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PREFACE

Due to technological advancements, massive multimedia data is typically

available in image and video formats. Currently, images and videos are used in many

complex applications such as human-computer interaction, autonomous security sys-

tems, 3D scene understanding, sports performance analysis, etc. The autonomous

vehicle is one application that uses images to analyze its surroundings. Autonomous

Vehicles (AVs) have various components for execution. The Sensors are used to

capture the data from the surroundings. The perception module converts this raw

data into meaningful information. The mapping and localization module is used

to localize the vehicles in real-world coordinates and destination locations through

the Global Positioning System (GPS). The Planning module uses this meaningful

information to plan their actions. The control module actuates the control through

the steering, brake and accelerators.

This thesis focuses on the perception and planning tasks of the autonomous

vehicle using computer vision and deep learning techniques. The various tasks as-

sociated with the perception module include Object Detection, Object Tracking

and Trajectory Prediction. The various tasks associated with the planning module

include Trajectory Planning, Motion Planning, and Behavior planning. The signifi-

cant challenges associated with these modules include highly dynamic background,

gradual and abrupt illumination changes, camera jitter, shadows, reflections, and

weather conditions that may cause false detection and may become a big reason for
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wrong decisions in the navigation of AVs. Most of the existing methods have been

reported for the different modules of AVs. This thesis addresses some of the chal-

lenges and issues arising from these sub-modules of AVs. The problem statement of

the research is defined as the Study of existing methods, analyzing their merits and

demerits, implementation of the algorithm and proposed new methods and mod-

els for perception and planning modules using deep learning-based approaches for

providing reliable navigation of the AVs.

First, this thesis presents a detailed literature survey, including a survey of

various modules and sub-modules of AVs and a study on the evaluation of modern

datasets for object detection, object tracking, trajectory prediction and motion plan-

ning. Further, the hierarchy of different approaches has been discussed and research

gaps have been identified. Finally, a detailed list of the dataset used for training

and evaluation proposed models has been presented, followed by a discussion on

performance measures used in this thesis.

The first proposed model of this thesis is for object detection, which is based

on the attention mechanism. High accuracy ensures the vehicle for collision-free nav-

igation tasks, while the faster detection speed helps make decisions quickly. In this

thesis, the proposed model is a single-stage object detection that provides faster de-

tection. The channel attention mechanism provides more fine-grained features and

emphasizes that ’what’ is a semantic part of a given input. Apart from the channel

attention mechanisms, spatial attention emphasizes ’where’ is meaningful informa-

tion that is working to boost the performance of the attention block for accurate
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detection. The experimental result shows that the proposed model surpasses the

state-of-the-art techniques for the KITTI and BDD datasets.

Further, the research reported in this thesis has been extended for Multi-

Object Tracking as a second contribution. The proposed model, An end-to-end Hy-

brid model for Multi-Object Tracking, involves detection-based tracking, which gen-

erally requires a scale-up of two subtasks: motion estimation and re-identification.

The proposed model utilized dense-optical flow for motion estimation. The relative

scale of boundary boxes is formulated to find the maximum likelihood of a couple of

correct matches. The model repeats this for unmatched detection to match another

trajectory (trajectories not assigned in current frames). The detection that this pro-

cess cannot match is initialized as a new trajectory. The achieved state-of-the-art

results of the tasks allow for high accuracy of tracking with detection and surpasses

existing state-of-the-art methods by a considerable margin on MOT and Waymo

publicly available datasets (Multi-Object Tracking, Waymo).

Finally, in this thesis, two methods have been proposed for trajectory pre-

diction and motion planning. A Graph Neural Network with RNNs-based Trajec-

tory Prediction of dynamic Agents for Autonomous Vehicles is proposed for tra-

jectory prediction. A Semantic Supervision Guided Image-based Motion Planning

of the Autonomous Vehicles method is proposed for motion planning. The trajec-

tory prediction model extracts the spatial-temporal features using a graph neural

network and predicts the long-term trajectory using LSTM (Long-short term mem-

ory). Experiments show that the proposed model effectively captures comprehensive
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Spatio-temporal correlations through modeling GNN with temporal features for TP

and consistently surpasses the existing state-of-the-art methods on three publicly

available datasets (Lyft, Argoverse, Apolloscape) for trajectory. Compared to prior

methods, The proposed model performs better for sparse datasets than for dense

datasets.

The motion planning task utilized multi-view images and a CNN (Convo-

lutional Neural Network) model for feature extraction and the number of GRUs

(Gated Recurrent Units) to generate the waypoints. The ego vehicle generated a

sequence of coordinates representing the waypoints in the predicted path of the ve-

hicle for the upcoming few time steps. The model has generated the waypoints

using GRUs, which are used as input for the PID (Proportional Integral Derivative)

controller. The PID controller is used an inverse dynamic algorithm to derive the

values of the driving parameters, like steering angle, throttle, and brake value, from

the coordinates of the waypoints. The proposed model has shown an improvement

in the Route Completion and Driving Score metrics that outperform state-of-the-art

methods on this simulator’s dataset.
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