
Chapter 6

SL-Net: Self-Learning and Mutual

Attention based Distingushed

Window for RGBD Complex

Salient Object Detection

Significant improvement has been noticed in salient object detection by multi-modal

cross-complementary fusion between Depth and RGB features. The multi-modal

feature extracting backbone of existing networks cannot extract complex RGB and

color images effectively, which limits the performance of salient object detection

in complex and challenging situations. In this thesis, a composite backbone with

a mutual attention-based distinguished window is proposed to enhance the salient
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region and minimize the non-salient region. The distinguished window based on the

channel-wise, spatial, mutual, and feature-level attention is inserted in each encoder

stage to enhance the saliency features. Finally, a novel self-learning-based decoder

which is capable of utilizing multi-level features is designed to get the accurately

dense prediction. The multi-level fusion is guided by deep global localized features.

The performance of salient object detection could significantly be enhanced in this

way. The details introduction and research gaps is discussed in next section 6.1.

6.1 Introduction

The salient object detection inspired from human visual attention mechanism. It

aims to identify and predict the most prominent and conspicuous object in an image

irrespective of size, texture, color, and complex background. Significant development

has been noticed during recent years due to the wide range of its applications; such

as online visual tracking [186], semantic segmentation [177], object classification [18],

re-identification [187], video saliency [188], [189], and content-based image editing

[179].

Most existing RGBD SODs [43], [110], [109], [133] used Depth and RGB as sep-

arate inputs in deep CNN, which further explored complementary features during

the fusion process. The RGB and depth modality have complementary informa-

tion. RGB modality has ample informationa about regional, color, textural, spa-

tial, and high-level semantic and contextual cues. Similarly, the Depth modality
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Figure 6.1: The importance of mutual attention mechanism to distinguish the
salient object in complex and clutter background.

has the affluent geometrical, structural, 3D spatial, edge, and boundary informa-

tions, which are complementary to each other. The current and efficient meth-

ods [133], [129], [137], [131], [134], [136], used both modalities separately during the

encoding stage, followed by straightforward complimentary fusion processes to fuse

and predict saliency. These models gradually improved the performance while stuck

in complex and cluttered backgrounds. There are three vital issues during the en-

coding stage and utilizing both modalities to improve the performance. 1 > How to

enhance the salient regions and minimize the irrelevant features in the non-salient

regions during the encoding stage? 2 > How to model the geometrical structure

and boundary information of depth modality to purify the RGB features during the

encoding stage? 3 > How to develop the multi-model multi-stage fusion strategy to

provide equal importance to low-level purified encoder features, high-level semantic
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features, and global localized features?

In the recent approaches in RGBD saliency [133], [129], [137], [131], depth channel

fed into CNN to extract saliency features and finally utilized in the fusion process.

Consequently, Depth based geometrical information is not fully utilized. The ge-

ometrical information provides the guided reference window for identifying salient

and non-salient regions. In some complex scenarios and low depth images, which are

shown Fig.6.1, the RGB information is vital to overcome these limitations and stop

further propagation of irrelevant features in the following stages of the encoder. The

importance of geometrical information to distinguish saliency is our motivation to

propose the depth guided, mutual attention based distinguished window (MADW ).

This distinguished window is a reference surface for salient and non-salient regions.

It is applied before each VGG encoder layer to enhance saliency in salient regions

and minimize irrelevant disturbance in non-salient regions.

Additionally, the effective feature fusion principle is needed to interact the global

localized deep features with enhanced encoded features and high-level semantic fea-

tures. The existing models [133], [180], [137] , [130], [129] only fused same stage

encoded RGB and Depth features by using simple element-wise multiplication and

addition operation followed by some enhancement mechanism. The common limi-

tations of these models [110], [109], [133], [129], [137], [131], [134], [136] [180], [130]

are the inefficient fusion of two different modalities to predict saliency correctly.

Furthermore, the multi-stage, multi-source, and multi hierarchy, RGB and depth

informations are exceptionally heterogeneous. Subsequently, it makes the fusion
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process complicated. The limitations mentioned above in the fusion process are the

basis for designing self-learnable, Self Learning-Based Dense Decoder-SDD, among

local enhanced encoded, global localized, and high-level semantic features.

Attention based Model: Attention Mechanism is widely used in other appli-

cations like Image captioning [190], Language Modeling [183] and 3D block match-

ing [191]. It assigned a different weight to provide distinguishable essence to different

regions. The spatial attention [64], channel-wise attention [144], and self-attention

mechanism [178] are prevailing and prominent mechanisms to improve the perfor-

mance in various applications. The spatial attention removes the regional and spatial

discrepancy, while the channel-wise attention mechanism distinguishes the channel-

wise features. In contrast, a non-local network-based self-attention mechanism is

used to compute the long-range dependency. Some other attention mechanism such

as dual-attention is also used. Recent models S2MA [137] introduced attention

mechanisms to overcome the regional disparity to compute saliency. The non-local

attention maps were initially used in language modeling. The self-attention-based

learning model for 2D or 3D application is proposed by Wang et al. [183]. The ini-

tial model of the non-local network is based on the 3D block matching BM3D [191].

Similarly, another model based on the attention map, CMSA [190], is utilized to

segment the object by using a given input string in natural language. These models

improved the performance and showed the importance of an attention map. The

above models used the attention map to enhance the saliency features while lacking

the full utilization of the attention map during features generation, localization, and
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features fusions.

Consequently, the Self Learning-Based Dense Decoder-SDD with Mutual Attention-

based Distinguished window-MADW accomplishes the state-of-the-art performance.

To address the aforementioned limitations and challenges, our proposed model, Mu-

tal Attention based Distingused Window and Self Learning based RGBD, provides

the following distinct contributions to improve performance of SOD.

• A composite backbone is proposed for the encoder to improve the encoded

saliency features by adding depth-guided, mutual attention-based distinguished

window-MADW before each stage of encoder.

• We design a depth-guided mutual attention-based distinguished window to

remove the discrepancy in non-salient regions and enhance RGB features in

salient regions, using a spatial, channel, mutual, and feature-level attention

mechanism.

• A novel self-learning-based dense decoder is proposed to integrate enhanced

encoded features, global localized features, and high-level semantic features.

• In conclusion, extensive experiments have been conducted with seven publicly

available datasets to demonstrate performance improvements with other state-

of-the-art methods.

To target the limitation mentioned above, we propose the Mutual Attention-based

Distinguished window and self-learning-based fusion model, SL − Net, to predict
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exact salient object detection. This distinguished window is formulated using a

channel-wise, spatial, features level, and mutual attention mechanism to automat-

ically enhance the salient regions and minimize the non-salient regions during the

encoding stage. Therefore, more enriched features are available for decoding to

predict accurate salient object. The proposed model used two streams encoder to

produce enhanced saliency features and minimized irrelevant features during the en-

coding. The mutual attention window guides the deep-CNN features to enhance and

accurately identify the global localized features. The decoder stream is composed

of novel Self Learning-based Dense Decoder-SDD. It is used to progressively fuse

enhanced features through global localized and high-level semantic features. The

proposed SDD and mutual attention map predict the exact saliency in complex and

clutter images. This chapter describes the deep learning based 3D salient object

detection model. Section 6.2 describes and defines the proposed method SL−Net

in detail. Section 6.3 discusses the Experiment Set-Up and demonstrates the Per-

formance of Self-Learning with other state-of-the-art methods. Section 6.4 describes

the conclusion and the future scope of improvements in the Self-Learning model.
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6.2 The proposed method

6.2.1 Overview

The proposed model has two encoders and one decoder stream. Two encoder streams

produce the RGB and Depth features, while the decoder stream fuse both stream

features to produce saliency. Most of the existing models either used separate en-

coder and decoder with simple fusion model to combine the saliency features or

used the cross-complementary fusion of side outputs [134], [124] straightforwardly

to find the saliency. Therefore, existing fusion models are based on the element-wise

multiplication and addition operations, which are insufficient in complex and clut-

ter backgrounds. Because, in these type of networks, irrelevant features propagate

further in the following stages, and some essential, regional, spatial and textural

features have not been enhanced during feature extraction in the encoder.

These existing drawbacks are the motivation behind proposing a stage-wise, depth-

guided, Mutual Attention Based Distinguished Window-MADW, to enhance the

essential features and minimize the irrelevant features in the encoding stage. This

process produces enhanced and more accurate saliency features for the decoder to

produce exact salient objects in complex and cluttered images. RGB features rich

in color, regional, spatial, and texture information. It is superior over depth modal-

ity to finding semantic features. However, the high-level semantic features of depth
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modality have a relatively simple structure, sound in object localization, and min-

imize the non-salient regions. Therefore, a Mutual Attention Based Distinguished

Window-MADW is only used in the color features in the encoding stage. This at-

tention map is also used to produce deep global localized features. The deep global

localized features are utilized in each SDD module to provide the reference win-

dow to enhance the essential features and minimize the complex background. The

global localized features, high-level semantic features, and enhanced encoded fea-

tures from both modalities are finally utilized by the proposed self Learning-based

dense decoder to fuse multi-stages, and multi-resolution hierarchical features.
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Figure 6.2: The illustration of the proposed framework SL−Net.
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6.2.2 Enhanced Encoded Feature through Composite Back-

bone

Let us define the composite backbone network with five convolution and atten-

tion blocks, MADW,( i.e., Conv1 2, MADW, Conv2 2, MADW, Conv3 3, MADW,

Conv4 3, MADW, and Conv5 3 ) in color stream. While the Depth stream has only

convolution blocks without MADW (i.e., Conv1 2, Conv2 2, Conv3 3, Conv4 3,

and Conv5 3). The Depth stream has simple geometrical information, which is es-

sential for better localization of the salient object. The outputs produced by these

blocks are denoted as Ci
RGB and Di

depth, and their side outputs are F i
RGB and F i

depth

for both RGB and Depth stream respectively, where 1 ≤ i ≤ 5. The composite

backbone network is designed with five layers of V GG − 16 network along with

distinguished attention windows to enhance the salient regions and minimize the

non-salient region.

6.2.3 Mutual Attention Based DistinguishedWindow-MADW

The RGB and Depth maps have cross-complementary features, which are essential

to detect a complete salient object. This objective has been achieved by a guided

composite backbone network to produce enhanced encoded features. Depth modal-

ity contains details about border, edge, shape, and structure. At the same time,
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color modality contains color, texture, region, and high-level semantic and contex-

tual features. Therefore, both modalities are essential in complex and clutter back-

grounds. The existing models used a simple VGG network to produce CNN features

and side outputs, which are incapable of enhancing the spatial distribution loss and

correlation among different channel features. A depth map has distinguishing char-

acteristics, which are essential to incorporate in encoder stages. The distinguishing

characteristics are missing in most exiting models in encoding stages, which is a

milestone in improving the performance. These are formulated as a guided mutual

attention-based distinguished window. The Depth guided, channel-wise [153], spa-

tial, and mutual attention maps provide the reference window to remove irrelevant

features and enhance the salient regions. The proposed attention map also solves

the low depth issues. Because Depth guided mutual attention maps enhance the

feature generation in color modality during the encoding stage.

The Depth modality-based distinguished window purifies the RGB-based features

maps. The depth features are processed by a series of operations using a spatial

attention mask. The spatial mask (3 × 3) is followed by a large spatial window

(7 × 7). It is suggested by Xu et al. [152] where two (7 × 7) spatial masks are

used, while in our proposed method, (3 × 3) window is followed by (7 × 7). The

(3× 3) window enriches the saliency features while the (7× 7) window emphasizes

the regional saliency in a large receptive field. The channel-wise, spatial attention
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is formulated in Eq. 6.1 and shown in Fig. 6.3 as follows:

Sw(D
i
depth) = ϑ(ψ7×7(ψ3×3(MaxPool(Di

depth)) (6.1)
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Figure 6.3: The illustration of the proposed Mutual Attention Based Distin-
guished Window-MADW.

Where ψ is a convolution operation with specified size, and ϑ is channel-wise max

pool operation with sigmoid function. Sw(D
i
depth) is a spatial attention window that

highlights the border, region, edge, and shape.

The cross-complementary features at each encoding stage are essential to remove the

irrelevant features and minimize the background in a complex scenario. The fused

modality-based mutual attention map is proposed to guide the features generations

at each encoding stage. Therefore, the enhanced encoded features will utilize in

the decoding stage. Firstly, reduce the channels in concatenated features from both

modalities by applying 1× 1 convolution mask. Then after 3× 3 convolution mask

enhance the more details in combined features. The mutual attention feature maps
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Matt is defined in Eq. 6.2 as follows:

Matt(C
i
RGB, D

i
Depth) = ϑ

(
ψ3×3

(
ψ1×1

(∣∣Ci
RGB, D

i
Depth

∣∣))) (6.2)

Where, |.| is the concatenation of feature maps. The multiplication of spatial at-

tention weight with mutually enhanced features reduces irrelevant features. The

RGB-based residual connection highlights and restores the essential features in the

encoding stage. Finally, ith stage enhanced and purified feature is defined in Eq. 6.3

as follows:

Ci
RGB =Matt(C

i
RGB, D

i
Depth)⊗ Sw(Di

depth)⊕ Ci
RGB) (6.3)

Where, ⊗ and ⊕ are element-wise multiplication and addition operation.

Figure 6.4: The design and process of Self-Learning based Dense Decoder- SDD
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6.2.4 Self-Learning based Dense Decoding-SDD

The Multi-level distinguished saliency feature through the mutual attention-based

distinguished window in the encoding stage is utilized in the proposed self learning-

based dense decoding model to learn essential cross-complementary features. The

cross-complementary features learn from cross modalities are important contribut-

ing steps to predict the exact salient object. The self-learning-based Dense De-

coding has four main components. 1 > Global Localized Feature 2 > Cross-

complementary fusion(CF ) 3 >Dense Decoding 4 > Self-Learning based Aggre-

gation Module. The global localized feature is utilized in each stage of the decoder.

The cross-complementary fusion combines the enhanced features of both modalities.

The self-Learning-based aggregation model learns the importance of global features,

local cross-complementary features, and high-level semantic features. The proposed

model of dense decoder describes in Fig. 6.4 in the following stage as follows:

6.2.4.1 Global Localized Feature

The last level of encoder stream in both modalities has high-level semantic and

localized information, which are essential features to localize the salient objects.

Therefore, it is utilized in all the decoder stages, which provides the reference window

for localizing the salient object. The global localized features is utilised as high-level

semantic features for the SDD5 module only. The last layer of deep features in
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the encoder is processed using Cross-complementary fusion(CF) followed by Dense

Decoding.

6.2.4.2 Cross-complementary fusion(CF)

The enhanced side outputs similar to [134], [124] at each stage are utilized in each

decoder to reconstruct the saliency features. These purified side outputs of color and

depth modality have been utilized and fused to produce the enhanced local features.

In this model, the varied resolution features are compressed into smaller (fixed size

equal to k) to minimize the number of channels. The compressed features have been

achieved by convolution operation with k channels, and its size is 3 × 3, and with

the stride, size is 1. These depth and color features are combined using addition and

multiplication operations among cross modalities. The processed features in RGB

and depth modality are denoted as F i
rgb, F

i
depth, each with equal k channels. The

output of the CF module is defined in Eq. 6.4 and in Fig. 6.4 as follows:

Ci
f

(
F i
rgb, F

i
depth

)
= (F i

rgb ⊗ F i
depth)⊕ (F i

rgb ⊕ F i
depth) (6.4)

In this cross-complementary fusion, ” ⊗ ” and ” ⊕ ” are defined as element-wise

multiplication and addition respectively. These operations have characteristics that

exploit the commonality and complementary features to increase saliency. The out-

put of the CF model in each stage is fed into a dense decoder.
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6.2.4.3 Self Learning Aggregation model

The existing decoding model [49], [131], [137], [130], [64] utilized the side outputs that

enhanced the decoder to predict the saliency. Nevertheless, these methods provide

the encoding features into corresponding decoding layers. At the same time, stage-

wise different encoding and decoding features and global deep localized features have

been ignored. For example, the deep-layer encoding features can provide localized

informations, and the low level provides semantic guidance into the decoding process.

Subsequently, purified cross complementary enhanced encoded features from dense

connection (fc) are aggregated with global localized features (fg) and high-level

semantic features (fh) in the Self-learning aggregation model. The self-learning-

based normalization is first time used in local saliency coherence [192]. In contrast,

it is utilized as a self-learning coefficient-based aggregation model of three different

features maps in our proposed model. These three multilevel information aggregated

using self-learning based dense connection which is different from traditional Unet

[193] like structure. The detailed implementation plane is shown in Fig. 6.4. The

self-learning weight of each input feature is computed by 3 × 3 convolution layers

followed by global average pooling (GAP ). These self-learning weights from three

components are aggregated and normalised through SDDi at ith stage to produce

high-level semantic feature at i − 1th stage till i = 1 output level SDD1 in the

proposed aggregation model. Here, i ∈ {5, 4, 3, 2, 1} indexes for different stages. It
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is defined in Eq. 6.5 as follows:

fhi−1 =

∑
x∈(c,h,l)

Self−learning weight︷ ︸︸ ︷
GAP (ψ3×3(f

x
i )) f

x
i∑

x∈(c,h,l)GAP (ψ3×3(fxi ))
(6.5)

Where a global localized feature is invariant and the same for all stages in the

decoder. It is upsampled multiple times to make stage-wise the same resolutions by

using linear interpolation for each SDD module. The Self-learning weight highlights

the importance of each feature. Finally, the 1× 1 convolution mask is applied with

the Sigmoid function to produce the final salient object.

6.2.5 Loss Function

The whole network is trained using all training data by standrard binary cross-

entropy (Eloss), and the IOU-loss [194]. The IOU-loss, (Iloss) loss function is em-

phasized the global structural similarity. The loss function, L, is computed with

their respective saliency map Sm and ground truth map Gt. The total loss function

is defined as:

L(Sm,Gt) = Eloss(Sm,Gt) + Iloss(Sm,Gt) (6.6)

Eloss(Sm,Gt) = −
∑
k

((Gtklog(Smk) + (1−Gtk)log(1− Smk))) (6.7)
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Iloss(Sm,Gt) = 1−
∑

k∈Gt SmkGtk∑
k∈Gt(Smk +Gtk − Smk ×Gtk)

(6.8)

Where k is defined as level pixel index in ground truth image.

6.3 Experiment and Result Analysis

The proposed framework, SL − Net, has two encoders and one decoder network.

Encoder streams enhance the saliency feature using a Mutual Attention-based Dis-

tinguished Window-MADW before each stage of the VGG-16 network. The decoder

stream utilized enhanced encoded, high-level semantics, and global localized fea-

tures to predict exact salient object detection. The network parameters, Data-set,

evaluating parameters, implementation details, and other parameters are described

here.

6.3.1 Data-Set

We conduct extensive experiments on seven publicly available RGBD benchmark

datasets NJUD dataset [110], NLPR dataset [98] STEREO [97] SSD [163] RGBD-

135 [100] and DUT-RGBD [43] and LFSD for complex salient object detection.For

a fair comparison to the state-of-the-art method, the same data pattern of [127]

for training and testing is used here. In the DUT-RGBD dataset, we use the same

data pattern as used in DANet [127].The training set contains random 1400 images
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from the NJUD− 2000 dataset and 650 samples from NLPR, following the similar

pattern of most state-of-the-art methods [64], [127], [126], [116]. The validation set

contains 150 images in which 50 image pairs are from NJUD and 50 image pairs from

RGBD− 135. The rest of the images from all datasets are used as training images.

The augmentation of the training set is used to reduce overfitting by randomly

flipping and rotating the training images.

6.3.2 Evaluation metrics

The proposed method SL − Net is evaluated with others State-of-the-art methods

by using recent evaluation metrics. These metrics are (1) S-Measure, (2) F-Measure,

(3) Mean Absolute Error (MAE), and (4) E-measure(Eψ).

6.3.3 Implementation Details

The proposed method SL − Net is implemented on the PyTorch [195] framework.

The VGG-16 model [182] has been used to design the composite backbone network

to extract features in the encoder. The training and testing images of all the datasets

are resized to 256× 256. Depth stream, the gray-scale input image is converted into

three channels of color image using color mapping [184] technique. All the implemen-

tations are performed on an NVIDIA 1080Ti GPU accelerates. The training process

of the proposed network is performed in an end-to-end manner, using a widely used

Adam optimizer [185] with initial learning rate α = 0.0003, and β = (0.5, 0.999) and
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weight decay is 0.001. The SGD optimizer is used to optimize network parameters

with an initial learning rate of 0.025, the momentum of 0.9, and weight decay of

0.0003. The approximate computational testing time of an RGBD image pair is

0.021s. The proposed network SL−Net has a self-Learning, based Dense Decoder

to explore optimal cross-complementary fusion. The composite backbone network

is configured with five convolution layers along with MSDW(in color stream) sepa-

rately and rest pooling and other layers have been ignored. The size of convolution

operations in all CF , which is part of SDD modules is (3 × 3) and filter size is

k = 64. Maintaining each feature’s resolution at SDD high-level semantic features

is one time up-sampled at each SDD module. A simple bilinear interpolation is

used in up-sampling operations. In the last stage of the decoder SDD1 module, the

resolution of an output image is the same 256× 256.

6.3.4 Comparison and Result Analysis

The proposed method, SL − Net, is compared with fifteen recent, top-performing,

and closely related state-of-the-art methods with four recent evaluation metrics.

The following state-of-art methods CAS-GNN [142], DANet [127], PGAR [129],

cmMS [134], CoNet [196], UCNET [136], JL-DCF [131], S2NET [137], D3NET [130],

CPFP [64], TANet [180], AFNet [133], CTMF [126], PCFNet [116], DF [125], are

compared on seven publicly available datasets. These deep learning-based methods

are recent, efficient, and closely related to the proposed method. We execute their

source code with the same default settings and other related parameters as suggested
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by corresponding authors for fair comparisons. The publicly available saliency maps

for methods as mentioned above is used for result analysis. The result analysis

through visual and quantitative comparison is demonstrated as follows.

Figure 6.5: Visual Demonstration of proposed method SL-Net with other closely
and recent State-of-art-methods.

Visual Comparison: The visual assessment is shown in Fig. 6.5 intuitively

demonstrates the noticeable performance of proposed methods in complex and clut-

ter backgrounds. As per observation from Fig. 6.5 the proposed model show better
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saliency with other methods in the complex and challenging scenario, such as crowd-

based objects (i.e., the sixth image), complex object and background(i.e., the last

image), low quality depth map (i.e., the third image). Although, the proposed

method not only detects the salient object but also preserves the object border, in-

ternal salient regions consistency, and structural integrity. For example, in 2nd and

8th images, most methods produce multiple non-salient regions as salient objects. At

the same time, our method shows better saliency because it preserves structural in-

tegrity and internal consistency. It is achieved by enhanced encoded features guided

by the Mutual Attention Based Distinguished Window-MADW. The 3th, 6th and 7th

images have a inferior quality depth map, in which our method predicts the exact

salient object while other methods fail. In addition, the 1st, 4st and 8th images have

confusing backgrounds, and objects have similar characteristics to the backgrounds.

In these situations, our model predicts exact salient objects with sharper object bor-

ders because of the proposed self-Learning-based SDD model, which utilizes deep

global localized, enhanced encoded features and high-level semantic features.
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Table 6.2: The ablation study of each component in the SL−Net

Setting DUT-RGBD [43] NJU2K [110] LFSD [100]B
A
S
E
M
O
D
E
L

S
D
D

M
A
D
W

f
g
+
f
h
+
f
c

Fβ ↑ Sα ↑ Eψ ↑ MAE ↓ Fβ ↑ Sα ↑ Eψ ↑ MAE ↓ Fβ ↑ Sα ↑ Eψ ↑ MAE ↓

✓ 0.6590 0.7435 0.7963 0.1221 0.7759 0.7724 0.8053 0.1003 0.7445 0.7385 0.7990 0.1453
✓ ✓ 0.7060 0.7665 0.8203 0.0899 0.7965 0.7975 0.8105 0.0832 0.7775 0.7905 0.8442 0.1012
✓ ✓ 0.8221 0.8392 0.8235 0.0812 0.8395 0.8325 0.8425 0.0772 0.8235 0.8352 0.8610 0.0962
✓ ✓ ✓ 0.8772 0.8809 0.8931 0.0531 0.8892 0.8785 0.8890 0.0560 0.8566 0.8490 0.8850 0.0710
✓ ✓ ✓ ✓ 0.9192 0.9112 0.9334 0.0405 0.9066 0.9152 0.9296 0.0381 0.8717 0.8625 0.9054 0.0622

Quantitative Comparison: The quantitative analysis from Table 6.1 objec-

tively illustrates that the proposed model achieves remarkable improvements on

all datasets. The improvements are visible through S-measure, E-measure, and F-

measure while declining in MAE significantly. The improvements in the proposed

model are shown here with recent benchmarks and top-performing methods- CAS-

GNN [142], DANet [127], PGAR [129], cmMS [134]. These improvements have been

achieved through three-level feature enhancements by proposed attention maps, Mu-

tual Attention Based Distinguished Window-MADW, and SDD model. The quan-

titative analysis validates the effectiveness of the proposed attention model, which

demonstrates the capability of generalization..

6.3.5 Ablation Analysis

Extensive experiments are performed for ablation analysis to investigate the contri-

butions of each component in performance improvements. The mutual attention-

based distinguished window-MADW produces enhanced encoded, deep global lo-

calized, and high-level semantic features. The effectiveness of Self-Learning based
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Dense Decoder-SDD is also analyzed to show the importance of SDD in the cross-

complementary fusion of the above three features. In order to validate the effective-

ness of the proposed MADW and SDD module, we perform a series of experiments

using four evaluating parameters with a defined BASE MODEL. This base model

has simple VGG layers without MADW and a simple fusion of side-outputs of each

layer without using SDD and deep global localized features, which is similar to

AFNet [133]. This strategy shows the contributions of each component. The vali-

dation of the effectiveness of each component is analyzed as follows.

6.3.5.1 Effectiveness of Mutual attention based distinguished window-

MADW

To verify the effectiveness of the proposed Attention map, MADW, which applies

before each layer of VGG to improve the encoded saliency features and minimize

the non-salient regions. Deep global localized features are also produced by MADW,

which guide the fusion process in each stage. The improvements of using MADW

and three enhanced features, fc, fg, fc, are clearly visible in Table 6.2. The MADW

improved the BASE model with a large margin, which shows the effectiveness of

the proposed attention map MADW. The addition of fc, fg, fc of Table 6.2 shows

noticeable improvements in all parameters because of spatial, channel-wise, mutual,

and feature level attention mechanisms. It minimizes the non-salient regions and

improves the internal consistency of salient regions. The successive contributions in

saliency computations are shown in Table 6.2, which validates the effectiveness of
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each component of SL-Net on complex RGBD-Datasets. The visual contributions

of each step are shown in Fig. 6.6. The purified deep global localized features and

high-level semantic features are the same and shown in Fig. 6.6.

Figure 6.6: Visual illustration of the global localized features.

6.3.5.2 Effectiveness of SDD and Fusion model

The effectiveness of the proposed SDD model is compared with the BASE MODEL.

The results of the SDD fusion process are shown in Table 6.2, which demonstrate

the improvements with the components mentioned above. The SDD module used

deep global localized features as a reference plane to distinguish the salient and non-

salient regions for saliency enhancement and discrepancy minimization, respectively.

The validation of the proposed Self-Learning based SDD, which is defined in Eq. 6.5
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Table 6.3: Validation of stage-wise improvements using proposed Mutual At-
tention based Distingushed Window-MADW

Stage No.
DUT-RGBD [43] NJU2K [110] LFSD [100]

Fβ ↑ Sα ↑ Eψ ↑ MAE ↓ Fβ ↑ Sα ↑ Eψ ↑ MAE ↓ Fβ ↑ Sα ↑ Eψ ↑ MAE ↓
D4 0.8901 0.8905 0.9004 0.0449 0.8893 0.8944 0.9305 0.0544 0.8367 0.8376 0.8738 0.0942

D3+D4 0.8905 0.8907 0.9070 0.0483 0.8899 0.8949 0.9315 0.0501 0.8388 0.8389 0.8809 0.0890
D2+D3+D4 0.9022 0.9034 0.9156 0.0442 0.9054 0.9078 0.9148 0.0448 0.8567 0.8570 0.8906 0.0719

D1+D2+D3+D4 0.9192 0.9112 0.9334 0.0405 0.9166 0.9192 0.9296 0.0371 0.8817 0.8725 0.9054 0.0622

is also compared with the basic fusion model and shown in Table 6.4 . In Table 6.4,

basic fusion model for cross-complementary features is validate using element-wise

addition, multiplication and concatenation operation. The result analysis also in-

cludes the JL-DCF fusion model based on joint learning and densely-cooperative

fusion. The results are computed using 256× 256 images. The significant improve-

ments in the results by using SDD module is shown in Table 6.2 and Table 6.4, with

all parameters which validate the effectiveness of SDD module to predict exact

salient object detection.

6.3.5.3 Effectiveness of Proposed Composite model

Finally, the validation of the proposed structure is illustrated in Table 6.3 and Fig.

6.7. The ablation analysis checks the effectiveness of adding MADW at multiple

stages in the RGB encoder stream. Di (where i ∈ {4, 3, 2, 1}) is used to denote the

stage number. The stage-wise improvements from Table 6.3 show the effectiveness

of adopting composite networks in performance improvements and the relevancy of

adding MADW before each stage in the RGB stream. The successive improvements

shown in Table 6.2, and Table 6.3 validate the proposed composite networks.
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Table 6.4: The ablation analysis of Cross-complementary fusion using SDD
module and basic fusion strategy.

Fusion Model
DUT-RGBD [43] NJU2K [110] LFSD [100]

Fβ ↑ Sα ↑ Eψ ↑ MAE ↓ Fβ ↑ Sα ↑ Eψ ↑ MAE ↓ Fβ ↑ Sα ↑ Eψ ↑ MAE ↓
ADD 0.8789 0.8809 0.9000 0.0469 0.8904 0.8990 0.9090 0.0449 0.8800 0.8600 0.8811 0.0755
MUL 0.8810 0.8911 0.9010 0.0464 0.8999 0.9010 0.9105 0.0440 0.8609 0.8605 0.8821 0.0750
Cat 0.8821 0.9024 0.9105 0.0438 0.9054 0.9022 0.9148 0.0438 0.8617 0.8610 0.8861 0.0736

JL-DCF 0.8822 0.9005 0.9314 0.0495 0.9036 0.9032 0.9446 0.0435 0.8546 0.8623 0.8825 0.0703

SDD 0.9192 0.9112 0.9334 0.0405 0.9166 0.9192 0.9296 0.0371 0.8817 0.8725 0.9054 0.0622

Figure 6.7: Visual illustration of failure case in incomplete depth maps and
complex and cluttered background.

6.3.6 Discussion of Failure case and limitations

The drastic improvements in the recent SODs model mentioned in Section ?? have

also failed in very complex and challenging situations. The primary issues of produc-

ing incomplete and inaccurate salient objects are low and incomplete depth maps,

complex and clutter backgrounds, and challenging structures. The visual demon-

stration of the above challenging situations is shown in Fig. 6.7. In this Fig. 6.7, our

proposed model accurately localizes the salient object and produces better saliency

than other recent and top-performing methods, even in failure cases also.
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Table 6.5: The comparison of own proposed deep learning based models.

Fusion Model
DUT-RGBD [43] NJU2K [110] LFSD [100]

Fβ ↑ Sα ↑ Eψ ↑ MAE ↓ Fβ ↑ Sα ↑ Eψ ↑ MAE ↓ Fβ ↑ Sα ↑ Eψ ↑ MAE ↓
CCL-Net 0.899 0.901 0.912 0.047 0.910 0.910 0.918 0.040 0.868 0.867 0.880 0.070
HFL-Net 0.890 0.901 0.910 0.049 0.910 0.908 0.910 0.041 0.850 0.860 0.861 0.074

DGMA-Net 0.918 0.927 0.909 0.044 0.913 0.917 0.914 0.041 0.869 0.865 0.886 0.070
CSA-Net 0.921 0.921 0.920 0.039 0.912 0.911 0.934 0.040 0.871 0.862 0.905 0.062
SL-Net 0.919 0.911 0.933 0.040 0.916 0.919 0.929 0.037 0.881 0.872 0.905 0.062

6.3.7 Comparison of own proposed methods

The comparative study of our own proposed deep learning-based models is shown

in table 6.5 using four evaluating parameters and three datasets. The CCL − Net

proposed to efficiently exploit the cross-complementary features.HFL−Net is used

to utilize the cross, non, and intra-complementary features.DGMA−Net effectively

used depth-guided mutual attention maps to improve the deep localized features.

CSA−Net proposed two-stage additive Cross-complementary Self Attention maps

based on a Non-Local network to exploit long-range contextual dependency. Fi-

nally, SL−Net proposed a composite backbone by proposing an attention,MADW ,

based encoder to enhance the encoded features. The result analysis from Table 6.5

demonstrates the effectiveness of the proposed model in performance improvements.

These models aim to address most of the mentioned research gaps and improve

performance.
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6.4 Conclusion

This study proposes a novel mutual attention-based distinguish window, MADW, to

enhance encoded features. A multi-stage mutual attention map-based encoder could

be integrated to produce enhanced encoded, and deep global localized feature maps

to address the challenge of a complex image, low depth map, and complex back-

grounds. It is proposed to obtain better feature representation. This attention map

is formulated with spatial, channel-wise, mutual, and feature-level attention mech-

anisms. Furthermore, the deep global localized feature map is the fusion process in

the decoder to localize the salient object using the proposed attention map MADW.

It is used as a reference plane to distinguish the salient and non-salient regions during

the fusion process in SDD. Thus, the boundaries of detected objects could be better

preserved. A systematic ablation study is conducted on publicly available datasets,

and the experimental results have verified the effectiveness of each component of

the proposed SL − Net. Moreover, the results of comparative experiments have

demonstrated that for salient object detection in complex and clutter images, the

proposed SL − Net is better than other state-of-the-art methods. However, some

drawbacks still exist for the proposed network. For one thing, the feature fusion

strategy for CNN and SDD needs to be further considered to achieve better saliency

accuracy. In future work, an efficient feature fusion module should be designed to

improve the fusion process of the feature maps extracted by CNN and guided by an

attention map.
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