of leader that has been failed.

It is used to inform the transient leaders about the current leader’s failure.

5.2.4.2 Leader election method

Algorithm 1 and Algorithm 2 are designed to elect the functionality and security

leaders. Algorithm 1 explains the chief leader election method while Algorithm 2

Chapter 5. Integrated Approach to Design Functionality with Security 104

Algorithm 1: Chief Leader Election
// When a node i initiates an election.

1 eini id← node idi, s em id← node idi, parenti ← None
2 Set the value of toe according to the type of the election.
3 Create an em⟨eini id, s em id, toe⟩ message and send it to all the adjacent nodes.

// When a node j gets a em⟨eini id, s em id, toe⟩ message.

4 if (the received message is a em⟨eini id, s em id, toe⟩) then
5 if ((parentj == Empty) ∨ (eini id > parentj)) then
6 parentj ← s em id, c ack id← node idj , s em id← node idj
7 Create an ack⟨c ack id, eini id⟩ message and send it to the parent node.
8 Send the em⟨eini id, s em id, toe⟩ to all adjacent node except the parent node and wait a certain

amount of time to get the ack messages from those nodes.
9 if (the node j is a leaf node or does not get any ack message from the adjacent nodes) then

10 Insert self Id and rank in the r list and send the list to the parent node through a rank⟨r list⟩
message

11 end

12 else
13 Discard the received message.
14 end

15 end
// When a node j gets a ack⟨c ack id, eini id⟩ message.

16 if (the received message is a ack⟨c ack id, eini id⟩) then
17 Insert the c ack id into the l childj .
18 end

// When a node j gets rank⟨r list⟩ messages from its all child nodes.

19 if (|r list|+ 1 > r) then
20 According to the rank value of the nodes, choose the best r nodes among the jth node itself and its child

nodes.
21 Store the best r nodes’ Id and rank value in r list.

22 else
23 Insert the self Id and rank value in r list.
24 end
25 Send the r list to the parent node through a rank⟨r list⟩ message.

// When the election initiating node that conducts the whole election (here node i) gets

rank⟨r list⟩ messages from its all child nodes.

26 Node i arranges all the received node Ids (through rank⟨r list⟩ messages) and self Id in descending order
according to their rank value.

27 Choose the best r nodes among them.
28 if (toe == 1) then
29 Choose the best node as the chief functionality leader .
30 l id← the elected chief functionality leader Id
31 Put the rest r − 1 node Ids in the t list as the leader capable node for the transient functionality leader.
32 fun leaderi ← l id, flc listi ← t list

33 else
34 Choose the best node as the chief security leader .
35 l id← the elected chief security leader Id
36 Put the rest r − 1 node Ids in the t list as the leader capable node for the transient security leader.
37 sec leaderi ← l id, slc listi ← t list

38 end
39 Create the ld⟨l id, t list, toe⟩ message and sends it to all the adjacent nodes.

// When node j gets ld⟨l id, t list, toe⟩ message.

40 if (toe == 1) then
41 fun leaderj ← l id, flc listj ← t list
42 else
43 sec leaderj ← l id, slc listj ← t list
44 end
45 Send the ld⟨l id, t list, toe⟩ message to all the adjacent nodes except its sender.
46 If a node j gets the ld⟨l id, t list, toe⟩ message multiple times, it processes the first received ld⟨l id, t list, toe⟩

message and discards the rest.

Chapter 5. Integrated Approach to Design Functionality with Security 105

Algorithm 2: Selection of a Transient Leader
// When a node i realizes that a chief leader is failed or non-responsive.

1 if (node i realizes that a chief leader is failed) then
2 create and send a lfmsg⟨failed leader id, tol⟩ message to all the nodes in lc list
3 end

// When every node of the lc list gets a lfmsg⟨failed leader id, tol⟩
4 Every node in lc list checks whether the leader (failed leader id) is failed.
5 if (The leader (failed leader id) is failed) then
6 if (|lc list| > r/2) then
7 if (tol == 1) then
8 Select the best node from the flc list and put the rest nodes in the t list.
9 Declare the selected best node as the functionality leader by broadcasting a leader declaration

message
10 else
11 Select the best node from the slc list and put the rest nodes in the t list.
12 Declare the selected best node as the security leader by broadcasting a leader declaration

message
13 end

14 else
15 Invoke algorithm 1
16 end

17 end

explains the transient leader election process. The election method elects the func-

tionality or security leader according to the system need. When the system starts for

the first time, any functionality or security node can run Algorithm 1 to elect a chief

functionality or security leader, respectively. When the election is initiated to elect

the functionality leader, the functionality nodes participate directly, and the security

nodes participate indirectly by only forwarding the election messages. Consequently,

the r leader capable nodes are selected from the functionality nodes only. The same

things happen in the case of the security leader election. Algorithm 1 executes in

two phases. In the first phase, the nodes build a tree using election message (em)

and acknowledgement message (ack). A node i creates em⟨eini id, s em id, toe⟩ to

initiate the election process, where the eini id and s em id is same as node id. Here

the boolean variable toe is used to represent the type of election. That means the

election is started for electing functionality leaders or security leaders. If toe = 1,

the election is for electing the functionality leader. On the other hand, if toe = 0, the

election is for electing the security leader. As node i initiates election, it is considered

as the root node of the tree where parenti= ϕ. It sends em⟨eini id, s em id, toe⟩

to all the adjacent nodes and waits for ack⟨c ack id, eini id⟩. When an adjacent

node j receives the em⟨eini id, s em id, toe⟩, it creates ack⟨c ack id, eini id⟩ mes-

sage and sends it to node i. Here the node i considers node j as its child node and

Chapter 5. Integrated Approach to Design Functionality with Security 106

node j considers node i as its parent node. Then node j modifies and forwards the

election message to its adjacent nodes, except its parent node (node i), and wait for

the acknowledgement message. There may be two cases (1) either it receives the

election message from one node or (2) it receives the redundant election message

from multiple nodes as duplicate messages. Hence, the receiving node checks if the

election message is received for the first time by checking eini id, it considers the

message sender node as its parent and sends back the ack message to it in response.

Otherwise, it does not respond or send an acknowledgement message to the prede-

cessor node. The steps repeat until the election message is circulated among all the

nodes in the system.

In the second phase, all the nodes send their rank value to their parent node.

To send its rank, a node j checks that if it is a leaf node or does not get any

ack⟨c ack id, eini id⟩ message from the adjacent nodes, it appends its id and rank in

its rank list (r list) and send it to its parent node through rank message rank⟨r list⟩.

The parent node collects rank⟨r list⟩ messages from all its child nodes, makes a list

of nodes by sorting the collected child nodes’ ranks and self rank according to the

rank value in descending order. Then, top r values are selected from the sorted list

and sent to its parent node. The process is repeated until the root node gets the

rank⟨r list⟩ message from all its child nodes. The root node sorts the nodes to get

the r leader capable nodes’ list. If toe = 1, the top node of the r list is declared as

the chief functionality leader and the remaining r−1 nodes are declared as the tran-

sient functionality leaders. If toe = 0, the top node of the r list is declared as the

chief security leader and remaining r−1 nodes are declared as the transient security

leaders. The root node broadcasts a ld⟨l id, t list, toe⟩ message to declare the elected

leader as well as the transient leaders. On receiving the ld⟨l id, t list, toe⟩, node j

checks value of toe, if toe = 1 it updates the chief leader id as functionality chief

leader and transient leaders list as the functionality transient leaders. If toe = 0, it

updates the chief leader id as a chief security leader and transient leaders list as the

transient security leaders. It is worth mentioning that if two or more nodes realize

and initiate election simultaneously, the election message created by the node with

Chapter 5. Integrated Approach to Design Functionality with Security 107

highest id survives in the network. Thus, the node with highest id gets the scope

to create the tree. On the other hand, the election messages created by the other

nodes get discarded that helps to avoid multiple election trees formation.

Algorithm 2 runs to select the transient leaders. The leader failure may be realized

by either leader-capable nodes or non-leader capable (normal) nodes. When a node

realizes that the chief leader has been failed or become non-responsive, it creates a

message lfmsg⟨failed leader id, tol⟩ and sends it to all the leader-capable nodes.

Then the transient leader nodes verify whether the chief leader has failed and initi-

ating elections based on mutual consensus. If the leader is failed and the number of

transient leader nodes is greater than r/2, the top alive node is selected from t list

as functionality or security leader based on the tf l value. After that, the t list is

updated and a ld⟨l id, t list⟩ message is broadcast to all the nodes. Otherwise, if

the nodes in leader capable list (lc list) are less than or equal to r/2, the nodes

build the consensus to initiate election, and the highest leader capable node among

them invokes algorithm 1 to elect a chief leader. Thus, the proposed algorithm also

prevents any undetected compromised node from abusing the leader election process.

5.2.4.3 Complexity analysis

The complexity of the leader election algorithm is measured in terms of message

complexity and time complexity. In this section, we calculate the message and time

complexities of the proposed election algorithm considering a network of N nodes

and D diameter.

Message complexity

As the nodes communicate by message passing, the message complexity depends

upon the number of messages exchanged among the nodes during an election.

Best case: When the number of alive transient leader nodes is more than r/2,

and one of them realizes the chief leader’s failure, then it is the best-case scenario

Chapter 5. Integrated Approach to Design Functionality with Security 108

of the algorithm. In this case, the node that realizes the leader’s failure informs

the other transient leader nodes about the leader’s failure. Then all the transient

leader nodes collaboratively elect the highest leader capable node from the list of

transient leaders as the new leader and declare the elected leader by broadcasting

the leader declaration message. Here, O(r) messages are required to inform the

leader’s failure to all the transient leader nodes and O(N) messages are required to

broadcast the elected leader. N ≥ r, hence in the best case, the message complexity

of the proposed leader election algorithm is O(N).

Worst case: When the number of alive transient leader nodes is less than r/2,

and all the nodes realize the leader’s failure concurrently, it becomes the worst-case

scenario of our algorithm. In this case, all nodes initiate the election concurrently

to identify the r leader capable nodes. Here, a maximum of O(N2) messages are

exchanged to build the election tree. After that, O(N) rank messages are exchanged

for passing the ranks to the election conducting node. Finally, O(N) leader decla-

ration messages are exchanged to declare the leader. So, in this case, the message

complexity is O(N2).

Time complexity

Time complexity quantifies the time required to elect a leader.

Best and worst cases: In the best case, O(D) time is required to inform the

leader’s failure information to all the alive transient leader nodes, and O(D) time is

required to broadcast the leader declaration message. So, in the best case, the time

complexity is O(D). In the worst case, the time complexity depends on the election

tree construction time, time to pass the ranks to the election conducting node, and

to broadcast the leader declaration message. Each of these three steps takes O(D)

time. Hence, in the worst-case, the time complexity is also O(D).

Chapter 5. Integrated Approach to Design Functionality with Security 109

5.2.5 Resilience against cyber attacks

Since, cyber threats may persist at any of the nodes in cyber-physical layers, security

of each layer is handled either on the same layer or at the upper layer. The field

controllers perform dedicated control tasks to respond to the real-time functionality

and security requirements at the controller layer. The security module is also em-

bedded within the controller node to retaliate AS(1) and AS(2). It authenticates

the attached nodes to establish secure communication, verifies the sensor’s data with

predefined set values to detect the unexpected deviation [68] [86], identifies the non-

responsiveness of attached sensor and actuator nodes using heart beat message [52],

and intrusion attempts on the controller node itself. Moreover, redundant or diverse

nodes are deployed at this layer to take up the role of failed leader node. However,

the methods of how these security mechanisms are implemented are already known

and available in the literature [52] [68] [86].

At cyber and decision support layers, the functionality and security leader collabo-

rate as co-routines [130] [116] to respond to the malicious events at the cluster level.

To defend against AS(3), the model can retaliate the attacks on a functionality node,

functionality leader, security node, or security leader. Initially, the security leader

maintains a list of nodes with normal status. When a security monitoring node

observes a functionality node is behaving suspiciously, it informs the security leader.

To detect and tolerate security monitoring node failure, the methods are already

known and available in literature [66] [51] [101]. After confirming the suspected

behaviour to be malicious, the security leader removes the node from the normal

node list and adds it to the compromised node list. It sends a compromised node

id to the functionality leader, which reallocates that node’s responsibility among

the least-loaded normal functionality nodes. The attack on security monitoring and

control nodes is observed by the security leader, as it communicate with the security

monitoring nodes periodically. If the security monitoring node does not respond,

the security leader assumes it to be failed. In this situation, the security leader

isolates the compromised node and reallocates the security task to the least loaded

Chapter 5. Integrated Approach to Design Functionality with Security 110

node. Similarly, when any security monitoring node attempts to communicate with

the security leader and does not get any response, it communicates to one of the

transient leaders. All the transient leaders would verify by sending the heartbeat

message to the chief leader node and reach a consensus of whether the chief leader

is failed due to attack as mentioned in section 5.2.4. To defend against AS(4), the

proposed algorithm can prevent the abuse of the leader election process itself. The

algorithm can deal with the scenario where a malicious node tries to initiate the

election process unnecessary to target an unbiased leader. Only the leader-capable

nodes are responsible for verifying whether the chief leader has failed and initiating

elections based on mutual consensus. Thus, the proposed architectural framework

can tolerate or respond to the mentioned attack scenarios or exceptional conditions.

5.3 Performance evaluation of the proposed architectural

model

In this section, we analyze and demonstrate the effectiveness of the proposed CPS

architecture through several experiments. We show that the concept of clustering

and separation of functionality and security leaders helps to improve the overall per-

formance and security management. A distributed smart hospital management case

study is considered to explain the proposed architecture, where multiple hospitals

are connected as a medical-CPS.

5.3.1 Case study

A smart hospital is a concept that uses emerging technologies of information and

communications technology (ICT) to optimize and manage the healthcare opera-

tions and its functional requirements efficiently [83]. Smart hospitals fall under the

safety-critical domain as the safety of patients is at most priority. Any security fail-

ure in terms of denial of service or integrity failures of life support systems may lead

to unsafe situations for the system. It may consequently create big chaos in patients’

Chapter 5. Integrated Approach to Design Functionality with Security 111

lives. Various sensors and data collection devices are deployed to monitor the envi-

ronmental conditions, hospital resources, and services. Different actuators respond

as specified and controlled by controllers. In our proposed architectural model, each

cluster with computing nodes represents a hospital. The computing nodes store and

process the collected environmental, operational, and patient data (confidential and

non-confidential) to perform different functionality and security monitoring tasks as

shown in FIGURE 5.4. The nodes do intra-cluster communication to perform the

cluster independent tasks via the leader node. The nodes do inter-cluster communi-

cation to perform multiple clusters dependent tasks via cluster leaders. There may

be various functionality tasks in hospital management, although, to demonstrate the

effectiveness of our proposed approach, we are just demonstrating the example of

treating the covid patients and distribution, deployment, and administration of the

vaccine for fighting with covid-19 pandemic [30].

C1

C2

C4

C3

C5

Ts1Tf3

Tf4
Tf2 Tf1

Tf5
Ts3

Ts2

Figure 5.4: Cluster arrangement of a distributed hospital network with functionality
and security leaders

The decision support layer represented as c5 (as shown in FIGURE 5.4) and it

communicates to each cluster leader to optimize the availability of vaccines in each

hospital by monitoring the lack or excess of the vaccine. Moreover, it stores the up-

dated records of vaccinated persons and the total number of treated and active covid

patients and their distribution in each region/ hospital at the country level. The

probable attack scenarios may include a denial of service attack, malfunctioning of

life support system units in intensive care units, or an integrity attack on vaccinated

Chapter 5. Integrated Approach to Design Functionality with Security 112

person records. The attacker may delete the vaccine availability and distribution

records, malfunctions computing nodes, breach patient records suffering from other

critical diseases, disturb the HVAC control unit. Moreover, a successful integrity at-

tack on a node that performs the staff-allocation task compromises its functionality

in the critical time. As a result, the compromised node allocates a non-specialized

doctor.

Suppose, in cluster c1, a set of functionality tasks Tf = {Tf1, T f2, T f3, T f4, T f5}

running on functionality nodes. There are security tasks Ts = {Ts1, T s2, T s3}

running on security monitoring nodes. The security monitoring nodes observe the

incorrect behavior of the functionality nodes by observing the deviation in allocated

functionality tasks. It, security monitoring node, sends a message to the security

leader on finding a node with suspicious behavior, which sends the message to the

functionality leader and blocks the compromised node. The functionality leader

reallocates the staff-allocation task to the least-loaded node to avoid further chaos.

5.3.2 Performance evaluation

To analyze the system management improvement, we have considered four different

forms of system management, i.e., purely centralized, purely distributed without

a leader, distributed with a single leader, and clustered distributed manner with

multiple leaders (including functionality and security leaders). To evaluate the

performance of the proposed architecture with each of these management forms, a

p step task is considered. A p step task is defined as a task T that involves p steps

to complete it. Suppose there are N nodes in the system.

Table 5.1: Details of the networks considered for the experiments

Network Number
of nodes

Number
of edges

Diameter Number
of cluster

Network 1 30 52 8 3

Network 2 60 98 10 4

Network 3 90 176 12 5

Network 4 120 256 14 6

Network 5 150 290 16 7

Network 6 180 375 18 8

Chapter 5. Integrated Approach to Design Functionality with Security 113

(1) Purely centralized: In purely centralized system management mode, a fixed

central node controls and manages other nodes and all the system’s activities. Here,

the main problem is a single-point failure. When the fixed central node collapses,

the whole system collapses. Hence, the fault-tolerance capacity of the system is

minimum. To complete a p step task, a node exchanges p number of messages with

the central node. The message complexity of completing this task is O(p.D.N), and

the time complexity is O(D) where D is the network’s diameter.

(2) Distributed without considering the leader: There is no central node that

controls and manages the system. Here, a node needs to send messages to all the

other nodes to complete a task consistently. In this manner, the fault-tolerance

capacity of the system is maximum, but the message and time complexities are very

high. Here the message complexity and the time complexity of completing a p step

task are O(p.N2) and O(D) respectively.

(3) Distributed with a single leader: The system is managed in a distributed

way by electing a node as the system leader, as discussed earlier. Here, the system

is managed similarly to the centralized manner. The only difference is that the

central node (the system controlling node) is fixed in a centralized manner, but here

the central node is not fixed. If the central node is crashed, another node can be

elected as the central node or the leader. The leader election overhead (extra cost) is

associated with this manner. Here the message complexity and the time complexity

of completing a p step task are O(p.D.N) and O(D), respectively.

(4) Clustered distributed with multiple leaders: In this manner, the CPS is

managed in distributed manner but divided into multiple clusters. Each cluster has

a functionality leader and security leader. Intra cluster functionality and security

tasks are managed by its functionality and security leaders, respectively. On the

other hand, inter-cluster tasks are managed by the leaders of the clusters. Here the

message complexity and the time complexity of completing a p step inter-cluster

task are O(p.dmax.N) and O(D), respectively, where dmax is the maximum diameter

of the clusters. The message complexity and the time complexity of completing a p

Chapter 5. Integrated Approach to Design Functionality with Security 114

step intra-cluster task are O(p.d.n) and O(d), respectively, where d is the cluster’s

diameter, and n is the number of nodes in the cluster.

Here, dmax ≤ D and D < N . So, O(p.dmax.N) ≤ O(p.D.N) < O(p.N2). That

means if we manage a CPS in distributed clustered manner with multiple leaders, to

complete a task, the number of exchanged messages (network traffic) get reduced.

As d < D, then O(d) < O(D).

We consider the covid-19 vaccine distribution, deployment, and administration (as

mentioned in the case study) task to simulate and evaluate the proposed architec-

ture’s effectiveness and performance with the management schemes as mentioned

earlier. To simulate the proposed architectural model, we use python 3.6 as a pro-

gramming language, MPICH version 3.2, and mpi4py tool as a message passing

interface. We have considered six different sizes of networks where nodes of each

network are connected through an arbitrary network topology. All the networks de-

tails are given in TABLE 5.1, and the simulation results are shown in FIGURE 5.5

and FIGURE 5.6. We perform the entire simulation in a single machine equipped

with Intel (R) Core(TM) i7-3770 processor (3.40 GHz, 8 MB cache), 26 GB DDR3

RAM, 1TB 5400rmp HDD, NVIDIA GeForce graphics, running Ubuntu Linux Re-

lease 16.04 (xenial kernel 4.4).

N
u

m
b

er
 o

f
E

x
ch

a
n

g
ed

 M
es

sa
g

es

Number of Nodes

1

10

100

1000

10000

100000

30 60 90 120 150 180

Purely centralized manner

Purely distributed manner

Distributed manner with single leader

Clustered distributed manner with multiple leaders

Figure 5.5: Comparison of the proposed system management manner with other possible
system management manners based on the number of exchanged messages to complete

the task.

Chapter 5. Integrated Approach to Design Functionality with Security 115

T
im

e
(m

il
li

se
co

n
d

)

Number of Nodes

0

1000

2000

3000

4000

5000

6000

7000

8000

30 60 90 120 150 180

Purely centralized manner

Purely distributed manner

Distributed manner with single leader

Clustered distributed manner with multiple leaders

Figure 5.6: Comparison of the proposed system management manner with other possible
system management manners based on the time required to complete the task.

In FIGURE 5.5, X-axis represents the number of nodes, and Y-axis represents the

number of messages exchanged to complete the task. In FIGURE 5.6, X-axis repre-

sents the number of nodes, and Y-axis represents the time required to complete the

task. FIGURE 5.5 and FIGURE 5.6 show that the number of exchanged messages

among the nodes and the time required to complete the task in a purely distributed

manner without a leader are highest. In contrast, the number of exchanged mes-

sages and time required to complete the task is least when the system is managed in

a distributed clustered manner with multiple leaders for functionality and security.

FIGURE 5.7 shows the average response time of the tasks when we manage the top

two layers in a distributed manner with a single leader and in a distributed clustered

manner with multiple leaders. In FIGURE 5.7, X-axis represents number of tasks,

and Y-axis represents the average response time of functionality and security tasks.

Here, we have considered that out of total tasks, one-third are security tasks, and

two-thirds are functionality tasks. FIGURE 5.7 concludes that if we manage the

CPS in a distributed clustered manner with multiple leaders, the average response

time of tasks get reduced. FIGURE 5.8 compares the completion rate of real-time

tasks within a specified deadline while managing the cyber layer in a distributed

manner with a single leader and in a clustered distributed manner with multiple

leaders. In FIGURE 5.8, X-axis represents number of tasks, and Y-axis represents

the completion(or success) rate of real-time tasks within a specified deadline. Here,

Chapter 5. Integrated Approach to Design Functionality with Security 116

we have considered that out of total tasks, half are real-time task, and half are non-

real-time tasks. We have used priority scheduling to schedule these tasks, where

real-time tasks have priority over non-real-time tasks. FIGURE 5.8 concludes that

success rate of real-time tasks get increased if we manage the CPS in a clustered

distributed manner with multiple leaders. From the simulation results shown in

FIGURE 5.7 and 5.8, it can be observed that the distributed clustered manner with

separate functionality and security leaders is more efficient in terms of average re-

sponse time and when the system needs to honor the deadlines of the real-time tasks.

We performed two statistical tests, i.e., the Quantile-Quantile plot (Q-Q plot) test

[79] and the Shapiro-Wilk test [54] on the completion ratio of real-time tasks and

the average response time of the tasks through the proposed system management

manner (clustered distributed manner with multiple leaders). The Q-Q plots of

the average response time and the completion ratio of real-time tasks are shown in

FIGURE 5.9 and FIGURE 5.10, respectively. The Q-Q plots show that the average

response time and the completion ratio of real-time tasks follow the normal distri-

bution. The p-value of the Shapiro-Wilk test of the completion ratio of real-time

tasks is 0.843. As 0.843 > 0.05, the completion ratio of real-time tasks follows the

normal distribution. On the other hand, the p-value of the Shapiro-Wilk test of the

average response time is 0.466. Here, 0.466 is also greater than 0.05, which means

the average response time also follows the normal distribution.

Number of Tasks

A
v

er
a

g
e

R
es

p
o

n
se

 T
im

e
(m

il
li

se
co

n
d

)

0

20

40

60

80

100

120

30 60 90 120 150

Distributed manner with single leader

Clustered distributed manner with multiple leaders

Figure 5.7: Comparison of the proposed system management manner with the dis-
tributed manner with a single leader based on the average response time of the task.

Moreover, the proposed distributed clustered manner with multiple leaders is more

Chapter 5. Integrated Approach to Design Functionality with Security 117

Number of Tasks

C
o

m
p

le
ti

o
n

 R
a

te
 o

f
R

ea
l-

ti
m

e
T

a
sk

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

30 60 90 120 150

Distributed manner with single leader

Clustered distributed manner with multiple leaders

Figure 5.8: Comparison of the proposed system management manner with the dis-
tributed manner with a single leader based on the success ratio of real time tasks com-

pletion within deadline

Figure 5.9: Quantile-Quantile plot (Q-Q plot) on the average response time of the tasks
getting through the proposed system management manner.

fault-tolerant and maintainable as compared to other architectural arrangements.

The proposed arrangement avoids a single point of functionality and security failure

in better ways and conquers the complexity of designing a secure CPS. When there is

a change or update in security policy, it will not affect the system functionality. The

proposed architectural model has the leader election overhead, but it is reasonable

as it increases system performance and the fault-tolerance capability of distributed

CPS.

Chapter 5. Integrated Approach to Design Functionality with Security 118

Figure 5.10: Quantile-Quantile plot (Q-Q plot) on the completion ratio of real-time
tasks getting through the proposed system management manner.

5.4 Summary

In this work, to improve the performance, maintainability, fault-tolerability, and se-

curity of a large-scale CPS, we propose a multi-tier architectural model of a cyber-

physical system. We introduce the concept of separately managing the functional

and security concerns by electing the functional and security leaders for better man-

agement of the CPS. Management of functional concerns and security concerns sep-

arately improve the maintainability and performance of the system. This separation

is similar to the aspect orientation in design and implemented by exploiting the

concept of leader(s) as available in the case of the distributed computing system.

Here the security and functionality leaders act as co-leaders to collaborate and com-

municate among themselves for preventing and responding to security threats. On

the other hand, management of a CPS is done in a clustered distributed manner,

which improves the system performance and makes the system more fault-tolerant.

Along with this, we have proposed a fault-tolerant leader election algorithm. Un-

like the existing algorithms, along with electing a leader, the proposed algorithm

identifies and makes a list of leader-capable nodes. So that if a leader fails, the

system can instantly elect a new leader from among the identified leader capable

nodes to minimize the adverse effect on real-time task coordination, system perfor-

mance, and security. Thus, the proposed architecture improves the maintainability,

Chapter 5. Integrated Approach to Design Functionality with Security 119

security and makes the system more fault-tolerant. Further, we perform several

experiments by simulating the proposed architecture to evaluate its performance.

The experimental results show that the proposed architectural model improves the

system performance in terms of latency, average response time, and the number of

real-time tasks completed within the deadline. The proposed architectural model

has the leader election overhead, but it is reasonable as it increases system per-

formance and the fault-tolerance capability of the distributed CPS. On the other

hand, because security and functionality are separately scalable, the overhead of

functionality nodes is minimized.

