
Chapter 3

Probabilistic Contrast and Edge

Enhanced Global Topographical

Surface based Complex RGB

Salient Object Detection

Complex salient object detection is the most challenging task in cluttered back-

ground images. In this prevailing problem, global contrast-based methods are com-

prehensively preferred. But these methods fail in preserving the structure, shape and

broader related geometrical information. Aiming at these limitations, two Global

Topographical Surfaces are proposed in this chapter. First method proposes Poisson

based probabilistic contrast to generate global topographical surface. The second
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method use iterative Laplacian of Gaussian to generate global topographical saliency,

which preserve the structural, shape and broader related geometrical information.

This surface encloses the prominent object with all its structural and spatial infor-

mation, or with all the salient features. Then it is used as a reference plane for

regional depth, color and spatial saliency integration. proposed method uses global

contrast and iterative Laplacian of Gaussian to generate initial global topographical

saliency. The proposed method has three stages. In the first stage, a probabilis-

tic contrast is computed using Poisson based maximum likelihood estimation by

addition of chrominance and luminance contrast. The luminance contrast is nor-

malized by proposed ”enhance and suppress luminance method”. Similarly, Second

method uses iterative Laplacian of Gaussian and global contrast to produce global

topographical surface. In the second stage, the regional color, depth, and spatial

saliencies are integrated into the topographical surface to enhance the saliency. In

the third and last stage, i.e., saliency enhancement stage, central saliency is used

on global color distinction. These models are introduced in Section 3.1. The first

proposed models PC is described in Section 3.2.1, and followed by their experiments

and results in Section 3.2.2. Similarly, Second model GTS has been proposed in

Section 3.2.3, and their results in Section 3.2.4. Section 3.3 concludes the chapter.
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3.1 Introduction

Visual saliency usually differentiates between image planes. It searches a hyper

image plane which contains the exact information about the salient object. This

method is defined as ”Salient Object Detection”. The main objective of the pro-

posed method is to generate the probabilistic refernce surface in which an object lies.

This surface provides the reference surface in which all discrepancies are uniformly

minimized. Discrepancies in the background of all objects are suppressed simulta-

neously. Thus all uniform and separable objects stand out from the surroundings in

the complex image.

Visual saliency can be challenging. Primitive tasks are used in approximately all

image processing applications, like Object Classification [18], Object Recognition

[19], Image/Video Summarization [20], image classification [145] and visual question

answering [146], Neurobiology of Attention [3], and Dermoscopic Segmentation [23].

The numbers of visual saliency computation models depend on various applications

and evaluation system. But there are mainly two types of models, first is the salient

object detection models and second is the fixation prediction models. Salient ob-

ject detection models [66] [35] [43] [23] are used to pop out most salient object,

based on low level cues like, patch [166], color [4], depth [43], texture and back-

ground [167] estimation. Fixation prediction models are used for localization and

prediction of the objects based on high-level object features, semantic-based features
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and application-specific features. These computational models follow top-down task-

centric [168] [19] [18] [169]and bottom-up [11] [36] [158] [67] search-centric strategies.

The former strategy uses high-level semantic features for training and testing, while

later strategy uses low-level clues in the saliency computation.

Why do we need all of the above? The answer lies in the fact that saliency is often

computed in complex and cluttered background of the image, where objects and their

background may be difficult to separate, as shown in Fig. 3.1. Early methods of

salient object detection were focused on mainly a single parameter or feature to only

distinguish and separate the region. Recently, multiple object features and multi-

level computation models have been used for reducing inaccuracies and discrepancies

in salient object detection.

Figure 3.1: The motivation for proposing probabilistic models to minimize dis-
crepancies in interior and exterior saliency.

where f0 is initial image plane defined in (0, 1) in CIE-LAB format, and µ is mean

of each plain. In salient point estimation for computing global or local contrast,

central points are most important characterization. They are widely used parameters
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in saliency computation. The contrast-based features represent the research field,

which contributes the main clue in low level processing [170] [4] [5] [6] [11] [32] and

defined in following Eq.3.1.

GlobalContrast(fo) =
∑
c∈{a,b}

∥f c0 − µ(f0)c∥2︸ ︷︷ ︸
Chrominance Contrast

+ ∥f l0 − µ(f l0)∥2︸ ︷︷ ︸
Luminance Contrast

(3.1)

Contrast can be defined by different types of low-level image features, such as colors,

edges, gradients, orientations, and depth, etc. In this model, we use Poisson based

probabilistic color contrast which is novel, and which provides the global concave

topographical surface in which a salient object stands out of its complex background.

The proposed method focuses on this same ambit to extend the contrast based

probabilistic model-PC. It reduces the existing limitations and drawbacks, as stated

below.

• The global contrast-based method generates saliency with the interior re-

gional discrepancy, which is defined as ”an object (that) has cluttered and

complex interior region, similar to the backgrounds suppressed, but not en-

hanced as salient points or regions”.

• Regional contrast-based method generates the exterior regional discrep-

ancy, which is defined as ”an object having outer region similar to background

that will not preserve the outer boundary of objects till the realm of similarity,

increases the non-salient points or background points.
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This chapter introduces two salient object detection models to target the limitations

mentioned above: the first method is the Probabilistic Contrast-based SOD model,

and the second is Edge enhanced global topographical surface.

Probabilistic Contrast-based SOD model-PC: The main objective of this pro-

posed method is to minimize the above mentioned drawbacks, which is inherited by

most of the existing global contrast-based methods. The main contributions of the

proposed method are summarized as:

• In this model, a novel method for luminance normalization ESL is proposed

which approximates the luminance for a better approximation of probabilistic

contrast;

• To the best of our knowledge, we are using for the first-time Poisson based

probabilistic contrast-PC for computational saliency models to integrate ob-

jects and features into a global topographical surface. Experiments over var-

ious contrast-based saliency models show consistent improvement when com-

pared to related simple integration or fusing local saliency.

• The probabilistic contrast-based method significantly improves in recall value

over all the state-of-the-art methods to the same level of precision.

The PC proposes a better contrast approximation based on a probabilistic model,

rather than on a statistical approach, to generalize the application. For probabilis-

tic modeling of the input image, color channel-wise Poisson distribution is used for
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approximating the saliency. For a better approximation of color contrast, a novel

luminance or brightness normalization method is proposed. This method enhances

and suppresses the Luminance (ESL) to a level where Poisson based probabilistic

contrast leads to a better approximation of central global contrast. ESL formulation

is based on relative standard deviation around mean to its chrominance components.

Luminance divergence is estimated at the pixel level, and is further enhanced or sup-

pressed, according to its relative standard deviation from chrominance components.

After brightness normalization, global contrast is calculated by using Poisson based

likelihood estimation in each channel.

This first step saliency is further improved by using contrast to surround center for

a subset of the images which have similarity between foreground and background

object in spatial distribution. This first step saliency is further integrated by various

regional cues like space, depth and color based regional contrast to generate final

saliency. This is used for segmentation and comparative study. These studies use

the number of pixels surrounding global contrast.

Edge enhanced global topographical surface: Targeting these aforesaid limi-

tations of global as well as regional contrast, the proposed method generates an edge

based topographical surface. This surface is used as a reference plane for integrating

the regional saliencies. Global topographical surface provides the regional boundary

of the object during regional saliencies integrations. This global surface differenti-

ates the salient region and non-salient (background) regions, which is shown Fig3.2
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Figure 3.2: The importance of Global Topographical Surface in salient objects
from complex and clutter backgrounds

This proposed algorithm extends the [10] center-surround mechanism through fea-

ture integration theory (FIT) [1] by proposing the integration of regional color con-

trast, space contrast and distance contrast into iterative Laplacian of Gaussian(ILG)

enhanced global contrast surface. The color,spatial and distance based regional

saliency integration increases the saliency, so that object pops out completely. In

saliency enhancement step, Gaussian-based background suppression is used, which

assigns more weight to the salient object region and less weight to the background

regions. The main contributions of the proposed method in salient object detection

are as follow:

• The method proposes the iteration of Laplacian of Gaussian (ILG) based edge

enhanced topographical surface as a reference plane to enrich the object bound-

aries.
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• This surface differentiates the object regions and background regions during

distance based saliency. It enforces the further saliency increase only within

the object boundaries.

• The method integrates color, spatial and distance based regional saliency into

the global topographical surface, which has well-defined object boundaries.

3.2 The Proposed Models

In this section, two probabilistic models have been proposed. The first model is

based on probabilistic contrast. The block diagram of proposed model shown in

Fig. 3.3. At the same time, the second model is based on edge enhanced global

topographical surface. The details of each model are described below.

Figure 3.3: Block diagram of proposed probabilistic model.
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3.2.1 Probabilistic contrast based complex salient object de-

tection

The proposed method addresses the above limitations in a step-by step manner.

In this method, saliency is initialized with Poisson based global contrast (PC) in

the form of the concave topographical surface. It distinguishes between the salient

and non-salient regions, to solve the exterior saliency discrepancy. In the second

stage, multiple regional contrasts are integrated to minimize the interior saliency

discrepancy. In the final stage, saliency enhancement is performed using Gaussian-

based weighted background suppression model. This model is used to minimize both

types of discrepancies to generate the ground truth level salient object.

3.2.1.1 Initialization through Poisson probabilistic contrast (PC)

The initial saliency computation method is based on estimation of Poisson Proba-

bilistic Contrast on pixel level by computing the likelihood estimation in the original

image f0. Color channel wise pdf is calculated through Poisson probability distribu-

tion function in CIE−LAB space. Probabilistic Contrast (PC) calculated for each

chrominance channel, c = (a, b) and luminance channel l. It is as follows:

SPC =
∑
c∈{a,b}

∥f c0 − ψcf c0∥2︸ ︷︷ ︸
Chrominance Contrast

+ ∥f l0 − ψlf l0∥2︸ ︷︷ ︸
Luminance Contrast

Tf (3.2)
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where Tf is called Enhance and Suppress Luminance-(ESL) coefficient. It is used to

normalize the luminance contrast in probabilistic space with a relative variance of

chrominance components in CIE-LAB space; defined as:

Tf =


log(dd) if 0 < d < t

dd otherwise

(3.3)

where dd = σa + σb is the luminance contrast normalization coefficient, which mea-

sures the divergence effect of chrominance into image-plane of luminance. d is the

angular threshold to measure the impact of uneven luminance over chrominance;

defined as:

d = tan(450 − αa)tan(450 − αb) |
√
σR −

√
µR| (3.4)

The process of ESL is visualized in 3.3 and 3.4 where αa = tan−1 (σa/σl) αa is

relative angular variance in a and l plane, and αb = tan−1 (σb/σl) αb is relative

angular variance between b and l image plane. σa, σb and σl is variance in a,b and l

color space respectively; where, σR is relative contrast of variance between luminance

and chrominance and µb is relative contrast of mean between luminance mean to

chrominance mean. The outcome of this ESL is represented in Fig. 3.4 and their

relevancy is shown in PR-Curve in Fig. 3.6. The next section will demonstrate and

derive the principle of probabilistic distribution of color plane.
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3.2.1.2 Poisson probabilistic distribution

Probabilistic modeling of the image planes are performed through various distribu-

tion models. But Poisson distribution is the better choice, because Poisson’ Law is

applicable for the establishment of convergence in information divergence to gener-

ate concave shape topographical surface. This is derived and proved by lemmas and

theorems [171] [172] and it is summarized in the Theoretic foundation Section 4.2.3.

Figure 3.4: Enhancement and suppression of luminance (ESL) with relative
variance in chrominance planes, where (a) Input image (b) Input image luminance

plane (c) Normalized luminance plane.

The probabilistic distribution ψ for each color channel ch = [l, a, b] in CIE-LAB

space for input original image f0 with mean µ is defined as:

ψch(f0, µ) =
e−µµf

ch

f ch!
(3.5)

Initial saliency is further enhanced, channel wise, in Euclidean space ∥.∥, where µ

is mean of each color channel. D(SPC) is the separating parameter, which denotes

the simple and complex image.

SPC =
∑

ch∈{l,a,b}

∥∥SchPC − µch∥∥2 , if,D(SPC) = (1− β) /(1 + β) < λ (3.6)
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while λ represents the complex image indicator parameter λ ∈ [0, 1], β is the ratio

of positive and negative pixels with respect to mean plane of SPC . The theoretic

foundation related to topographical surface and concavity shape of probabilistic

contrast is established in the last part of this section 4.2.3. The next section will

derive the principle of regional color, depth and spatial saliency and their integrating

factor(IF) in PC space.

3.2.1.3 Regional contrast integration with global-PC

Initial PC contrast is used as a reference plane in the form of a concave topographical

surface. It contains maximum information of object while reducing the non-salient

points. After global PC computation, initial image plane f0 is divided into K color-

based regions by using the K-mean algorithm. The same regional descriptor is used

for regional color, depth, and spatial saliency into PC topographical surface. The

spatial depth saliency into probabilistic space is defined as follows:

SRPC(rk) =
K∑

j=1,j ̸=k

ADje
Dis0(rk,rj)

σ2 DisPC(rk, rj) (3.7)

where Dis0(rk, rj) is the Euclidean distance between region j and k in PC space

where, ADj is regional areal density defined as a ratio between the pixel in region j

and total pixels. Similarly, Regional color contrast in color space, is calculated as:
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Scolor(rk) =
K∑

j=1,j ̸=k

ADje
Dis0(rk,rj)

σ2 Discolor(rk, rj) (3.8)

where Dis0(rk, rj) is the spatial distance weight and σ is controlling parameter while

Discolor(rk, rj) is regional color contrast based on the Euclidean distance between kth

and jth region in L ∗ a ∗ b color space. DisPC(rk, rj) and Discolor(rk, rj) are distance

and color based saliency respectively, which minimize the interior object salient point

discrepancy with regional weighting parameter like ADj and Dis0(rk, rj). Finally,

Saliency is computed by integrating three regional saliencies, through normalized

Gaussian function to reduce the interior saliency discrepancy, defined as:

SPR = Gaussian(SRPC(rk) + Scolor(rk))IFw(rk) (3.9)

The integrating factor IFw and Gaussian weighted background suppression model

is defined in next section.

3.2.1.4 Background suppression model

In the application of salient object segmentation and detection, the most salient

object is located in the center of the image. Another background prior estimation

based salient object [43] detection also approximate that mostly background part

of the image is associated with borderline while object towards the central line. So

integrating factor of color and depth based contrast in probabilistic space estimated
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by using the normalized Gaussian function. Let posk and posc represent the position

of kth region and central region respectively. Nk, denotes the number of pixels in

kth region. The weight-based integrating factor (IF ) is calculated as:

IFw(rk) =
Gaussian(Disp(posk − posc)

Nk

PW (PCdk) (3.10)

In this equation,Disp is distance in Euclidean space and PW (PCd) is depth weight

in probabilistic contrast space, which is calculated as:

PW (PCd) = max(PCd− PCdk)
1

(max(PCd)−mind) (3.11)

This regional saliency integration into PC space increase some non-salient points.

This exterior saliency discrepancy is remove in saliency enhancement stage.

3.2.1.5 Saliency Refinement Model

The center bias is prominent in visual saliency computation. The central idea [173]of

localizing the object always towards the center of the image is because of the ten-

dency of the mindset of the photographer. Central bias improves the saliency detec-

tion over [174] [155] the benchmark result. For enhancement of the central saliency,

we used BSA [14] algorithm based saliency, Sc. This algorithm is used to remove

the edge effect and to enhance the interior saliency discrepancy by computing GCD

(global color distinction) and spatial distribution based on the cluster boundary
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Figure 3.5: Successive saliency computation (a) Input image (b)Initial Spc
through, (c) Final Spc through, (d) SPR regional color, spatial, depth enhance

saliency (e) Sc central saliency, (f) Final saliency S through

seeds. The final saliency is simply weighted sum, w of SPR and central saliency, SC

as follows:

S = (SPR + Sc)w (3.12)

These computed saliencies significantly reduce the background while simultaneously

increasing the salient points in probabilistic topographical space which contains the

exact boundary of the salient object. The stepwise saliency is shown in Fig. 3.5. The

white color in box shown in Fig. 3.5, similar to background, is suppressed in final

SPC while this interior saliency is highlighted into SPR. So, Final saliency generates

the ground truth level saliency as shown in Fig. 3.5.

3.2.1.6 Theoretic foundation

There are two main primitive theoretic principles proved, formulated and described

by H.Perter [172] followed by various theorems and principles. In this model, the

strict topographical surface lemma is used [172] as a theoretic principle for formu-

lating global probabilistic contrast. Suppose a pixel is having Poisson probability as

fi of a pixel i, it is the maximum-likelihood estimate of probability occurred around
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mean of the distribution. Hence, the similarity of region or pixel’s symmetric sur-

round is approximated in terms of maximum likelihood. This likelihood is used to

measure the global probabilistic contrast by subtracting the maximum likelihood

from image using pixel by pixel method rather than mean.

Lemma 3.1. The points surround symmetry by maximum likelihood estimate of

Poisson probabilities distribution occurred around the mean.

Proof. Consider Poisson distribution ψ (µ) with mean µ. Let F and G be probability

measures on {0, 1, 2, 3...N} with pixel probabilities as fi and gi in terms of pixel

values in gray scale image where i= {0, 1, 2, 3...N} and N = 255. Then the total

variation between the distributions is defined as:

∥F −G∥ =
N∑
i=0

|fi − gi| (3.13)

The divergence of information or region of similarity for creating the contrast is

defined as:

D (F ∥ G) =
N∑
i=0

fi log
fi
gi

(3.14)

Let X be an image plane with gray values in range {0, 1, 2, 3...N} and with pixel

probability fi. Then realm of similarity or information divergence around the pixel
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fi is

D (X ∥ ψ (µ)) =
N∑
i=0

fi log

(
fi

µi

i!
e−µ

)

= µ+
N∑
i=0

fi log

(
i!

µi

)
−H(X)

= µ− E(X) log(µ) + E(log(X! ))−H(X))

where H(X) = −(log(fi)− 1)
N∑
i=0

fi

(3.15)

Compute the partial difference with respect to µ and set it to 0

∂D

∂µ
= 1− E(X)

µ
(3.16)

The maximum likelihood is equal to mean E(X) = µ of general distribution in

measure of divergence of information or area of pixel surround similarity. This

pixel-wise maximum likelihood is used to measure the pixel-wise global contrast at

place 3.2 of using mean value in traditional global contrast methods.The proposed

method is summarized in following algorithm.
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Input : Original image f0 = {l, a, b} in CIE-LAB color format. ψ is Poisson

based PDF , σ is variance and µ is mean of respective color channel

Output: Initial probabilistic contrast based global saliency SPC

Compute αa ← tan−1 (σa/σl)

Compute αb ← tan−1 (σb/σl)

Compute d← tan(450 − αa)tan(450 − αb)
∣∣√σR −√µR∣∣

Compute dd← σa + σb

if ((d > 0) and (d < t)) then // Where t is Angular threshold

Tf ← log(dd)

else

Tf ← dd

end

Compute SPC ← (fa0 − ψafa0 )
2 +

(
f b0 − ψbf b0

)2
+
(
f l0 − ψlf l0

)2
Tf

Compute D(SPC)← (1− β) \ (1 + β)

if D(SPC) < λ then // Only for complex image where λ ∈ {0, 1}

for each channel ch ∈ {l, a, b} and µ is mean of each channel in SPC do

Enhance SPC ←
(
SchPC − µch

)2
end

else

end

Algorithm 1: Generate initial topographical saliency SPC using Poisson based

probabilistic contrast-PC
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Input : Input initial saliency SPC and Original input image f0

Output: Final saliency S

for k ← 1 to K region do

Compute spatial regional saliency ADk(r) by 3.7

Compute the spatial depth saliency SRPC(rk) by 3.7

Compute the spatial color saliency Scolor(rk) by 3.8

Compute the integrating factor IFw(rk) by 3.10

Compute SPR ← Gaussian(SRPC(rk) + Scolor(rk))IFw(rk) by 3.9

end

Compute the central saliency SC

Compute final saliency S ← ((SC + SPR)w) by 3.12

Algorithm 2: Regional saliency integration in Probabilistic Contrast space SPC

3.2.2 Experiments and Results of Probabilistic Contrast based

Model

The results of comprehensive experiments the proposed models is discussed in this

section. Section 3.2.2 presents results obtained by the probabilistic contrast based

method. Section ?? includes the results analysis of Edge Enhanced Global Topo-

graphical Saliency based methods.

The experimental analysis of proposed method-PC is performed on five publicly

available datasets MSRA [11], PASCAL-S-850 [155], ECSSD-1000 [13], DUTOMRON-

5166 [75], and ImgSal-235 [156]. Experiment and result evaluation are performed on
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four standard quantitative parameters, over the above mentioned datasets. These

parameters are Precision-Recall Curve (PR-Curve), Receiver Operating Character-

istic (ROC-curve), Mean Absolute Error (MAE) and F-Measure.

Figure 3.6: PR-Curves on MSRA dataset for demonstrating the evaluating pa-
rameters. (a) Angular threshold, (b) Complex image indicator(λ). Blue line rep-

resents the without ESL.

3.2.2.1 Evaluating Parameters Setting

The extensive experiment is performed to investigate and finalize the parameters.

All the extensive experiments are performed on MSRA dataset for finalizing the

parameters. The analysis of proposed method PC(SPR, where saliency enhancement

steps are not used) and PC+(output of all three stages ) is compared with other

state-of-the-art methods. In PC method, luminance is normalized by using the ESL

in Eq. 3.4. This method plays a very important role in computing the topographical

surface which enhances and retains object border information. The validation of

ESL is demonstrated in Fig. 3.6. In this figure, PR-Curve is computed on MSRA-

1000 dataset. The blue curve represents the saliency without ESL normalization
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Figure 3.7: Visual comparison of saliency maps related with contrast based
method.

while all another saliency-curves are after ESL normalization. For computing ESL

coefficient Tf , the angular threshold d is the deciding parameter. If d ∈ (0, t) where

t = 0.75, than luminance is enhanced otherwise suppressed, which is shown in Fig.

3.5. Another useful parameter λ ∈ (0, 1) is the complex image indicator use to

classify the PC enhanced saliency is of the complex image or a simple image. If

λ is less than 0.2, (which is experimentally decided) it corresponds to a complex

image. This image saliency is further enhanced by Eq.3.5. We use σ2=0.4 for

controlling parameters in spatially weighted saliency in Eq.3.7 and Eq.3.8 for a

better approximation of integration of interior salient points. Final parameter w is

used in a weighted sum of regional saliency with central saliency is set as 10 while

the value of w have no any effect on the results.
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Figure 3.8: Comparison of purely contrast-based saliency on (1) MSRA (2)
PASCAL (3) DUTOMRON, dataset respectively
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Figure 3.9: Comparison of purely contrast-based saliency on (1) ECSSD and
(2) IMGSAL dataset respectively

3.2.2.2 Ablation study

The effectiveness of the proposed method, probabilistic contrast-PC, is evaluated on

the five public benchmark datasets and is validated through PR-Curve and ROC-

Curve. PC(SPR) in Fig. 3.8, and 3.9 is compared to other contrast based state-of-

the-art methods to show that probabilistic distribution is vital in multiple integration

of others regional clues.

The validation of proposed method is performed by:
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• Comparing the PC with other purely contrast-based top performing methods

in Fig. 3.8 and Fig.3.9,

• F-Measure and MAE based steps wise contribution of PC+ method is shown

in Fig. 3.10 and Table 3.1 respectively.

Comparison with Contrast-based method Probabilistic contrast provides the

reference plane which highlights the salient objects boundaries and creates a concave

topographical surface. In this surface, multiple regional saliency like: depth-based,

color-based, space-based saliency is integrated. This integration enhances the inte-

rior saliency so that object is uniformly standout. This is demonstrated in Fig. 3.7.

The proposed method, PC is compared with other purely contrast-based methods

like RC [4], HC [4], GU [68], GC [62], MSS [66], FT [11] in Fig.3.7 and quantita-

tive compared in Fig.3.8, and Fig.3.9. This proposed method outperformed all the

state-of-the-art methods in five publicly available datasets by using PR-Curve and

ROC-Curve. This integration is minimized interior saliency discrepancy and exte-

Figure 3.10: Steps wise validation of proposed method using F-Measure.

rior saliency discrepancy, which is shown in Fig. 3.8,and 3.9 and part (c) PR-Curve,
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where PR-Curve gets completely reduced on recall axis in PC+ by maintaining same

level of precision. It means salient object completely stand-out from surrounding,

and background is minimized. Stepwise validation The validation and effec-

Table 3.1: Steps wise MAE in proposed Algorithm

Data− Set InitailSPC FinalSPC SPR Sc PC+

MSRA-1000 0.107423 0.105567 0.104296 0.051953 0.025223
DUTOMRON 0.104037 0.104002 0.103037 0.061953 0.053128

IMGSAL 0.091377 0.082311 0.053441 0.036145 0.021582

tiveness of each step in PC+ method is performed by using F-measure and MAE

measure on three publicly available datasets. The result is shown in Fig. 3.11 and

Table 3.1 which, validate each step of PC+ on MSRA, DUTOMRON and IMGSAL

dataset. This result demonstrates the effectiveness of each step, which contributes

in improving the performance of final saliency.

3.2.2.3 Comparative study

In the comparative analysis, 12 state-of-the-art methods are compared on 5 publicly

available complex datasets. The performance measures like PR-Curve, F-measure,

and ROC-Curve are used for quantitative comparison. The final result is compared

with traditional methods and deep learning based methods in next section. Com-

parison with Traditional Based Models The visual comparison is represented

into Fig. 3.11. The final result is compared with global contrast based methods like
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Figure 3.11: Visual comparison of saliency maps of a complex image having
cluttered background.

RC [4], HC [4], GC [62], GU [68], MSS [66] and FT [11] and other recent state-of-the-

art methods like GR [78], MDC [5], ECS [13], and BSA [14], which is shown in in Fig

3.11, and Fig. 3.12. The following conclusions are derived from this comparison:-

• The Probabilistic contrast PC+ method significantly improves the results by

reducing the exterior saliency discrepancy, correctly detecting and enhancing

the salient points (achieved the objective to minimize the interior saliency

discrepancy) with same level of precision as shown in Fig. 3.8,and 3.9 part

(c) by integrating spatial and depth based saliency through Eq. 3.7 and color

based saliency through Eq.3.8, which is shown in Fig. 3.8.
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Figure 3.12: Quantitative comparison of saliency Maps on (1)ECSSD (2)
IMGSAL (3) MSRA dataset respectively
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Figure 3.13: Quantitative comparison of saliency maps on (1) PASCAL and (2)
DUTOMRON dataset respectively
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Figure 3.14: Quantitative comparison of saliency maps using F-Measure.
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• This method reduces exterior saliency discrepancy and generates the ground

truth level saliency by Gaussian-based background suppression through Eq.3.10.

This is shown qualitative in Fig .3.11 and in quantitatively in Fig. 3.12,3.13,

and 3.14 in which background is completely removed.

• In visual comparison, which is shown in Fig. 3.11 of complex images having

multiple objects in first four rows. Other rows contain images with very com-

plex and clutter background. In the fifth row, salient object and background

are so complex that GC, RC, GU, and ECS generate white saliency (not able

to identify salient and non-salient points) while PC and PC+ generate the

complete salient object.

• The visual representation in Fig. 3.11, MDC produces saliency which contains

non-salient points in the complex image. It destroys the object boundaries.

it increases exterior saliency discrepancy. The representation of MDC having

maximum PR- Curve is in range 0 to 0.1, while all other algorithm are either

absent or show very less representation in that range, our PC+ is completely

absent in all PR-Curve less than 0.5, which is clearly shown in Fig. 3.8 and

part (c) separately. In these PR-Curve, a high recall values with the same level

of precision has described the minimization of exterior saliency discrepancy.

• In IMGSAL dataset PC and PC+ method outperforms state-of-the-art meth-

ods shown in Fig. 3.12,3.13, and 3.14 and qualitative in Fig. 3.11 with very

big margin because it contains specific image of 6 classes having, (1) large
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size, (2) intermediate size, (3) small size (4) complex backgrounds, (5) image

with repeating tract, (6) image with multiple salient objects. So it contains

235 complex images, in which, our proposed method PC and PC+ produce an

outstanding result.

3.2.2.4 Comparison with Deep Learning Based Models

Figure 3.15: Qualitative comparison of proposed method with deep learning
based methods.

The proposed method is not related to learning based method. However, the pro-

posed method is compared with recently published deep learning based methods
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like MCDL and HED. We have used some set of images from MSRA and DUTOM-

RON for training phase of HED and MCDL while, evaluation of saliency is per-

formed on complex dataset PASCAL and ECSSD using PR-Curve and F-measure.

This evaluation is shown in Fig. 3.15. The research gaps and causes of compu-

tational differences between deep learning and proposed method are summarised

here. The Deep learning based methods significantly improve the performance over

nondeep learning based methods because deep learning based method learned the

structures, semantic, object characteristics, low-level local features, and high-level

global features to correctly identified the salient points while, the proposed method

use probabilistic global contrast only to computing the saliency. In Holistically-

Nested Edge Detector (HED) start learning with the edge of the object to solve the

scale space problem in FCN and learning of this proposed method used shallow and

deep features separately. To localized the object using deep features, while spatial

information is learned in shallow learning. Deep based learning method used multi-

stage, object semantics based learning to improve the performance. However, the

proposed method generates the saliency with comparable in recall value over this

deep learning based method to show the robustness of the proposed method. The

performance of proposed method can be further improve by using proposing object

proposal and optimized integration.
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3.2.3 Edge Enhanced Global Topographical Saliency

In this proposed method, the global topographical surface initializes the saliency

computation. This reference surface is used for integrating regional saliencies. In

the next step, saliency is enhanced and smoothed by Gaussian-based background

suppression model. Finally, smooth saliency is added with central saliency to in-

crease the robustness.

3.2.3.1 Initial global topographical surface(GTS) through iterative Lapla-

cian of Gaussian (ILG)

The global topographical surface(GTS), used here for multiple integrations of re-

gional saliency, is a simple addition of global contrast surface and iterative Laplacian

of Gaussian (ILG) surface.

SGTS = SGC + SILG (3.17)

The global contrast is based on central surround contrast. Color channel wise central

contrast is calculated by using the Euclidean norm in CIE-LAB space. Central global

contrast(GC) calculated for each color channel ch = (l, a, b) of the original image is

f0 as follows:

SGC =
∑
k∈ch

∥∥fk − µk∥∥ (3.18)

Where ∥−∥ represents Euclidean space. The global topographical surface is com-

puted by iterative addition of multiple edges of Laplacian of Gaussian log (x, y, ρ) of
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the input image f0(x, y), as defined in Eq.3.19 , 3.20 . Here, ρ is the standard devia-

tion. It is iteratively incremented by δ, for each iteration i. The iterative Laplacian

of Gaussian (ILG) surface is defined as:

SILG = log
(
x, y, ρi

)
= log

(
x, y, (ρ+ δ)i−1

)
(3.19)

log (x, y, ρ) =
x2 + y2 − 2ρ2

πρ2
e−

(x2 + y2)

2ρ2
(3.20)

The terminating conditions of iteration in ILG and other parameters are discussed

here. Central global Contrast(GC) based saliency and salient object boundary by

iterative addition of Laplacian of Gaussian (ILG) generate the global topographical

surface for multiple integrations of regional clues. This addition enhanced some edge

points in the non-salient regions or background, but that is suppressed by Gaussian-

based weighted background suppression model, defined in Eq. 3.23. The step-wise

result is demonstrated in Fig. 3.16. In the figure, saliency at the border points in

the image is enhanced comprehensively to work as a reference plane.

3.2.3.2 Regional contrast integration within GTS

This initial Global-GTS is used as a reference surface, which has a well defined and

enhanced object boundary for integrating multiple regional cues to minimize the

interior object saliency discrepancies. After global-GTS computation, initial image

plain f0 divides into K color-based region by using the K-mean algorithm. The same

regional descriptor is used for regional color and depth based saliency integration
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into GTS surface, which is defined as follows:

SRS(rk) =
K∑

j=1,j ̸=k

Arealje
Dis0(rk,rj)

σ2 DisGTS(rk, rj) (3.21)

where Dis0(rk, rj) is the Euclidean distance between region j and k in GTS space

where, Arealj is regional areal density defined as a ratio between the pixel in region j

and total pixels. Similarly, Regional color contrast(RCC) in color space, is calculated

as:

SRCC(rk) =
K∑

j=1,j ̸=k

Arealje
Dis0(rk,rj)

σ2 Discolor(rk, rj) (3.22)

whereDis0(rk, rj) is the spatial distance weight and σ is controlling parameter, while

Discolor(rk, rj) is regional color contrast based on the Euclidean distance between

kth and jth region in L ∗ a ∗ b color space. DisGTS(rk, rj) and Discolor(rk, rj) are

distance and color based saliency respectively, which minimize saliency discrepancies

within object boundary, enclosed by GTS surface. This minimization is controlled

by regional integrating parameters like Arealj and Dis0(rk, rj). Finally, saliency

is computed by integrating three regional saliencies through normalized Gaussian

function, to reduce the interior saliency discrepancies, which is defined as:

SFS = Gaussian(SRCC(rk) + SRS(rk))IFactor(rk) (3.23)
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The integrating factor IFactor and Gaussian weighted background suppression

model are defined with the principle of Background Prior and defined in Eq.3.24.

Background Prior estimation based salient object detection [43] also approximate

that mostly the background part of the image is associated with borderline while

object towards the central line. Let posk and posc represent the position of kth and

central region respectively. Nk, denotes the number of pixels in kth region. The

weight-based integrating factor (IFactor) is calculated as:

IFactor(rk) =
Gaussian(Disp(posk − posc)

Nk

W (GTSdk) (3.24)

In this equation, Disp is distance in Euclidean space and W (GTSd) is depth weight

in global topographical space(GTSd), which is calculated as:

W (GTSd) = (max(GTSd)−GTSdk)
1

(max(GTSd)−min(GTSd)) (3.25)

Where,max(GTSd),min(GTSd) and GTSdk is maximum, minimum and kth region

distance weight in GTS space respectively. These regional saliency integration into

GTS space increases some non-salient points. This discrepancy is removed in saliency

enhancement stage.
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Figure 3.16: Demonstration of successive steps of proposed method GTS (a)
Input image, (b) Initialization through iterative ILG, (c) SGTS , (d) Regional
saliencies integration SFS (e) SCentral central saliency, (f) Gaussian weighted back-

ground suppression and central saliency enhancement S

3.2.3.3 Saliency enhancement

For enhancement of the central saliency, in this model BSA [14] algorithm is used as

central saliency, Sc.This algorithm is used to remove the edge effect and to enhance

the interior saliency discrepancies by computing GCD (global color distinction) and

spatial distribution, based on the cluster boundary seeds. The final saliency is

simply, the addition of SFS and central saliency, SCenter, which is as follows:

S = (SFS + SCenter) (3.26)

Final saliency is integrated at three stages. In the first stage, region-based spatial

and color saliencies are integrated with Areal density separately in GTS space. In the

second stage, Gaussian-based integrating factor(IFactor) integrates the regional color

and spatial distance based saliency. The final stage, central saliency is integrated

with final saliency.

The following algorithms describe the concrete steps of the proposed method-GTS.

The first algorithm 3 describes the initial global topographical surface GTS. While
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the second algorithm 4 shows the steps to integrate the regional saliencies into the

global topographical surface and generates a final saliency S.

Input : Original image f0 = {l, a, b} in CIE-LAB color format. ρ is the

standard deviation. µ is the mean of respective color channel.

log(x, y, ρ) is defined as Laplacian of Gaussian.

Output: Initial Global Topographical Surface(GTS) saliency SGTS

Initialized SILG ← log (x, y, ρ)

Initialized δ ← 0.05

for i←0.4 to 0.6 do

SILG = SILG + log (x, y, ρ+ i)

i← i+ δ

end

for each channel ch ∈ {l, a, b} and µ is mean of each channel in f0 do

Enhance SGC ←
(
f ch0 − µch

)2
end

Compute Global Topographical Saliency SGTS ← SGC + SILG
Algorithm 3: Generate initial Global Topographical Surface SGTS based

saliency
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Input : Input initial saliency SGTS and original input image f0

Output: Final saliency S

for k ← 1 to K region do

Compute spatial regional saliency Arealk(r) by Eq.3.21

Compute the reginol distance based saliency SRC(rk) by Eq. 3.21

Compute the reginol color saliency SRCC(rk) by Eq.3.22

Compute the integrating factor IFactorw(rk) by Eq.3.24

Compute SFS ← Gaussian(SRC(rk) + SRCC(rk))IFactorw(rk) by Eq.3.23

end

Compute the central saliency SCenter

Compute final saliency S ← (SCenter + SFS) by Eq.3.26

Algorithm 4: Regional saliencies integration in global topographical saliency

SGTS

3.2.4 Result Analysis of Edge Enhanced Global Topograph-

ical Saliency

The evaluation and performance of the proposed method(GTS) are extensively per-

formed on the four public benchmark datasets, using six closely related global

contrast-based methods and two deep learning based methods. The relevancy of

global topographical surface(GTS) is compared, qualitatively as well as quantita-

tively by using standard metrics.
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Figure 3.17: Qualitative visual comparison among Various salient object detec-
tion methods.

3.2.4.1 Evaluating parameters setting

The extensive experiment is performed to investigate and finalize the constants and

parameters. These experiments are performed on DUTOMRON-5166 dataset for

finalizing the parameters. These processes have finalized some parameters for better

performance of this algorithm. The controlling parameter σ2 is 0.4 in Eq.3.21 and
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Eq.3.22. The iteration of the loop in ILG for better approximation starts form i = 0.4

and terminates at i = 0.6 and ρ is incremented by δ = .05. These parameters are

experimentally decided.

3.2.4.2 Successive steps validation

In the validation of the proposed method, global topographical surface(GTS), is eval-

uated on the four public benchmark datasets and is validated through MAE(mean

absolute error). The result is shown in Table3.2. which, validates each step of GTS

on MSRA, PASCAL, DUTOMRON, and ECSSD datasets. This result demonstrates

the effectiveness of each step, which contributes to improving the performance and

robustness of the final saliency.

Table 3.2: Steps wise Mean Absolute Error-MAE in proposed Method-GTS

Data− Set Initail SGTS Final SFS Sc S

MSRA 0.127523 0.115567 0.077296 0.020216
PASCAL 0.144036 0.124015 0.099037 0.053128

DUTOMRON 0.150403 0.117402 0.103587 0.063128
ECSSD 0.119138 0.102311 0.053441 0.021829

3.2.4.3 Comparative analysis

The proposed method, GTS (global topographical surface) is properly evaluated

using four benchmark datasets having complex images. This extensive evaluation is

performed through visual qualitative and quantitative scale. In these evaluations,
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Figure 3.18: Comparison of Global-Contrast-based saliency using (a) PR-Curve
(b) ROC-Curve on (1) MSRA (2) PASCAL dataset respectively.

top six global contrast-based methods like MDC [5], RC [4], HC [4], GC [62], MSS

[66], FT [11] are selected. There are other global contrast-based methods like IT
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Figure 3.19: Comparison of Global-Contrast-based saliency using (a) PR-Curve
(b) ROC-Curve on (1) DUTOMRON and (2) ECSSD dataset respectively.

[8], LC, GB, AC, which are widely reported in the literature. But, selection of

global contrast-based methods, in these evaluations are based on highly referenced,
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computationally fast, recent, and closely related to our proposed method. The

evaluation of proposed method GTS is also compared with other state-of-art methods

like GU [68], RC [4], RBD [12], MST [42], and BSA [14] using Mean Absolute Error

MAE in Table 3.3 , 3.4 .

In the visual qualitative analysis, a set of saliency-maps is shown in Fig.3.17. In

visual observation, FT, MSS, HC, RC and GC methods produce full-length saliency,

in which background is also highlighted in some images and salient object, which has

similar characteristics with the background is suppressed. Hence, the salient object

is not uniformly highlighted. To remove the backgrounds HC, RC used Saliency-

Cut, FT used Mean-shift, MSS used Graph-cut algorithm, which further enhanced

the computation cost. MDC produces saliency without backgrounds but loses some

structural information like shape and border of salient objects, which is shown in

Fig.3.17. This is because of the usage of Marker-based watershed segmentation al-

gorithm, which produces multiple markers, in which some are related to background

and others to the objects. The proposed method, GTS overcomes these limitations,

produces robust and uniform salient object, in which the background is clearly re-

moved with preserving the structure, border, and shape of the salient object. GTS

produces better saliency maps than other state-of-art methods.

Visual quantitative comparisons, among these methods, as shown in Fig.3.18, Fig.3.19

and Fig.3.20. Fig.3.18 and Fig.3.19 are used for PR-Curve and ROC-Curve and

Fig.3.20 is used for F-measure. In Fig.3.18 and 3.19 the robustness of the proposed

method is clearly visible in PR-Curve, where GTS related curve is reduced on recall
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Figure 3.20: Comparison of Global-Contrast-based saliency using F-Measurer
on (1) MSRA (2) PASCAL (3) DUTOMRON and (4) ECSSD dataset respectively.

axis while maintaining the same level of precision. In all four datasets, PR-Curve

related with GTS appears approximately in the range of 0.5 to 1, which shows the

robustness of the proposed method. In MDC, PR-Curve is more inclined in the

range of 0.1 to 0.0, which shows the loss of structural information, MDC produces

high precision value at the cost of low recall while GTS produces same high recall

values while maintaining the same level of precision. Therefore, in this comparisons,

the proposed method outperformed in PR-Curve on recall axis with the same level

of precision and produced better saliency maps with other state-of-art methods.
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Table 3.3: Mean Absolute Error-MAE of different state-of-the-art methods

IT FT MSS HC GC GU RC RBD MST

MSRA 0.249 0.230 0.229 0.231 0.161 0.141 0.157 0.110 0.134
PASCAL 0.298 0.289 0.278 0.350 0.240 0.220 0.217 0.197 0.201

DUTOMRON 0.256 0.220 0.225 0.311 0.214 0.213 0.198 0.171 0.160
ECSSD 0.291 0.272 0.274 0.325 0.250 0.210 0.196 0.167 0.172

Table 3.4: Mean Absolute Error-MAE of different state-of-the-art methods

GMR MDC BSA MCDL DHS GST

MSRA 0.112 0.118 0.131 0.139 0.045 0.020
PASCAL 0.211 0.198 0.225 0.188 0.065 0.053

DUTOMRON 0.154 0.165 0.196 0.145 0.096 0.063
ECSSD 0.169 0.160 0.183 0.110 0.083 0.021

Figure 3.21: Comparison of deep learning based methods with GTS on PASCAL
dataset using PR-Curve and F-Measure.
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3.2.4.4 Comparison of proposed method GTS with Deep Learning Based

Models:

The proposed method GTS is based on the global topographic surface and vari-

ous regional saliencies. This method is not related to a machine or deep learning-

based method. However, the proposed method GTS is also compared with recently

published deep learning based methods. To compare the results MSRA and DUTO-

MORN data set is used for the training phase of DHS and MCDL while, evaluation of

saliency is performed on complex dataset PASCAL using PR-Curve and F-measure.

The results of this evaluation are shown in Fig.3.21. The results demonstrate that

deep learning based method performed better than nondeep learning based methods

in salient object detection. The deep learning based methods have needed pre-

requisite trained models to capture the structure, orientations, and other semantic

features to predict better saliency maps.

3.2.4.5 Comparison of average computational speed :

To comprehensively compare the computation speed, the average speed is com-

puted on a 64-bit PC with Intel Core i5-4590 CPU @ 3.3 GHz and 16 GB RAM.

The computational speed is average on all images of four public datasets. In this

speed computation, parallel processing is not used and file I/O time is not consid-

ered. The average computational speed of all methods is also shown in Table 3.4,

3.6. The proposed method GTS improved the robustness by integrating regional
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saliency, central saliency into a global topographical surface SGTS, which take only

0.0021s on average. The total average time on four data-set is 0.428 second per

image, which is shown in Table3.6. Deep learning-based methods are accelerated

the results on GTX Titan X-GPU which are not comparable on CPU based pro-

cessor. So, proposed method is comparable performance having improved speed.

MDC show a better speed saliency method, but it does not preserve the border re-

gions due to marker-based watershed segmentation method. Our proposed method

improved these limitations.However, deep learning-based method DHS outperforms

the proposed method both in terms of accuracy and runtime.

Table 3.5: Comparison of average computational run time.

FT HC GC GU RC RBD MST BSA

0.016 0.0146 0.0921 0.453 0.1973 0.394 0.059 0.0287

Table 3.6: Comparison of average computational run time(’*’= GPU time).

MDC MCDL∗ DHS∗ SGST GTS

0.0077 2.58* 0.04* 0.0021 0.487

3.3 Conclusion

This chapter proposed two probabilistic models for salient object detection. The first

model proposed a novel method for salient object detection using a probabilistic

approach by using Poisson distribution to generate an initial saliency. PC intact
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all structural and spatial information into the global topographical surface because

of the regional depth, color, and spatial-based saliency integration. Generalization

can easily be achieved by using probabilistic distribution. The second model is

based on a robust and novel global topographical surface (GTS), which is used as

a global reference plane. The proposed global reference plane works efficiently and

effectively in integrating regional saliencies. The robustness of GTS makes it suitable

for structure, shape, and border preservation in saliency estimation. All the models

have been compared against various state-of-the-art methods. It can be observed

that remarkable performance is achieved using the models. Among the theses two

models proposed, the first model has achieved better performance improvement than

the second in producing reference surfaces. However, the second model significantly

improves upon the state-of-the-art methods by various regional saliency.
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