CERTIFICATE

It is certified that the work contained in this thesis entitled "COMPLEX SALIENT OBJECT DETECTION USING PROBABILISTIC MODELLING AND DEEP LEARNING" by "Surya Kant Singh" has been carried out under my supervision and that it has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive, Candidacy and SOTA.

Prof. Rajeev Srivastava

Professor

Department of Computer Science and Engineering Indian Institute of Technology (Banaras Hindu University)

Varanasi-221005 पायवेक्षक/Supervisor सगणक विज्ञान एवं अभियांत्रिकी विभाग Department of Computer Sc. & Engg भारतीय प्रौद्योगिकी संस्थान Indian Institute of Technology (काशी हिन्दू विश्वविद्यालय) (Banaras Hindu University) वाराणसी/Varanasi-221005

DECLARATION BY THE CANDIDATE

I, Surya Kant Singh, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of Prof. Rajeev Srivastava from JULY-2017 to MAY-2022, at the Department of Computer Science and Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully lifted up any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and included them in this thesis and cited as my own work.

Date : 24/05/2022

Place : Varanasi

Signature of the Student (Surya Kant Singh)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my/our knowledge.

Signature of Super

(Prof. Rajeev Srivastava) Department of Computer Science and Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi-221005Supervisor

Signature of Head of Department

(Prof. अञ्चतीय द प्रिमिगिश्चिम्निक्स) Professor & Head समणक विज्ञान ग्रेंगे अभियांत्रिकी विभाग Department of Computer Sc. & Engg भारतीय प्रौद्योगिकी संस्थान Indian Institute of Technology (वनारस हिन्दू यूनिवर्सिटी) (Banaras Hindu University) जगणसी–२२१००५ / Varanasi-221005 सगणक विज्ञान एवं अमियांत्रिकी विमाग Department of Computer Sc. & Engg भारतीय प्रौद्योगिकी संस्थान Indian Institute of Technology (काशी हिन्दू विश्वविद्यालय) (Banaras Hindu University) वाराणसी/Maranasi-221005

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: COMPLEX SALIENT OBJECT DETECTION USING PROBABILISTIC MODELLING AND DEEP LEARNING Name of the Student: Surya Kant Singh

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi, all rights under copyright that may exist in and for the above thesis submitted for the award of the DOCTOR OF PHILOSOPHY.

Date : 24/05/2022 Place : Vasanasi

(Surva Kant Singh)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

To

My Beloved Parents

Mrs. JANKEE SINGH Mr. NANDLAL SINGH and

My Better Half Mrs. NEETU SINGH

ACKNOWLEDGEMENTS

I want to take this opportunity to express my deep sense of gratitude to all who helped me directly or indirectly during this thesis work. Firstly, I would like to thank my supervisor, **Prof. Rajeev Srivastava**, for being a great mentor and the best adviser I could ever have. His advice, encouragement, and critics are a source of innovative ideas, inspiration, and causes behind the successful completion of this Thesis work. The confidence shown on me by him was the most significant source of inspiration for me. It has been a privilege working with him for several years. I am highly obliged to all the faculty members of the Computer Science and Engineering Department for their support and encouragement. I express my sincere thanks to Prof. K. K. Shukla of the Department of Computer Science and Engineering and Prof. Subir Das, Department of Mathematical Sciences, IIT (BHU), for providing continuous support, encouragement, and advice. I express my sincere thanks to all the Professors, Deans, office staff, supporting staff, and Ph.D. Research Scholars of Indian Institute of Technology (BHU) Varanasi India. I express my gratitude to Director, Registrar, Deans, Heads, Students and Alumni of the Indian Institute of Technology (BHU) Varanasi.

My memory of the study period at IIT (BHU) can never be complete without mentioning my fellow research scholars. Special thanks to Dr. Vibhav Prakash Singh, Dr. Ankit Jaiswal, Dr. Gargi Srivastava, Mr. Saurabh Arora and Mr. Santosh Kumar Tripathy for their great help and cooperation.

I extend special thanks to the non-teaching staff in the department, particularly the Mr. Manoj Kumar Singh, Mr. Ravi Kumar Bharti, Mr. Prakhar Kumar, Mr. Ritesh Singh, and Mr. Shubham Pandey for their consistent support.

My parents, Mrs. Jankee Singh and Mr. Nandlal Singh, who gave me the power and brain to work out on this research and their help at every level, made me see this success. I owe thanks to my wife, Mrs. Neetu Singh Solanki, for his continued and unfailing love, support, and understanding during my pursuit of Ph.D. degree that made the completion of my thesis possible. You were always around at times I thought that it is impossible to continue, you helped me to keep things in perspective. I greatly value his contribution and sincerely appreciate his belief in me. I want to share my source of happiness during the up and down in the Ph.D. journey are the smiles of my daughter Namya and son Shresth.

I extend my thanks to my uncle Baban singh, my sister Shivangi Singh and my brother Dhan jee, whose blessings gave me the internal power to do hard work.

Words are insufficient to express my profound sense of gratitude to respected Prof. Shreesh Chaudhary and my friends Dr. Roshan Singh, Mr. Akash kumar singh, and Mr. Vipul Kumar Jha, whose encouragement gave me physical and moral strength throughout my career as well in the present research. I extend my thanks to my father in-law Dr. D.V Singh and my Mother in-law Mrs. Bindu Singh who are part of my inspiration. Finally, I would like to wind up by paying my heartfelt thanks and prayers to the Almighty for his unbound love and grace.

- Surya Kant Singh

Contents

Li	List of Figures xi					
Li	List of Tables xvii					
A	Abbreviations x					
Symbols xx						
P	reface	e			xxvii	
1	Intr	oducti	on		1	
	1.1	Backg	round .		. 1	
	1.2	Motiva	ation and	Scope	. 3	
	1.3	Proble	m Staten	nent	. 5	
	1.4	The R	esearch C	Objectives of Thesis	. 6	
	1.5	Contri	butions t	o the Thesis	. 7	
	1.6	Outlin	e of the 7	Chesis	. 9	
2	Lite	rature	Survey		11	
	2.1	Literat	ure Revi	ew	. 12	
		2.1.1	Visual S	aliency	. 12	
		2.1.2	Visual s	saliency models	. 13	
			2.1.2.1	Fixation Prediction models	. 13	
			2.1.2.2	Salient object detection models	. 14	
		2.1.3	Saliency	computation domains:	. 16	
			2.1.3.1	Bottom-up-search dependent statistical models:	. 17	
			2.1.3.2	Top-down-task dependent deep learning based model	s: 17	
			2.1.3.3	Hybrid and Probabilistic models :	. 18	
	2.2	Salient	Object I	Detection	. 20	
		2.2.1	Statistic	al and Probabilistic Models(2D Saliency)	. 20	
			2.2.1.1	Biologically Inspired Models	. 21	
			2.2.1.2	Global Contrast-Based Models	. 22	

			2.2.1.3	Regional Contrast-Based Models	23
			2.2.1.4	Background Approximation Based Models	29
			2.2.1.5	Psychology Inspired Models	31
			2.2.1.6	Summary	35
		2.2.2	RGBD(3	BD) Statistical Models	37
			2.2.2.1	Summary	43
		2.2.3	RGBD(3	BD) Deep learning Models	43
			2.2.3.1	Multi-Layer Perceptron (MLP) Models	44
			2.2.3.2	Fully Convolutional Network (FCN) Models	45
			2.2.3.3	RGBD 3D SOD Models	46
			2.2.3.4	Single-stream Models	47
			2.2.3.5	Multi-stream Models	47
			2.2.3.6	Fusion Model	48
			2.2.3.7	Skip-Connection based models	53
			2.2.3.8	Attention mechanism	54
			2.2.3.9	Summary	56
	2.3	Resear	ch Gaps		57
	2.4	Datase	et		61
		2.4.1	RGB(2E	D) Dataset	62
		2.4.2	RGBD(3	BD) Dataset	65
	2.5	Perfor	mance Ev	valuation Metrics	69
	2.6	Conclu	usion		73
3	Pro	babilis	tic Cont	rast and Edge Enhanced Global Topographical	
	Sur	face ba	ased Con	nplex RGB Salient Object Detection	75
	3.1	Introd	uction .		77
	3.2	The P	roposed N	Models	83
		3.2.1	Probabil	istic contrast based complex salient object detection .	84
			3.2.1.1	Initialization through Poisson probabilistic contrast	
				(PC)	84
			3.2.1.2	Poisson probabilistic distribution	86
			3.2.1.3	Regional contrast integration with global-PC	87
			3.2.1.4	Background suppression model	88
			3.2.1.5	Saliency Refinement Model	89
			3.2.1.6	Theoretic foundation	90
		3.2.2	Experim	ents and Results of Probabilistic Contrast based Model	94
			3.2.2.1	Evaluating Parameters Setting	95
			3.2.2.2	Ablation study	98
			3.2.2.3	Comparative study	100
			3.2.2.4	Comparison with Deep Learning Based Models	106
		000		hanged Clobal Topographical Salionay	108

			3.2.3.1	Initial global topographical surface(GTS) through it-	
				erative Laplacian of Gaussian (ILG)	. 108
			3.2.3.2	Regional contrast integration within GTS	. 109
			3.2.3.3	Saliency enhancement	. 112
		3.2.4	Result A	Analysis of Edge Enhanced Global Topographical Salier	ncy114
			3.2.4.1	Evaluating parameters setting	. 115
			3.2.4.2	Successive steps validation	. 116
			3.2.4.3	Comparative analysis	. 116
			3.2.4.4	Comparison of proposed method GTS with Deep)
				Learning Based Models:	. 122
			3.2.4.5	Comparison of average computational speed : \ldots	. 122
	3.3	Concl	usion		. 123
4	RG	BD Co	omplex s	alient object detection with improved probabil	is-
	tic	contra	st and g	lobal concave topographical saliency	125
	4.1	Introc	luction .		. 126
	4.2	The p	proposed 1	method	. 131
		4.2.1	Initializ	ation through global concave surface (GCS)	. 131
			4.2.1.1	Improved Poisson probabilistic contrast (IPC)	. 132
			4.2.1.2	Contour based global surface	. 133
		4.2.2	Regiona	d contrast integration into GCS	. 134
			4.2.2.1	Regional saliency integration with GCS	. 135
			4.2.2.2	Background estimation model	. 136
		100	4.2.2.3	Saliency enhancement	. 137
		4.2.3	Theoret	the foundation	. 138
	4.9	4.2.4	The pro	posed algorithm	. 140
	4.3	Exper	rimental a	Ind Result Analysis	. 141
		4.3.1	Data-Se	2t	. 141
		4.3.2	Perform	ance Measures	. 142
		4.3.3	Parame	ters and Constraints Selection	. 142
		4.3.4	Success	ve steps validation	. 143
		4.3.3	Compai	active Allalysis	. 144
	1 1	4.3.0 Concl	Compa	ison with other Own proposed methods	. 140
	4.4	Conci	usion		. 149
5	CS	A-Net:	Deep Ci	coss Complementary Self Attention and Modalit	; у-
	Spe	ecific P	Preservat	ion for Saliency Detection	151
	5.1	Introc	luction .		. 152
	5.2	The F	roposed	$Model \dots \dots$. 157
		5.2.1	Modalit	y-specific Saliency Fusion Model(MSF)	. 159
		5.2.2	Cross -(Complementary Self-Attention -CSA	. 160
		5.2.3	Comple	mentary Features Fusion Model	. 163

			5.2.3.1	Cross-Complementary Features Fusion(CFF)	. 163
			5.2.3.2	Intra-Complementary Features Fusion(IFF)	. 165
		5.2.4	Optimal	Selective Saliency Fusion Model-OSS	. 166
		5.2.5	Loss Fur	nction	. 168
	5.3	Exper	imental D	Details:	. 169
		5.3.1	Data-Set	t	. 169
		5.3.2	Impleme	entation Details	. 170
		5.3.3	Training	g Details	. 171
		5.3.4	Evaluati	on Metrics	. 172
			5.3.4.1	S-Measure	. 173
			5.3.4.2	F-Measure	. 173
			5.3.4.3	Mean Absolute Error(MAE)	. 174
			5.3.4.4	$\text{E-Measure}(E_{\psi})$. 174
	5.4	Comp	arison and	d Result Analysis	. 176
		5.4.1	Ablatio	n Analysis	. 178
			5.4.1.1	Validation of Network Structure and Fusion model	. 178
			5.4.1.2	Effectiveness of CSA-Net Model	. 180
			5.4.1.3	Failure Cases and Analyses	. 181
	5.5	Conclu	usion		. 182
6	SL-I	Note S	Solf-Loar	ning and Mutual Attention based Distinguishe	d
v			un-nuar		L L
-	Wir	ndow f	or RGBI	D Complex Salient Object Detection	185
-	Wir 6.1	ndow fe Introd	or RGBI uction .	D Complex Salient Object Detection	185 . 186
-	Wir 6.1 6.2	ndow fe Introd The p	or RGBI uction . roposed n	D Complex Salient Object Detection	185 . 186 . 192
-	Wi r 6.1 6.2	ndow fe Introd The pr 6.2.1	or RGBI uction . roposed n Overview	D Complex Salient Object Detection	185 . 186 . 192 . 192
	Wir 6.1 6.2	ndow fe Introd The pr 6.2.1 6.2.2	or RGBI uction roposed n Overview Enhance	D Complex Salient Object Detection	185 . 186 . 192 . 192 . 194
	Win 6.1 6.2	ndow fe Introd The p: 6.2.1 6.2.2 6.2.3	or RGBI uction . roposed n Overview Enhance Mutual	D Complex Salient Object Detection in the sector of the	185 . 186 . 192 . 192 . 194 . 194
	Wir 6.1 6.2	ndow fe Introd The pr 6.2.1 6.2.2 6.2.3 6.2.3 6.2.4	or RGBI uction . roposed n Overview Enhance Mutual Self-Lear	D Complex Salient Object Detection nethod	185 . 186 . 192 . 192 . 194 . 194 . 194 . 198
-	Wir 6.1 6.2	ndow fe Introd The p: 6.2.1 6.2.2 6.2.3 6.2.4	or RGBI uction . roposed n Overview Enhance Mutual Self-Leau 6.2.4.1	D Complex Salient Object Detection in the section is the sectio	185 . 186 . 192 . 192 . 194 . 194 . 198 . 198
	Wir 6.1 6.2	ndow fe Introd The pr 6.2.1 6.2.2 6.2.3 6.2.3 6.2.4	or RGBI uction . roposed n Overview Enhance Mutual Self-Leau 6.2.4.1 6.2.4.2	D Complex Salient Object Detection nethod	185 . 186 . 192 . 192 . 194 . 194 . 198 . 198 . 198 . 199
	Wir 6.1 6.2	ndow fe Introd The p: 6.2.1 6.2.2 6.2.3 6.2.4	or RGBI uction . roposed n Overview Enhance Mutual Self-Leau 6.2.4.1 6.2.4.2 6.2.4.3	D Complex Salient Object Detection nethod method w ed Encoded Feature through Composite Backbone Attention Based Distinguished Window-MADW rning based Dense Decoding-SDD Global Localized Feature Cross-complementary fusion(CF) Self Learning Aggregation model	185 . 186 . 192 . 192 . 194 . 194 . 198 . 198 . 199 . 200
	Wir 6.1 6.2	ndow fe Introd The pr 6.2.1 6.2.2 6.2.3 6.2.3 6.2.4	or RGBI uction . roposed n Overview Enhance Mutual Self-Leau 6.2.4.1 6.2.4.2 6.2.4.3 Loss Fu	D Complex Salient Object Detection nethod	185 . 186 . 192 . 192 . 194 . 194 . 194 . 198 . 198 . 199 . 200 . 201
	Wir 6.1 6.2	ndow fe Introd The p: 6.2.1 6.2.2 6.2.3 6.2.4 6.2.4	or RGBI uction . roposed n Overview Enhance Mutual Self-Leau 6.2.4.1 6.2.4.2 6.2.4.3 Loss Fun iment and	D Complex Salient Object Detection nethod nethod w ed Encoded Feature through Composite Backbone Attention Based Distinguished Window-MADW rning based Dense Decoding-SDD Global Localized Feature Cross-complementary fusion(CF) Self Learning Aggregation model nction Analysis	185 . 186 . 192 . 192 . 194 . 194 . 198 . 198 . 198 . 199 . 200 . 201 . 202
	Wir 6.1 6.2 6.3	ndow fe Introd The pr 6.2.1 6.2.2 6.2.3 6.2.3 6.2.4 6.2.5 Expert 6.3.1	or RGBI uction . roposed n Overview Enhance Mutual Self-Leau 6.2.4.1 6.2.4.2 6.2.4.3 Loss Fun iment and Data-Set	D Complex Salient Object Detection nethod w ed Encoded Feature through Composite Backbone Attention Based Distinguished Window-MADW rning based Dense Decoding-SDD Global Localized Feature Cross-complementary fusion(CF) Self Learning Aggregation model nction Attenuity fusion Attenuity fusion Self Learning Aggregation model t t	185 . 186 . 192 . 192 . 194 . 194 . 194 . 198 . 198 . 198 . 200 . 201 . 202 . 202 . 202
	Wir 6.1 6.2 6.3	ndow fe Introd The p: 6.2.1 6.2.2 6.2.3 6.2.3 6.2.4 6.2.5 Exper: 6.3.1 6.3.2	or RGBI uction . roposed n Overview Enhance Mutual Self-Lear 6.2.4.1 6.2.4.2 6.2.4.3 Loss Fun iment and Data-Ser Evaluati	D Complex Salient Object Detection nethod method w ed Encoded Feature through Composite Backbone Attention Based Distinguished Window-MADW rning based Dense Decoding-SDD Global Localized Feature Cross-complementary fusion(CF) Self Learning Aggregation model nction Analysis t on metrics	185 186 192 192 192 194 194 198 198 198 200 201 202 202 203
	Wir 6.1 6.2 6.3	dow fe Introd The pr 6.2.1 6.2.2 6.2.3 6.2.3 6.2.4 6.2.5 Expering 6.3.1 6.3.2 6.3.3	or RGBI uction . roposed n Overview Enhance Mutual Self-Lean 6.2.4.1 6.2.4.2 6.2.4.3 Loss Fun iment and Data-Ser Evaluati Impleme	D Complex Salient Object Detection	185 . 186 . 192 . 192 . 194 . 194 . 194 . 198 . 198 . 198 . 198 . 200 . 201 . 202 . 202 . 203 . 203
	Wir 6.1 6.2	dow fe Introd The p: 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Exper: 6.3.1 6.3.2 6.3.3 6.3.4	or RGBI uction . roposed n Overview Enhance Mutual Self-Lear 6.2.4.1 6.2.4.2 6.2.4.3 Loss Fun iment and Data-Set Evaluati Impleme	D Complex Salient Object Detection nethod w ed Encoded Feature through Composite Backbone Attention Based Distinguished Window-MADW rning based Dense Decoding-SDD Global Localized Feature Cross-complementary fusion(CF) Self Learning Aggregation model nction Analysis t on metrics entation Details	185 186 192 192 194 194 194 198 198 198 200 201 202 202 203 203 204
	Wir 6.1 6.2 6.3	dow fe Introd The pr 6.2.1 6.2.2 6.2.3 6.2.3 6.2.4 6.2.5 Exper: 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5	or RGBI uction . roposed n Overview Enhance Mutual Self-Leau 6.2.4.1 6.2.4.2 6.2.4.3 Loss Fun iment and Data-Set Evaluati Impleme Compari Ablatio	D Complex Salient Object Detection hethod w ed Encoded Feature through Composite Backbone Attention Based Distinguished Window-MADW rning based Dense Decoding-SDD Global Localized Feature Cross-complementary fusion(CF) Self Learning Aggregation model nction Attension nethod and Result Analysis ison and Result Analysis n Analysis	185 185 186 192 192 194 194 194 198 198 198 200 201 202 202 202 203 203 204 208
	Wir 6.1 6.2	dow fe Introd The p: 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Exper: 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5	or RGBI uction . roposed n Overview Enhance Mutual Self-Lear 6.2.4.1 6.2.4.2 6.2.4.3 Loss Fun iment and Data-Ser Evaluati Impleme Compari Ablatio 6.3.5.1	D Complex Salient Object Detection nethod w ed Encoded Feature through Composite Backbone Attention Based Distinguished Window-MADW rning based Dense Decoding-SDD Global Localized Feature Cross-complementary fusion(CF) Self Learning Aggregation model nction I Result Analysis t con metrics ison and Result Analysis n Analysis Self fectiveness of Mutual attention based distinguished	185 185 186 192 192 194 194 194 198 198 199 200 201 202 202 203 203 203 204 208
	Wir 6.1 6.2	dow fe Introd The pr 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Exper: 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5	or RGBI uction . roposed n Overview Enhance Mutual Self-Lean 6.2.4.1 6.2.4.2 6.2.4.3 Loss Fun iment and Data-Set Evaluati Impleme Compari Ablatio 6.3.5.1	D Complex Salient Object Detection method w ed Encoded Feature through Composite Backbone Attention Based Distinguished Window-MADW rning based Dense Decoding-SDD Global Localized Feature Cross-complementary fusion(CF) Self Learning Aggregation model nction Attention Details entation Details for and Result Analysis n Analysis Effectiveness of Mutual attention based distinguished	185 186 192 192 194 194 194 198 198 198 198 200 201 202 202 202 203 203 204 208 209
	Wir 6.1 6.2	dow fe Introd The p: 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 Exper: 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5	or RGBI uction . roposed n Overview Enhance Mutual Self-Lean 6.2.4.1 6.2.4.2 6.2.4.3 Loss Fun iment and Data-Ser Evaluati Implement Ablatio 6.3.5.1 6.3.5.2	D Complex Salient Object Detection nethod w ed Encoded Feature through Composite Backbone Attention Based Distinguished Window-MADW rning based Dense Decoding-SDD Global Localized Feature Cross-complementary fusion(CF) Self Learning Aggregation model nction Attention Details ison and Result Analysis Effectiveness of Mutual attention based distinguished window-MADW Effectiveness of SDD and Fusion model	185 185 186 192 192 194 194 194 198 198 199 200 201 202 203 203 203 203 204 208 209 210

		Discussion of Failure case and limitations	212	
		6.3.7	Comparison of own proposed methods	213
	6.4	Conclu	usion	214
7	Cor	nclusio	n and Future Work	215
	7.1	Conclu	usions	215
	7.2	Future	e Work	219

References

 $\mathbf{221}$

List of Publications

 $\mathbf{245}$

List of Figures

1.1	A set of images to demonstrate the challenge to extract salient objects in complex and cluttered backgrounds	4
$2.1 \\ 2.2$	Visual saliency and Computational domains	16
	Object Detection	18
2.3	Regional saliency and Superpixel based salient object detection	24
2.4	The 3D saliency and Depth Information.	38
2.5	A set of RGB(2D) Datasets.	63
2.6	A set of RGBD(3D) Datasets	67
3.1	The motivation for proposing probabilistic models to minimize dis- crepancies in interior and exterior saliency.	78
3.2	The importance of Global Topographical Surface in salient objects	
0	from complex and clutter backgrounds	82
3.3	Block diagram of proposed probabilistic model.	83
3.4	Enhancement and suppression of luminance (ESL) with relative vari- ance in chrominance planes, where (a) Input image (b) Input image	
	luminance plane (c) Normalized luminance plane.	86
3.5	Successive saliency computation (a) Input image (b)Initial S_{pc} through, (c) Final S_{pc} through, (d) S_{PR} regional color, spatial, depth enhance	
	saliency (e) S_c central saliency, (f) Final saliency S through \ldots	90
3.6	PR-Curves on MSRA dataset for demonstrating the evaluating parameters. (a) Angular threshold, (b) Complex image $indicator(\lambda)$.	
	Blue line represents the without ESL	95
3.7	Visual comparison of saliency maps related with contrast based method.	
		96
3.8	Comparison of purely contrast-based saliency on (1) MSRA (2) PAS- CAL (3) DUTOMRON, dataset respectively	97
3.9	Comparison of purely contrast-based saliency on (1) ECSSD and (2)	
	IMGSAL dataset respectively	98
3.10	Steps wise validation of proposed method using F-Measure	99
3.11	Visual comparison of saliency maps of a complex image having clut-	
	tered background.	101

3.12	Quantitative comparison of saliency Maps on (1)ECSSD (2) IMGSAL (3) MSRA dataset respectively	
3.13	Quantitative comparison of saliency maps on (1) PASCAL and (2) DUTOMRON dataset respectively	
3.14	Quantitative comparison of saliency maps using F-Measure. \ldots . 104	
3.15	Qualitative comparison of proposed method with deep learning based methods	
3.16	Demonstration of successive steps of proposed method GTS (a) Input image, (b) Initialization through iterative ILG, (c) S_{GTS} , (d) Regional saliencies integration S_{FS} (e) $S_{Central}$ central saliency, (f) Gaussian weighted background suppression and central saliency enhancement S 112	
3.17	Qualitative visual comparison among Various salient object detection methods	
3.18	Comparison of Global-Contrast-based saliency using (a) PR-Curve (b) ROC-Curve on (1) MSRA (2) PASCAL dataset respectively 117	
3.19	Comparison of Global-Contrast-based saliency using (a) PR-Curve (b) BOC-Curve on (1) DUTOMBON and (2) ECSSD dataset respectively 118	
3.20	Comparison of Global-Contrast-based saliency using F-Measurer on (1) MSRA (2) PASCAL (3) DUTOMRON and (4) ECSSD dataset	
3.21	Comparison of deep learning based methods with GTS on PASCAL dataset using PR-Curve and F-Measure	
4.1	Saliency detection in complex and clutter background with minimize	
42	Block diagram of proposed Improved Probabilistic Model	
4.3 4.4	Visual demonstration of Contribution of each step in GCS	
	of-art methods	
4.5	Quantitative comparison of proposed method GCS with PR-Curve	
46	and ROC-Curve. 140 Quantitative comparison of proposed method with F-Measure 147	
4.7	Comparison of GCS with other proposed own probabilistic contrast based method using PP Curve	
	based method using 1 It-Ourve	
5.1	The 2×3 encoder and decoder streams utilize, deeply guided proposed attention map $CSA - Net$ to find the exact salient object	
5.2	The proposed two-stage <i>Cross -complementary Self-Attention-</i> <i>CSA</i> model is based on the Non-Local Network	
5.3	The proposed architecture of 2×3 encoder and decoder, $CSA - Net$ models	
5.4	The block diagram of the Intra-complementary features Fusion model(IFF).1	67

5.5	The Visual comparison of the proposed model with other State-of-
	the art-methods. $\dots \dots \dots$
5.6	The successive validation of three-stream networks in Complex Images
	with inferior and low depth images
5.7	The visual demonstration and validation of attention map learned
	through proposed deeply guided, two-stage additive, Cross -complementary
	Self-Attention(CSA-Net)
5.8	The visual demonstration of failure cases
6.1	The importance of mutual attention mechanism to distinguish the
	salient object in complex and clutter background
6.2	The illustration of the proposed framework $SL - Net.$
6.3	The illustration of the proposed Mutual Attention Based Distinguished
	Window-MADW
6.4	The design and process of Self-Learning based Dense Decoder- SDD $$. 197
6.5	Visual Demonstration of proposed method SL-Net with other closely
	and recent State-of-art-methods
6.6	Visual illustration of the global localized features
6.7	Visual illustration of failure case in incomplete depth maps and com-
	plex and cluttered background

List of Tables

2.1	Comprehensive details of exemplary models for salient object detec-	97
<u> </u>	Comprehensive details of Tep Performing conventional 3D model of	21
2.2	salient object detection	41
23	Comprehensive Survey of some Deep learning based BGBD Salient	TI
2.0	object detection model	50
2.4	BGB Dataset used in various saliency computations	62
2.5	RGBD Dataset for Salient Object Detection	66
3.1	Steps wise MAE in proposed Algorithm	100
3.2	Steps wise Mean Absolute Error-MAE in proposed Method-GTS	116
3.3	Mean Absolute Error-MAE of different state-of-the-art methods	121
3.4	Mean Absolute Error-MAE of different state-of-the-art methods $\ . \ .$	121
3.5	Comparison of average computational run time	123
3.6	Comparison of average computational run time ('*'= GPU time)	123
4.1	Steps wise Mean Absolute Error-MAE in proposed Method-GTS	143
4.2	Mean Absolute Error-MAE of different state-of-the-art methods	147
5.1	The quantitative comparison of proposed framework on seven bench-	
	mark RGBD datasets with four recent evaluation parameters	175
5.2	The validation of the effectiveness of Network Architecture and Streams-	1 50
- 0	wise saliency using Mean Absolute Error-MAE.	179
5.3	The ablation study of each component in the CSA-Net module	181
6.1	The quantitative comparison of proposed framework on seven bench-	
	mark RGBD datasets with four recent evaluation parameters	207
6.2	The ablation study of each component in the $SL - Net \ldots$	208
6.3	Validation of stage-wise improvements using proposed Mutual Atten-	
<u> </u>	tion based Distingushed Window-MADW	211
6.4	The ablation analysis of Cross-complementary fusion using <i>SDD</i> mod-	010
<u> </u>	ule and basic fusion strategy.	212
6.5	The comparison of own proposed deep learning based models	213

Abbreviations

GR	Graphical Ranking
ASNet	Attentive Saliency Network
AUC	Area Under Curve
MCDL	Multi context Deep Learning
CNN	Convolutional Neural Network
ESL	Enhance and Suppress Luminance
ECSSD	Extended Complex Scene Saliency Dataset
FCN	${\bf Fully \ Convolutional \ Neural \ Networks}$
FN	False Negative
FP	Fixation Prediction
GAN	Generative Adversarial Network
HED	${\bf H} olistically-Nested \ {\bf E} dge \ {\bf Io} {\bf U}$
Intersection over Union	
MAE	$\mathbf{M} ean \ \mathbf{A} b solute \ \mathbf{E} rror$
MDB	$\mathbf{M} inimum \ \mathbf{D} irectional \ \mathbf{B} backgroundness$
MDC	Minimum Directional Contrast
MSRA	Microsoft Research Asia
MSRC	\mathbf{M} icro \mathbf{s} oft \mathbf{R} esearch \mathbf{C} ambridge
PR	$\mathbf{P}\text{recision}\ \mathbf{R}\text{ecall}$
PC	${\bf P} oisson \; {\bf P} robabilistic \; {\bf C} ontrast \; {\bf RBD}$
Robust Background Detection	
R-CNN	$\mathbf{R} egion\textbf{-} \mathbf{C} on volutional \ \mathbf{N} eural \ \mathbf{N} etwork$

textbfRGB	Red Green Blue
RGBD	\mathbf{R} ed Green Blue Depth
ROC	Receiver Operating Characteristics \mathbf{O}
RPN	$\mathbf{R} egion \ \mathbf{P} roposal \ \mathbf{N} etwork$
SOD	Salient Object Detection
VGG	Visual Geometry Group
GU	Global Uniqueness
HC	Histogram-based global Contrast
RC	Regional Contrast
DoG	Difference of Gaussian
MSS	$\mathbf{M} \mathbf{a} \mathbf{x} \mathbf{i} \mathbf{m} \mathbf{u} \mathbf{m} \mathbf{S} \mathbf{y} \mathbf{m} \mathbf{m} \mathbf{e} \mathbf{r} \mathbf{i} \mathbf{c} \mathbf{S} \mathbf{u} \mathbf{r} \mathbf{r} \mathbf{o} \mathbf{u} \mathbf{d}$
MBD	Minimum Barrier Distance
AMC	\mathbf{A} bsorbing \mathbf{M} arkov \mathbf{C} hain
MST	$\mathbf{M}\text{inimum } \mathbf{S}\text{panning } \mathbf{T}\text{ree}$
FPR	False Positive Rate
TPR	\mathbf{T} rue \mathbf{P} ositive \mathbf{R} ate
ILG	Iterative Laplacian of Gaussian
FIT	Feature Integration Theory
DHS	\mathbf{D} eep \mathbf{H} ierarchical \mathbf{S} aliency
GTS	Global Topographical Surface
MADW	Mutual Attention based Distinguished Window
SDD	${\bf S} elf {\ {\bf L} earning-Based \ {\bf D} ense \ {\bf D} ecoder}$
JL-DCF	Joint Learning and Densely Cooperative Fusion
S2MA	${\bf S} elf {\bf \cdot} {\bf S} elective \ {\bf M} utual \ {\bf A} ttention$
CFF	\mathbf{C} oss- \mathbf{C} omplementary \mathbf{F} usion
CSA-Net	$\mathbf{D} eep \ \mathbf{C} ross\text{-} \mathbf{C} omplementary \ \mathbf{S} elf \ \mathbf{A} ttention$
MSF	Modality-Specific Saliency Fusion Model
CFF	$\mathbf{C} \text{ross-} \mathbf{C} \text{omplementary Features Fusion}$

IFF	Intra-Complementary Features Fusion
OSS	$\mathbf{O} \mathrm{ptimal} \ \mathbf{S} \mathrm{elective} \ \mathbf{S} \mathrm{aliency} \ \mathbf{F} \mathrm{usion} \ \mathbf{M} \mathrm{odel}$

Symbols

PDF	Poisson probability distribution
T_{f}	Enhance and Suppress Luminance-(ESL) coefficient
dd	Luminance contrast normalization coefficient
d	Angular threshold
λ	Represents the complex image indicator parameter
AD_j	Regional areal density
$Dis_0(r_k, r_j)$	Spatial distance weight
σ	Controlling parameter
IF_w	Gaussian weighted background suppression
μ	Mean
$Areal_k(r)$	Spatial regional saliency
$S_{RC}(r_k)$	Reginol distance based saliency
$S_{RCC}(r_k)$	Reginol color saliency
$IFactor_w(r_k)$	Integrating factor
S_{Center}	Central saliency
$\psi()$	Up-sampling function
$\varphi()$	Convolution operation
Sig()	Sigmoid function
Con(i, j)	Convolution operation
Max - pool(i, j)	Max-pooling operation
E_{ψ}	E-measure

Mutual attention feature maps
Global Localized feature
High level sementic features
Cross-complemntary features

The phenomenal use of digital media in our day-to-day life and society brings us to the corner of another world. This transformation appeals and inspires me to innovate and add something to this revolution. Images play an essential role in online shopping and purchasing to online education. It empowers us in various ways, like photo and information sharing, medical imaging, simulation, and military handling of the pandemic. Together with the empowerment, it is necessary to organize these images and use them for various computer vision purposes. One of the most critical computer vision tasks is salient object detection. Salient object detection is to identify the most prominent and relevant object in images. Humans can do this task automatically. The computer can learn to do this by understanding the human visual attention mechanism. It has diverse applications in image captioning, image segmentation, object recognition, content-based image retrieval, image and video compression, and video summarization. This thesis aims to develop computer algorithms, methods, and models for salient object detection, which can detect salient objects similar to human beings.

The main focus of the thesis is to generate probabilistic models for salient object detection to simulate structure, shape, size, and background uncertainty. While designing these models, an attempt is made to discover the current research gaps in existing algorithms, methods, and models. For this, a comprehensive literature survey is performed. Research gaps of these fields are identified. After that, statistical, probabilistic, and deep learning-based models are developed to address the identified research gaps.

The five models have been developed for salient object detection in 2D and 3D modalities. Among these models, three are based on probabilistic approaches and rest are based on deep learning based approaches. The first two models propose probabilistic contrast and edge enhanced Global Topographical Surface. This surface encloses the prominent object with all its structural and spatial information. Then it is used as a reference plane for regional depth, color, and spatial saliency integration. Most saliency methods generate prominent objects from 2D information, while human attention systems are 3D perception mechanisms. Inspired by this perception, the following models are proposed based on 3D saliency.

The third proposed models is utilized additional depth information from RGBD to robustly and correctly detect the salient object in a complex and cluttered background. To distinguish the salient object in complex and cluttered background, the Poisson probabilistic contrast space is proposed. This process produces a global concave reference surface. The various regional saliencies are integrated into this global concave reference surface to detect the salient object correctly. Background estimation and central saliency integration will thoroughly remove the background. This algorithm generates a robust conspicuous object.

The thesis is presented in a way so that the conventional, as well as newer models like

deep learning, are covered. The exiting models incur inconsistency or distribution loss of salient points and regions. These drawbacks are targets to design two deep network models. The fourth model is CSA-Net, which produces essential features: non-complementary, cross-complementary, intra-complementary, and deep localized improved high-level features. The designed 2×3 encoder and decoder streams produce these essential features and assure modality-specific saliency preservation. The cross and intra- complementary fusion are deeply guided by proposed novel, cross-complementary self-attention to produce fused saliency. The attention map is computed by two-stage additive fusion based on a Non-Local network.

Finally, in fifth model, a composite backbone network-based deep CNN framework is designed to produce more acute saliency in a challenging and complex scenario. This composite backbone produces enhanced features that are fused with a self-learningbased dense decoder. A comparative analysis of the proposed models are summarized and discussed. The models are compared against state-of-the-art algorithms and evaluated on benchmark databases. Possible future works and research directions are also included in the last chapter.