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Preface

The physical infrastructure, equipment, and facilities are gradually instrumented,

controlled, automated, and administered through computerization and possibly in-

ternetworking. Such an arrangement is known in the literature as a Cyber-Physical

System (CPS). The emerging CPS may range from small-scale industries to large-

scale connected systems of diverse areas such as transportation, avionics, defense,

entertainment, industrial control system, safety-critical systems, healthcare, etc.

The cyber components monitor and control the real-world physical devices and in-

frastructures to improve the quality of services, including reliability and resource

utilization.

However, the automation and connectivity of all the networked computing devices

increase the security risks and leverage the opportunity to perform successful at-

tacks to compromise system safety with catastrophic effects on human lives and

the environment. The attackers compromise the system by exploiting existing vul-

nerabilities that arise due to inappropriate policies, facilitation to external entities,

inefficient and inaccurate protection mechanisms and procedures. Several powerful

attacks have been launched on critical infrastructures in recent years, resulting in

substantial financial losses, productivity losses, and physical injuries. Protecting

Industrial control systems (ICS) from cyber attacks is critical to a country’s eco-

nomic development and social stability. This is an emergent need that security is

also considered in the modeling of CPS in general and safety-critical systems in

particular. Through a detailed literature survey of existing modeling, analysis, and

system organization methods, we find some significant issues and challenges. During

development, functionality often takes priority over security. Security measures were

implemented late as an add-on resulting in brittle designs that lack proper integra-

tion. Further, several techniques are proposed to perform the security analysis in

vii



early phases of the system development life cycle. However, most of these present

the qualitative assessment rather than quantitative assessment.

This thesis presents the security modeling and arrangement approaches to overcome

these research gaps in the early phases. The first chapter proposes a design-time

methodology to map and analyze the system security using Stochastic Petri Nets

(SPN) and their fundamental properties. The presented theoretical framework ex-

ploits the power of SPN to model the stochastic nature of the system in the pres-

ence of external threats. It provides the mathematical support for structural and

behavioral analysis to validate the effect of responsive mitigations against security

vulnerabilities qualitatively and quantitatively. The effectiveness of the proposed

methodology is shown through a case study of Nuclear Power Plant (NPP).

Deploying preventive or responsive measures alone may not be enough to detect,

prevent and respond to intrusion attempts and subsequent sophisticated attacks.

In the second chapter, we have extended the earlier work, where multiple intrusion

prevention and response techniques are applied in place of responsive measures only,

and their combined effect on system security and availability are analyzed quantita-

tively using Generalized Stochastic Petri Nets (GSPN). As SPN suffers from a state

explosion problem, GSPN is used to deal with the problem. Moreover, the proposed

model helps to prioritize the available security measures.

As CPSs are mostly distributed systems, it is interesting to consider a possible

approach for the separation of functionality and security concerns for CPS that are

usually organized and created in a distributed manner. In the third chapter, we

propose a distributed multi-tier architectural model of CPS and its management as

per aspect orientation and leader election as observable in distributed computing

systems to improve the CPS performance, security, and functionality management.
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