
Chapter 4

RGBD Complex salient object

detection with improved

probabilistic contrast and global

concave topographical saliency

The salient object detection inspired by the human attention mechanism. Most of

the saliency methods generate prominent objects from 2D information, while human

attention systems are 3D perception mechanisms. In this chapter, additional depth

information from RGBD is utilized to robustly and correctly detect the salient object

in a complex and clutter background. To distinguish the salient object in complex
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and clutter background, the saliency of object border increases in Poisson probabilis-

tic contrast space. This process produces a global concave reference surface. The

intra-regional spatial, structural, color, and depth information is integrated into this

global reference plain to detect the salient object correctly. Additional, Background

estimation and central saliency integration will thoroughly remove the background.

This algorithm generates a robust conspicuous object. The detail introduction of

3D saliency and related methods is properly discussed in next section 4.1.

4.1 Introduction

Recently, visual saliency has been defined as highlighting a most prominent ob-

ject from cluttered and complex backgrounds. Initially, the problem of saliency

originated from neuroscience, psychology, and computer vision applications. Later

salient object detection attracts the researcher’s interest in computer vision and

image processing domains to predict the complete salient object. It has recently

witnessed significant advancement in the saliency computation model to predict the

salient object accurately. There are various saliency computation models reported

in the literature. These models have a significant contribution to adhere to some

contribution toward accuracy and robustness. In these models, global prior, central

prior, background prior, connectivity prior, and depth prior is the most reported

features to enhance the saliency computation. Most contemporary-based methods

simply add the various saliency features, which leads to inaccurate and inconsistent
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predictions of salient objects. In contrast, GCS is used as a global concave reference

surface in the proposed model, approximately containing the salient object. This

reference surface has distinguishing characteristics.

The computational model of saliency is mainly categorized into three domains. The

initial computational model is based on bottom-up, low-level feature-based and

starting from an image without training and learning. And the most dominat-

ing feature in salient object detection in this model is contrast defined as pixel-level

contrast [35], region-level contrast [62], multi-scale contrast [13], center-surround

contrast [11] color contrast, and spatial contrast, etc. Although other highly re-

ported features in recent literature are center prior [40], and background connectiv-

ity [12] [41], surroundness [36], depth [43] and abjectness [44]. The second computa-

tional model is top-down learning-based and dependent on high level semantic [18],

contextual [91] and structural features [149]. These features are using in training

and learning with manually annotated ground truth data. The recent computation

model is a hybrid model that integrated the low level and high-level features. Most

of the model varies on proposing the integration strategies to increase the robustness

in saliency detection.

In particular, we define three challenges in the model of saliency computation: (1)

Interior saliency discrepancy (2) exterior saliency discrepancy, and (3) object border

discrepancy. Next, we discuss these challenges and our motivation to mitigate these

challenges in holistic based approaches. Interior saliency discrepancy is defined as
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“removing the saliency of the salient region, which are similar to background re-

gions.” Exterior saliency discrepancy is explained as “increasing the saliency of non-

salient regions which are similar to salient object regions.” Object border discrepancy

is defined as destroying the structure of the object border regions.

The global contrast and other low-level features based saliency models [11], [66], [4],

[5],etc, are computationally efficient and produce full-length saliency. While this

model generates interior, exterior border region saliency discrepancies. Most of the

models are failed in complex and clutter background. The central saliency based

on cellular automata is optimal and highly referenced reported in literature, which

minimized the interior saliency. In contrast, these models produce exterior as well as

border region discrepancy. Therefore, this model is used in the saliency enhancement

stage in the proposed method. Some other recent saliency models measure the back-

grounds to remove the exterior saliency discrepancy. These approaches minimized

the exterior saliency while it has not reduced the interior as well as border saliencies

discrepancies. These entire 2-D models are failed in low depth images. The depth

clues in RGBD saliency provides an additional space to increase the saliency in low

depth 3D images and it have discriminative power against the complex and clutter

background. Therefore, to capture the low depth features RGBD saliency model

is used. RGBD saliency model capture low level depth information while itself not

sufficient for salient object detection. Therefore, Cheng.et.al [43] used color and

structural based regional saliencies for saliency. But this model produces saliency

which minimized exterior saliency and improved the interior saliency but failed on
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Figure 4.1: Saliency detection in complex and clutter background with minimize
discrepancies in interior, exterior and border regions saliency.

border region discrepancy. Zhu. et. al [38] used dark channel, central channel and

other purifying saliency feature along with depth features. This model produce bet-

ter saliency than other RGBD model. This model is minimized both interior as well

as exterior saliency although this model is failed in border region discrepancy.

Targeting to address the aforementioned limitations of saliency computation models

on challenging datasets with complex and clutter background, the proposed method

generate the global concave topographical saliency-GCS. This surface used as a ref-

erence surface for minimizing all these said discrepancies. The global concave based

saliency is vital in providing reference plain for regional saliencies integration. Be-

cause this reference surface have enhanced saliency on object boundary through the

DoG based contour. This enhanced boundary with improved probabilistic contrast

preserves the border regions saliency during regional saliency integration and proven

through result as discriminating characteristics. This novelty have added a different

space attention rule for salient object detection.
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To overcome the limitation of low depth in challenging scenarios and complex images

having depth features are used recently to improve the saliency computations. Cheng

et al. [43] compute saliency by using both color and depth features. Peng et al.

[98] used a fusion framework that combines depth-based saliency with RGB-based

saliency. Geng et al. [97] proposed the salient object detection in the stereo images

based on depth-based saliency. Recently depth cue is combined by Zhu et al. [38]

with regional saliency, dark saliency, and center saliencies. In this method, the

author used the dark channels prior, center, and depth to increase the robustness.

The results of depth saliency are a valuable consideration compared to previous

visual saliency work in increasing the robustness of saliency computation.

Aiming these limitations of global, regional as well as background prior based meth-

ods motivate to proposed a global concave topographical reference surface. This sur-

face increase saliency in border regions. The intra- regional distance-based saliency

and spatially weighted saliency are integrated into the Global reference surface to

increase the interior saliency. The regional color saliency, depth saliency are inte-

grated using Gaussian function into a well-defined global reference plane to enhance

the object’s interior region saliency and minimized the exterior saliency. Further in-

tegration of the center saliency has uniformly removed the background and highlights

the prominent object in complex and challenging images.The main contributions of

the proposed method for aiming the above mentioned discrepancies as follow:

• In this method, a novel global concave reference surface GCS is proposed

by addition of DoG based contour and improved probabilistic contrast based
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saliency to minimized the border region discrepancies.

• To the best of our knowledge, we are proposing for the first-time global concave

saliency based reference plain in RGBD saliency computation.

• The integration of spatial, regional, color and depth saliencies into global con-

cave reference surface to minimized the interior saliency discrepancy.

• The integration of spatial, regional, color and depth saliencies into Gaussian

based background elimination model to minimized exterior saliency.

The rest of the sections of this chapter is organized in three sections. In the next

section, 4.2, the proposed method is adequately defined and explained. The exper-

iments and result analysis with state-of-the-art methods are demonstrated in the

section , 4.3. The conclusion and future scope is presents in fifth section 4.4.

4.2 The proposed method

4.2.1 Initialization through global concave surface (GCS)

The global concave surface is used to initialize saliency computation. This surface is

composed of Improved Poisson Probabilistic Contrast-IPC and DoG based contour

enhanced global surface. The overview and complete block diagram of proposed

models is shown in Fig.4.2
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Figure 4.2: Block diagram of proposed Improved Probabilistic Model.

4.2.1.1 Improved Poisson probabilistic contrast (IPC)

Poisson Probabilistic modeling is used as pdf of the image planes. This pdf is used

to compute the probabilistic contrast. Generalized Poisson distribution is the better

choice because it has characteristics of convergence of information divergence into a

concave shape topographical surface. The probabilistic distribution ϕ for each color

channel c = [l, a, b] in CIE-LAB space for input original image I0 with mean µ is

defined as:

ϕc(I0, µ) =
e−µµI

c

Ic!
(4.1)

The Improved Poisson Probabilistic Contrast-IPC is addition of contour enhanced

global surface with Poisson Probabilistic Contrast [175]. It is Poisson based global
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contrast with normalized likelihood surround symmetry. The Improved Poisson

Probabilistic Contrast-IPC is formulated using color chrominance channel c = [a, b]

and luminance channel l in CIE − LAB space for input image I0 . It is defined as

follows:

SIPC =
∑
c∈a,b

∥Ic0 − ϕcIc0∥︸ ︷︷ ︸
ChrominanceContrast

+
∥∥I l0 − ϕlI l0∥∥︸ ︷︷ ︸

LuminanceContrast

NCoff (4.2)

Where NCoff is called normalization coefficient. This coefficient is used to normalize

the Poisson probabilistic luminance contrast. It is defined as:

NCoff =

(
1

2
p2k +

1

6
p3k +

1

3
p4k

)
∗ γ (4.3)

where γ =
√
Rσ −

√
Rµ is measures the divergence effect of uneven luminance into

image-planes chrominance. Rσ is relative contrast of variance between luminance

plain and chrominance plain. Rµ is relative contrast of mean between luminance to

chrominance mean of image plain. Pk is the kth point probability in Poisson proba-

bilistic space. NCoff is visualized as the region of uneven distribution of luminance.

4.2.1.2 Contour based global surface

The DoG filter is efficiently approximates the Laplacian of Gaussian. This edge

detection method are widely reported in literature [176]. The global concave topo-

graphical surface is computed by addition of contour based global surface, generated

by Difference of Gaussian DoG(x, y) of the input image I0(x, y), as defined in Eq.
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4.4, 5.4. Here, σ1 and σ2 are the standard deviation,where σ1 > σ2. The DoG(x, y)

is defined as follow:

DoG (x, y) =
1

2π

[
1

σ2
1

e−
(x2+y2)

2σ2 − 1

σ2
2

e−
(x2+y2)

2σ2

]
= G(x, y, σ1)−G(x, y, σ2)

(4.4)

This contour surface is generated by integration of multiple edges. Let we define

the range of these edges as φ = σ1/σ2. So all the edges over DoG with standard

deviations in the ratio φ. It is defined as:

SES =
N−1∑
i=0

G
(
x, y, φi+1, σ

)
−G

(
x, y, φi, σ

)
(4.5)

This SES surface integrates N−1 number of edge surface into the initial edge surface

to enrich the boundary of the object. The initial GCS is a simple addition of edge

enhanced global contour surface and enhanced Poisson probabilistic contrast surface.

This surface has characteristics of enriched object boundary [176]. Therefore, it is

used as reference plain for other saliencies integration and background removal.

Which is defined as follow:

SGCS = SIPC + SES (4.6)

4.2.2 Regional contrast integration into GCS

Initial GCS, global concave topographical saliency is used as a reference plane. It

maximize the information of object while reduce the saliency of background regions.
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4.2.2.1 Regional saliency integration with GCS

After global GCS computation, initial image plane I0 is divided into K color-based

regions by using the K-mean algorithm. The same regional descriptor is used for

regional color, depth, and spatial saliency into GCS topographical saliency. Where

spatial saliency SSj is regional density, defined as a ratio between the pixel in region

i and total pixels. The spatial depth saliency into depth Id space is defined as follows:

SSD(rk) =
K∑

i=1,j ̸=k

SSie
Dis0(rk,ri)

σ2 Disd(rk, ri) (4.7)

Where Disd(rk, ri) is the Euclidean distance between region i with central region

k in depth space. Similarly, regional color saliency in color space and regional

probabilistic contrast saliency in GCS space is calculated as:

Scolor(rk) =
K∑

i=1,i ̸=k

SSie
Dis0(rk,ri)

σ2 Discolor(rk, ri) (4.8)

Where Dis0(rk, rj) is the spatial distance and saliency and σ is controlling param-

eter while Discolor(rk, ri) is regional color saliency based on the Euclidean distance

between central region kth and ith region in L ∗ a ∗ b color space.

SGC(rk) =
K∑

i=1,i ̸=k

SSie
Dis0(rk,ri)

σ2 DisGCS(rk, ri) (4.9)
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Disd(rk, ri), Discolor(rk, ri) and DisGCS(rk, ri) are depth, color, and probabilistic

contrast based saliency respectively, which minimize the interior discrepancy with

regional weighting parameter like SSi and Dis0(rk, rj) Disd(rk, ri), Discolor(rk, ri)

and DisGCS(rk, ri). This regional saliency integration into GCS space increase some

non-salient points. This exterior saliency discrepancy is remove in Background esti-

mation model.

4.2.2.2 Background estimation model

In the saliency computation domain, it is assumption of center prior and background

prior hypothesis [43], that salient object is mostly located in the center of the image.

So integrating factor of these regional saliencies is defined using the normalized

Gaussian function. Let Posk and Posc represent the position of kth region and

central region respectively. Nk, denotes the number of pixels in kth region. The

weight-based integrating factor (WFc) is calculated as:

WFc(rk) =
Gaussian(Disd(Posk − Posc)

Nk

GW (Dk) (4.10)

In this equation, Disd is distance in Euclidean space and GW (Dk) is depth weight,

which is calculated as:

GW (Dk) = max(D −Dk)
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1(max(D)-minD) (4.11)

Finally, Saliency is computed by integrating three regional saliencies, through nor-

malized Gaussian function to reduce the interior saliency discrepancy, which is de-

fined as:

SG = Gaussian(SGD(rk) + Scolor(rk) + SGC(rk))WFc (4.12)

4.2.2.3 Saliency enhancement

The hypothesis of Biological plausible architecture [173] is described the phenomena

of centralization of object always towards the center of the image. The center prior

is also preferred because of the mindset characteristics of the photographer. Central

bias preferred in saliency detection and enhancement. [174] [155]. Therefore, Scen

is used in saliency enhancement, which is based on the central saliency BSA [14]

algorithm. This algorithm is used to remove the edge effect and minimize the exterior

saliency discrepancy while enriching the interior saliency. Final saliency is the simple

addition of central saliency SCen and SG

S = (SG + SCen) (4.13)
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4.2.3 Theoretic foundation

The normalization of luminance plain over chrominance plain in Poisson distribution

is defined as maximum likelihood estimation. The measure of uneven distribution

is defined in term of influence of region of surround symmetry. The characteristics

of surround symmetry regions and its information divergence is proved, formulated

and described by H.Perter [172]. In this method, the strict topographical concave

surface lemma [172] is used as a theoretic principle for normilising the global prob-

abilistic contrast. Suppose a pixel is having Poisson probability as pi of a pixel i,

it is the maximum-likelihood estimate of probability occurred around mean of the

distribution [175]. Hence, the maximum bond of similarity of region or pixel’s sym-

metric surround is approximated in terms of total variation in Poisson distribution.

This normalized likelihood luminance plain is used to measure the global probabilis-

tic contrast by subtracting the maximum likelihood from image plains in CIE-LAB

space rather than mean of image plains.

Let us define the Poisson probability distribution ϕ (µ) with mean µ. Let P and Q

be probability measures on {0, 1, 2, 3...N} with point probabilities as pi and qi in

terms of pixel values in CIE-LAB color image where i= {0, 1, 2, 3...N} and N = 255.

Then the total variation between the distributions is defined as:

∥P −Q∥ =
N∑
i=0

|pi − qi| (4.14)
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The divergence of information or region of similarity for creating the contrast is

defined as:

D (P ∥ Q) =
N∑
i=0

pi log
pi
qi

(4.15)

Lemma 4.1. The bond of maximum divergence in total variation in Poisson dis-

tribution is used as normalization coefficient of luminance plain over chrominance

plain.

Proof. The bond of maximum divergence in total variation is defined as region of

influence of uneven distribution of luminance over chrominance plains around the

points in Poisson distribution space. Consider the X1, X2, X3....XN is a sequence

of image plains, defined as independent Bernoulli probabilistic distribution, where

Pk = P (Xk = 1) and µ =
∑n pk.

D(Xk) = (1− pk) ln
(

1− pk
exp (−pk)

)
+ pkln

(
1− pk

exp (−pk)

)
= (1− pk) ln (1− pk) + pk

⩽ (1− pk)
(
−pk −

p2k
2
− p3k

3

)
+ pk

=

(
1

2
p2k +

1

6
p3k +

1

3
p4k

)
(4.16)
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Other characteristics to measure the divergence of information in Poisson distribu-

tion is properly proofed and discussed in various lemma and theorem by H.Perter

[172].

4.2.4 The proposed algorithm

The proposed method is summarized in the following algorithm. To simplify the

proposed method, two algorithm are use to describe the sequential steps as follows.

Input : Input original image I0 = {l, a, b} in CIE-LAB color format. ϕ is

Poisson based PDF , µ is mean of respective color plains σ is variance.

Output: Global concave topographical reference saliency surface SGCS

Compute δa ← tan−1 (σa/σl)

Compute δb ← tan−1 (σb/σl)

Compute γ ←
∣∣√Rσ −

√
Rµ

∣∣
Compute pk ← tan(450 − δa)tan(450 − δb) // for kth image

Compute NCoff =
(
1
2
p2k +

1
6
p3k +

1
3
p4k
)
∗ γ

Compute SIPC ←
(
I l0 − ϕlI l0

)2
NCoff + (Ia0 − ϕaIa0 )

2 +
(
Ib0 − ϕbIb0

)2
Compute SES =

∑N−1
i=0 G (x, y, φi+1, σ)−G (x, y, φi, σ)

Finally Compute SGCS ← SIPC + SES
Algorithm 5: To generate the global concave reference plain using improved

Poisson based probabilistic contrast-IPC and Gaussian based Contour
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Input : Input initial globle Concave saliency SGCS and original input color

image I0into CIE-LAB space

Output: Final saliency S

for k ← 1 to K color region do

Compute the reginol depth saliency SSD(rk) by Eq. 4.7

Compute the reginol color saliency SColor(rk) by Eq.4.8

Compute the reginol spatial saliency SGC(rk) by Eq.4.9

Compute the Reginol Gaussian background ellimination weight WFc(rk) by

Eq.4.10

Intregate all regional saliency

SG = Gaussian(SGD(rk) + Scolor(rk) + SGC(rk))WFc by Eq.4.12

end

Compute the central saliency SCen

Compute final saliency S ← (SCen + SG) by Eq.4.13

Algorithm 6: Regional depth,color and spatial saliencies integration in global

concave topographical saliency SGCS

4.3 Experimental and Result Analysis

4.3.1 Data-Set

The proposed method is extensively evaluated on two publicly available complex

datasets for salient object detection. The first dataset, RGBD-1000 [98], contains

1000 images, which contains the multifarious background, very similar to the salient
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object. Each image is having a resolution of 640×480. The second dataset is PKU-80

[38], which images have confusing backgrounds with a resolution of 960×1080. This

dataset is designed with a complex scene to make computer challenge for saliency

computation.

4.3.2 Performance Measures

To evaluate the performance of the proposed method with other state-of-art meth-

ods, we used four performance matrix (1) Precision-Recall Curve (PR-Curve),(2) Re-

ceiver Operating Characteristic (ROC-curve), (3) Mean Absolute Error (MAE)and(4)

F-Measure.

4.3.3 Parameters and Constraints Selection

A set of extensive experiments is performed to evaluate the final value of the various

parameters and constraints. These experiments are performed on RGB-1000 and

PU-80, RGBD dataset. To make the algorithm efficient and better performance

in complex and clutter images scenario. These extensive experiments have been

finalized value and range of the following parameters. The outer border of the

salient object is enclosed with reference contour by combined the result of applying

several DoG base edges. The range of σ1 and σ2 varies to keep the value of φ = σ1/σ2

is constant as 1.6. The controlling parameter σ2 is 0.4 in Eq.4.4.
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4.3.4 Successive steps validation

Figure 4.3: Visual demonstration of Contribution of each step in GCS

Successive step of proposed method GCS is validated on the Complex Image Dataset

PU-80 and RGBD-1000 publicly available dataset having depth information. Vali-

dation of each step is very necessary to demonstrate the contributions in saliency.

In complex and clutter background images, salient object cannot be separable by

single stage algorithm. visual contribution of each step is shown in Fig.4.3. The

validation of effectiveness is measured through MAE(mean absolute error) and Ta-

ble4.1. The result is shown in Table4.1. which, validates each step of GCS on PU-80

and RGBD-1000 datasets. This result demonstrates the effectiveness of each step.

Table 4.1: Steps wise Mean Absolute Error-MAE in proposed Method-GTS

Data− Set Initail SGCS Final SG SCen S

PU-80 0.5875 0.3605 0.1593 0.0716
RGBD-1000 0.3540 0.2451 0.1097 0.0581
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4.3.5 Comparative Analysis

The extensive experiment of the proposed method, GCS (Global Concave Saliency)

is performed on using two RGBD benchmark datasets having images with complex

and clutter background. This result analysis of the proposed method is evaluated

through a visual qualitative Fig.4.4 and quantitative scale. Our proposed method

initialized with global probabilistic contrast and difference of Gaussian based contour

model. Therefore in these evaluations, The top five global contrast-based methods

like MDC [5], HC [4], GC [62], MSS [66], FT [11] are selected.

Figure 4.4: Visual comparison of saliency of proposed method with other state-
of-art methods.
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These methods are selected in these result analysis are based on highly referenced,

computationally fast, recent, and closely related to our proposed method. The

Proposed method GCS is also compared with efficient graphical model GMR and

cellular automata-based central saliency model BMS. The proposed method is also

compared with top, efficient, and recent RGBD based models like LBE, CDS, and

DES. This evaluation , some other state-of-art methods like GU [68], RC [4], RBD

[12], MST [42], are compared using Mean Absolute Error MAE in Table 4.2.

The Qualitative analysis is demonstrated through the visual saliency-map, which is

shown in Fig.4.4. In this observation, the global contrast-based methods produce

full-length saliency. The global contrast-based process, FT, GC, MDC, HC, and

MSS are highlighting some background similar to the salient regions and suppressing

some interior saliency, which has similar characteristics with the background. So

these methods produce interior and exterior saliency discrepancy both. To remove

the backgrounds HC, RC used Saliency-Cut, FT used Mean-shift, MSS used Graph-

cut algorithm, which further enhanced the computation cost. MDC used a Marker-

based watershed segmentation algorithm to separate the salient object. This method

destroys some structural information like shape, border regions, which is shown in

Fig.4.4.

The Marker-based watershed segmentation algorithm produces multiple markers, in

which some are related to background and others to the objects. Cellular automata-

based central saliency creates a saliency map with no interior saliency discrepancy
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Figure 4.5: Quantitative comparison of proposed method GCS with PR-Curve
and ROC-Curve.

but failed on object boundary. Therefore, this algorithm used in saliency enhance-

ment. All the above methods are failed in producing saliency in low depth images.

The proposed method, GCS, minimized the above-mentioned limitations and built

a robust salient object, which is reduced the interior saliency discrepancy and al-

together remove the backgrounds in low depth and sophisticated image. Through
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Figure 4.6: Quantitative comparison of proposed method with F-Measure

visual comparisons, the proposed method can detect single, multiple, and complex

images precisely. Through all these observations, our proposed method GCS per-

forms better than other state-of-art methods.

Table 4.2: Mean Absolute Error-MAE of different state-of-the-art methods

FT HC GMR MDC BSA LBE DES CDS OWN

PU-80 0.2324 0.2310 0.2298 0.1957 0.1889 0.3158 0.1156 0.0958 0.0716
RGBD-1000 0.2049 0.2169 0.2249 0.1969 0.1806 0.1783 0.2931 0.0731 0.0581
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The proposed method GCS is compared with ten state-of-the-art top-performing

methods using PR-Curve, ROC-Curve and F-Measure Fig.4.5 and Fig.4.6. While the

top twelve methods are compared using MAE. The proposed method outperforms on

the recall axis while maintaining the same level of precision, which is visible in PR-

Curve. These characteristics demonstrate the robustness of the proposed method

GCS with better saliency maps with other state-of-art methods.

4.3.6 Comparison with other Own proposed methods

The proposed method CGS is also compared with other two probabilistic based

models PC PC+. The comparison is shown in Fig. 4.7 which clealy demonstrate

that improved probabilistic contrast with global concave topographical surface-GCS

perform batter in 3D RGBD data-sets.

Figure 4.7: Comparison of GCS with other proposed own probabilistic contrast
based method using PR-Curve
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4.4 Conclusion

This method used an additional parameter depth to increase the robustness in

saliency detection in complex and clutter background. In this method, an innovative

and robust approach of global concave topographical surface (GCS) is prepared for

regional features integration. This surface designs with the difference of Gaussian

based contours. So, this reference plane is used to minimize the border region’s

discrepancies. This integration works efficiently and effectively in regional saliencies

integration to reduce the interior, exterior, and regional saliency discrepancies. The

robustness of GCS increases the preservation of the structure, shape, and border-

related information in saliency estimation. These regional saliencies integrations

remove the interior saliencies discrepancies. Gaussian weighted background estima-

tion and central saliency integration remove the exterior saliencies discrepancies.

Finally, all these integrations into the global concave surface plane are increasing

robustness and achieving state-of-the-art results. The improvements in robustness

are the direction of the future works on this framework.

Further research will be focused on improving outcomes for these complex datasets.

Deep learning algorithms have not been considered in this chapter. Results from

deep learning are very appealing, and efforts can be put in generating deep learning

based model to further improved the salient object detection.
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