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CHAPTER 6                                              
MULTISCALE FLOW ATTENTIVE DEPTH 

SEPARABLE CNN FOR MULTITASKING CROWD 

ANALYSIS 

 Introduction 

Crowd disaster management requires accurate analysis of crowd scenes. The 

crowd analysis is done by a collective understanding of crowd count and density 

estimation, crowd flow, crowd behavior, and crowd congestion. Nevertheless, crowd 

counting and behavior understanding are essential to minimize crowd disaster, which is 

the main focus of the proposed work. Variation of crowd shape and influence of scene 

background information degrades the performance of crowd analysis. The current 

research trends focus on exploiting deep learning techniques for several tasks of crowd 

analysis. Deep models like convolution neural network (CNN), long-short term memory 

(LSTM), encoder-decoders, and generative adversarial networks have been vastly 

exploited. Different models for single-image-based crowd counting have extracted scale-

invariant features to handle crowd shape variation, whereas a few efforts have been 

proposed to minimize the background influence. However, there is a lack of models to 

address such issues in video-based crowd counting and crowd behavior prediction. Most 

of the solutions are single-task-based. The solution to crowd analysis using different 

single-task models would increase the computation overheads and have synchronization 

issues. Hence, a multitasking crowd analysis model is highly required, lacking in the 

literature. This may be because of the unavailability of a multitasking crowd analysis 

dataset. So, the following things could be drawn which need to be addressed. 

 There is a lack of availability of a multitasking crowd analysis model. 

 There is a lack of availability of a multitasking crowd analysis dataset. 
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 Two challenging issues: scale variation and minimization of background, have to 

be handled as far as video-based crowd analysis (crowd counting and crowd 

behavior prediction). 

To fulfill the above research gaps, a multiscale flow attentive multilayer depth 

separable CNN has been proposed for multitasking crowd analysis from crowd video 

datasets. The followings are the main contribution, 

 A large-scale multitasking crowd analysis (i.e., for crowd counting and crowd 

behavior prediction) datasets are generated using the publicly available crowd 

behavior datasets (i.e., MED and GTA). More than 1,20,000 frames (from 45 

video sequences) have been used for annotation. 

 A multitasking crowd analysis model is proposed, which effectively handles 

crowd shape variation and minimizes the effect of backgrounds. 

 The backbone of the model is designed using the depth-wise separable CNN. A 

flow attentive module is designed to minimize the effect of background details 

from different scales of spatial-temporal features. 

 The scale-invariant features are extracted to handle scale variation issues in the 

crowd videos. 

 Comprehensive results analysis and extensive ablation study have been conducted 

to show the effectiveness of the proposed model.   

 The Proposed Method and Model 

6.2.1 Overview 

Multitasking crowd analysis focusing on crowd counting and crowd behavior 

prediction is essential to draw effective crowd management strategies, public space 

design and provide a better visual surveillance system to minimize crowd disasters. The 

efficiency of any crowd behavior classification model is mainly affected by two major 
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issues in video sequences: crowd shape changes in the video sequence and the effect of 

cluttered background. The proposed model is designed to address these issues. The 

overall architecture of the proposed model is illustrated in Figure 6.1. The working of the 

proposed model can be explained by using the following major points.. 

 Pre-processing. 

 Network Overview. 

 Spatial-Temporal Feature Modelling using Depth Separable CNN. 

 Working of Flow Attention Block. 

 Multiscale Feature Modelling. 

 Multitasking Crowd Analysis and Optimization. 

6.2.2 Pre-processing 

During pre-processing the video sequences, the frames are obtained and converted 

into their grayscale level. For each timestamp, volume of frames is obtained. Each volume 

constitutes of three consecutive frames at time stamp, t, t-1 and t-2. Let the volume of 

frames for each time stamp of video sequence is represented by a set 𝑆 =

{𝑠1, 𝑠2, … … . . , 𝑠𝑁}, where N is the total number of frames of a video sequence. 

6.2.3 Network Overview 

As shown in Figure 6.1, the proposed model is built using a backbone network 

called Depth Separable CNN (DSCNN). The input to the DSCNN is the batches of the 

volume of frames. The DSCNN consists of four depth separable convolution layers, each 

of these layers is followed by a convolution layer with several kernels with size (1×1). 

Each convolution layer is followed by a down sampling layer which is the max-pooling 

layer used in the proposed model. The size of the max-pooling layer is set to (2×2) with 

a stride of 2. All the layers are padded with zeros. The arrows with different colors 
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represent the shapes of the tensors passing from one layer to another during training the 

model in a mini-batch manner. Four flow attention blocks (FAB) are proposed; each takes 

the output of each convolution layer as input, respectively. The FABs are applied at 

different scales of feature maps of the DSCNN network.   

 

Figure 6.1: Overall architecture of the proposed model 

Figure 6.2 shows details of FABs. The FABs utilize flow maps of the frames, 

which are obtained using the Lucas-Kanade optical flow algorithm [179]. The detailed 

working of these models is explained in the subsequent sections. The outputs of FABs 

are concatenated and given to the feed foreword network (FFN) to perform both crowd 

counting and crowd behavior prediction. The FFN contains two hidden layers with 512 

and 64. All the layers of FFN are densely connected (DC) one after another. The details 

of FFN are illustrated in Figure 6.3. 
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Figure 6.2: Details of FAB. 

 

 

Figure 6.3: Details of Feed Foreword Network 

6.2.4 Spatial-Temporal Feature Modelling using Depth Separable CNN. 

The depth-wise separable convolution (DSC) layer is solely designed to minimize 

the total number of matrix multiplication operations during convolution. This is done by 

implementing the following two processes. 

 Depth-wise convolution operation followed by 

 Pointwise convolution operation. 
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The DSC layer treats the channel dimension as the depth of the image or feature 

maps and is generally used to obtain spatial features. However, the same DSC layer can 

be used to obtain spatial-temporal features from the video sequence. The only thing we 

have to do is input the DSC layer with the volume of frames. Further, we can exploit fine-

grained depth-wise features by utilizing the depth multiplier during depth-wise 

convolution operation. Figure 6.4 illustrates the spatial-temporal feature modeling using 

DSC-1 of the proposed model with depth multiplier d. 

 

Figure 6.4: Details of Spatial-Temporal Feature Modelling using a DSC-1. 

According to Figure 6.4, in DSC-1, the depth-wise convolution operation with 

depth multiplier ‘d’ has been performed between each channel feature or image and the 

d number of the convolution kernel. One thing we have to remember is that here the 

channels are the frames at the different time stamps. All the convolution features of 

different channel-wise features/images are stacked whose channel dimension is [𝑑 × 𝑐]. 

The stacked features are given to a point-wise convolution layer which fuses all the 
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stacked feature maps across channel dimensions and results in spatial-temporal features. 

The point convolution will have p number of instances of spatial-temporal features. The 

depth-wise separable and point convolution process is the same for DSC-1, DSC-2, DSC-

3, and DSC-4. 

6.2.5 Working of Flow Attention Block. 

The flow attention blocks (FAB) are introduced to provide attention to the spatial-

temporal features of each DSC block with the optical flow maps. Figures 6. 2 a), b), c), 

and d) represent the overall block diagram of the FAB-1, FAB-2, FAB-3, and FAB-4, 

respectively. Figure 6. 2 e) explains the detailed structure of any FAB. The FAB takes the 

DSC features, i.e., 𝐹𝑖 ∈ ℝ𝑘×𝑤×ℎ×𝑐ℎ, and produces Attentive Feature-maps, i.e., 𝐹𝑖 ∈

ℝ𝑘×𝑤×ℎ where 𝑖 (= 1,2,3,4) representing each DSC block, 𝑘 is the batch size, 𝑤 is the 

width of the feature map, ℎ is the height of the feature map, and 𝑐ℎ is the channel 

dimension. The values of (𝑤, ℎ) are (200, 200), (100, 100), (50, 50)𝑎𝑛𝑑 (25, 25) for 

FAB-1, FAB-2, FAB-3 and FAB-4 respectively. The flow maps of four resolutions, i.e., 

(200, 200), (100, 100), (50, 50)𝑎𝑛𝑑 (25, 25) are obtained using the famous Lucas-

Kanade optical flow. The Lucas-Kanade method provides sparse optical flow between 

two frames with less noisy output. The optical flow represents the motion objects only; 

hence such techniques eliminate the background pixels. So, by imposing a flow map as 

attention to the fused DSC feature maps, the background pixels will be removed, thus 

minimizing the effects of cluttered background. The attention process is given in 

Equations 6.1 to 6.4. 

                                            𝐼𝐴𝑀𝑖 = 𝐹𝐹𝑖⨀ 𝐹𝑀𝑖                                                                    (6.1) 

                                  𝑆𝐹𝑀𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒([𝐼𝐴𝑀𝑖 , 𝐹𝐹𝑖])                                                 (6.2) 

                                         𝑀𝐹𝑖 = 𝐶𝑜𝑛𝑣(1×1)(𝑆𝐹𝑀𝑖)                                                           (6.3) 

                                          𝐴𝐹𝑖 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑀𝐴𝐹𝑖)                                                              (6.4) 
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, here the abbreviations like 𝐼𝐴𝑀𝑖, 𝐹𝐹𝑖, 𝐹𝑀𝑖, 𝑆𝐹𝑀𝑖, and 𝐴𝐹𝑖 are mentioned in Figure 6.2 

which resembles to Intermediate Attention Map, Fused Features, Flow Map, Stacked 

Feature Maps, Merged Features and Attentive Features for the 𝑖𝑡ℎ block respectively.  

6.2.6 Multiscale De-background Feature Modelling. 

After obtaining all the flow attentive feature maps for four FABs, all these feature 

maps are concatenated. These fused de-background features of different scales of FABs 

are termed multiscale de-background features and can also be called scale-invariant 

features that can handle scale changes due to perspective distortion. 

6.2.7 Multitasking Crowd Analysis and Optimization 

The scale-invariant features are now inputted to the FFN for multitasking crowd 

analysis. The focus is on performing two tasks of crowd analysis, i.e., crowd behavior 

prediction and crowd counting. So, we will have two different outputs. The FFN contains 

two densely connected hidden layers of 512 64 neurons with activation as ReLU. The 

activation of crowd counting output of FFN is ReLU, whereas the activation of crowd 

behavior prediction is SoftMax. Let the sets 𝜃𝐶𝐶  and 𝜃𝐶𝐵𝑃 represent all the learnable 

parameters connecting to the output nodes representing crowd counting and behavior, 

respectively. We have adopted mean squared error (MSE) and cross-entropy (CE) loss 

for CC and CBP, respectively. These losses are described as follows. 

                                                𝐿𝑜𝑠𝑠1 = 𝐿𝑜𝑠𝑠(𝜃𝐶𝐶) =
1

𝑘
∑ (𝐹𝑙

𝑝𝑟𝑒𝑑
− 𝑔𝑡𝑙)

2
𝑘
𝑙=1                         (6.5) 

                                                [𝐿(∅𝑇𝑆−𝑀𝐷𝐴)] 𝑘 =
1

𝑘
∑ 𝐿𝑖(𝑇𝑖𝐶𝐵𝑃

, 𝑌𝑖𝐶𝐵𝑃
)𝑘

𝑖=1                 (6.6) 

                 𝐿𝑜𝑠𝑠2 = 𝐿𝑖(∅𝑇𝑆−𝑀𝐷𝐴) = 𝐿𝑖(𝑇𝑖𝐶𝐵𝑃
, 𝑌𝑖𝐶𝐵𝑃

) = [− ∑ 𝑇𝑝 𝑙𝑜𝑔 𝑦𝑝𝑜𝑢𝑡
𝐾
𝑝=1 ]

𝑖
       (6.7) 

Now, the two losses are combined by summing their weighted sum as given in Equation 

6.8. 
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                                                  𝐿𝑜𝑠𝑠𝐹𝑖𝑛𝑎𝑙 = 𝛼𝐿𝑜𝑠𝑠1 + 𝛽𝐿𝑜𝑠𝑠2                                            (6.8) 

where 𝛼 + 𝛽 = 1. The final loss is minimised by applying minibatch based gradient 

descent using Adam optimiser [170]. 

 Multitasking Crowd Analysis Dataset and Performance Metrics 

6.3.1 Multitasking Crowd Analysis Dataset 

In In the literature, there is a lacking of availability of multitasking crowd analysis 

datasets focusing on crowd counting and crowd behavior prediction. So, to fulfill such an 

issue, a multitasking crowd analysis dataset is created using publicly available benchmark 

crowd behavior datasets like MED [2] and GTA [146]. Combinedly these two datasets 

contain video frames of around 1,20,000 frames. All these frames were manually 

annotated for obtaining ground truth crowd counts. The details of the multitasking crowd 

analysis dataset are illustrated in Table 6.1.  

Table 6.1: Stats of multitasking crowd analysis dataset focusing on crowd behaviours and 

crowd counting 

Dataset 

Name 

Description Environment Modality No. of 

Sequences 

Crowd 

Counting 

Range 

Resolution 

The 

MED 

[2] 

Real-world 

scenario with 

artificial escape 

like panic 

situation. 

Walkways Videos 31 1-36 [480 × 854
× 3] 

The 

GTA 

[146] 

Real-world 

scenario with 

artificial escape 

like panic 

situation. 

Free View Videos 14 0-155 [1080 × 1920
× 3] 

 

The MED dataset [2] has 31 video sequences of five crowd behaviors: Neutral, 

Panic, Congestion, Fight, and Obstacle or Abnormal. The resolution of frames of the 

MED dataset [2] is [480×854×3]. This work adopts the training and testing process as 

described by [2], i.e., leave-one-out validation. On the other hand, the grand theft auto v2 
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(GTA) [146] dataset contains 14 video sequences of three crowd behaviors: Neutral, 

Panic, and Fight scenes. The resolution of frames in GTA [146] is [1080 × 1920 × 3]. 

This work also adopted same procedures for training and testing as mentioned in [146] 

i.e., 10 random video sequences are used for training and rest four are used for testing. 

Both of these datasets provide frame-level annotation of crowd behaviors. For crowd 

counting all these frames are manually annotated. The MED dataset contains crowd 

densities that ranges from 1 to 36 whereas in the GTA dataset the crowd ranges from 0 to 

155.  Figure 6. 5 and Figure 6. 6 shows samples of crowd behaviors of the MED and the 

GTA dataset. 

 
(a) Crowd Normal Scene  

 
(b) Crowd Obstacle Scene  

 
(c) Crowd Panic Scene 

 
(d) Crowd Congestion Scene 

 
(e) Crowd Fight Scene 

 
(f) Crowd Fight Scene 

Figure 6.5: Examples of different samples of the MED dataset. 

 
(a) Crowd Normal Scene 

 
(b) Crowd Panic Scene 

 
(c) Crowd Fight Scene 

Figure 6.6: Examples of different samples of the GTA dataset. 
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 Experimental Setup 

The program is written in TensorFlow and executed using different computing 

nodes of the Param Sivay Supercomputer. The batch size for all the datasets has been set 

to 128. The learning rate 𝜂, momentum of batch normalization, regularized parameter of 

𝐿2, decay rates for first (𝛽1) and second moment (𝛽2) of Adam optimizer [170] are 

initialized to 0.001, 0.95, 0.01, 0.9, and 0.999, respectively. The maximum iteration was 

to 500. Early stopping with patience of 30 is used to stop the training of the model and 

also to avoid overtraining the model. 

 Results Analysis  

The model is optimized by minimizing the combined loss of classification and 

regression using a minibatch-based gradient descent approach using Adam optimizer. 

Instead of giving equal weightage to two losses because of the following reasons, 

 To understand the trends of performance of the model with different values of 

weights on the losses.  

 To find out on which values of weighted parameters i.e., 𝛼,  𝛽 the model performs 

better. The constraint of these two parameters is, 𝛼 + 𝛽 should be equal to 1.  

 To understand the behavior of weighted loss functions on different datasets.  

Table 6.2 shows performance of the proposed multitasking model based on different 

values of weighted loss parameters such as 𝛼, 𝑎𝑛𝑑 𝛽. 𝛼 is the weight given to the 

classification loss and 𝛽 is the weight parameter given to the regression loss. From Table 

6.2, it can be observed that the behavior of the model concerning different weighted loss 

values fluctuates until  α=0.75 and β=0.25. However, as the values of α decrease from 

0.75 and its corresponding β increases from 0.25, the model is more biased towards crowd 

counting performance than the classification. 
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Table 6.2: Experimental analysis of performance of the proposed model on various values of 

weighted loss parameters on the MED dataset 

Hyper-

Parameter 

Performance of the Proposed Model 

Accuracy MAE RMSE Class Wise F1-Score 

𝜶 𝜷 Panic Fight Congestion Obstacle Normal 

0.95 0.05 79.19 4.55 5.78 78.44 64.30 44.75 57.17 86.89 

0.90 0.10 77.6 4.89 6.08 72.3 70.19 29.08 57.43 85.22 

0.85 0.15 78.77 4.84 5.9 76.33 67.01 23.75 58.88 86.26 

0.80 0.20 78.91 5.37 6.58 68.8 67.64 32.37 59.23 86.42 

0.75 0.25 80.89 4.71 6.11 87.05 73.65 51.33 53.29 87.5 

0.70 0.30 78.82 5.14 6.52 69.2 76.04 14.14 58.46 86.04 

0.50 0.50 76.72 3.61 4.79 49.77 71.51 0.00 53.05 85.19 

0.30 0.70 75.86 3.53 4.72 37.87 60.44 33.59 53.29 84.68 

0.20 0.80 72.59 3.50 4.73 24.84 52.76 14.8 60.47 81.96 

0.10 0.90 71.66 3.39 4.52 0.00 47.86 0.28 56.7 81.99 

So, based on these findings, the performance of the proposed model on the MED 

dataset for the value of α=0.75 and β=0.25 is used for performance comparison with state-

of-the-art. The same procedure is adopted for the GTA dataset. Table 6.3 shows the 

performance of the proposed model on various values of α and β are illustrated. 

Table 6.3: Experimental analysis of performance of the proposed model on various values of 

weighted loss parameters on the GTA dataset 

Hyper-

Parameter 

Performance of the Proposed Model 

Accuracy MAE RMSE Class Wise F1-Score 

𝜶 𝜷 Panic Fight Normal 

0.95 0.05 85.85 13.08 16.32 85.85 13.08 16.32 

0.90 0.10 60.2 19.19 21.12 60.2 19.19 21.12 

0.85 0.15 64.6 22.22 25.5 64.6 22.22 25.5 

0.80 0.20 56.87 41.32 42.54 56.87 41.32 42.54 

0.75 0.25 76.98 11.58 12.69 76.98 11.58 12.69 

0.70 0.30 46.12 9.27 13.11 46.12 9.27 13.11 

0.50 0.50 72.61 22.2 24.12 72.61 22.2 24.12 

0.30 0.70 56.91 60.07 61.17 56.91 60.07 61.17 

0.20 0.80 64.52 51.27 52.74 64.52 51.27 52.74 

0.10 0.90 72.09 13.19 15.09 72.09 13.19 15.09 

However, the same trend as in the MED dataset is not observed for the GTA 

dataset. This may be because the GTA is a computer simulation-based dataset and is not 

as real as the MED dataset. It can be observed from Table 6.3 that for α=0.95 and β=0.05, 

the performance of GTA is better in all respect and is used for comparative analysis with 

state-of-the-arts. 
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6.5.1 Results analysis for Crowd Behavior Prediction 

6.5.1.1  The MED Dataset 

The comparative analysis of results for crowd behavior classification with the 

state-of-the-art deep learning and conventional machine learning approaches are 

illustrated in Table 6.4. The numbers in bold letters represent highest values in Table 6.4. 

The proposed model obtained an overall accuracy of 80.89 % and a mean accuracy of 

65.41% on the MED dataset [2]. The class-wise accuracy for Panic, Fight, Congestion, 

Obstacle, and Normal are 78.77%, 77.82%, 35.19%, 41.70%, and 93.59%, respectively. 

A limited number of models experimented on the MED dataset are available in the 

literature. Among the deep learning approaches, the model C3D-FC7 [147] achieves 

better accuracy than other listed deep models in Table 6.4. The C3D-FC7  [147] achieves 

an accuracy of 73.52%, having a mean accuracy of 51.22%. 

Table 6.4: Comparative result analysis of proposed model for the CBP with state-of-the-art 

approaches for the MED dataset 

Approaches Classification accuracy (%) per individual 

behavior classes 

Mean-

ACC 

(%) 

Accuracy 

(%) 

Panic Fight Congestion Obstacle Normal 

 

 

 

 

 

Deep 

Learning 

V3G-

FC7 

[147] 

80.72 37.41 31.18 47.25 71.35 53.58 62.71 

V3G-

FC8 

[147] 

53.23 29.89 27.32 42.35 32.16 36.99 33.82 

C3D-

FC7 

[147] 

84.72 32.93 16.16 29.61 92.69 51.22 73.52 

C3D-

FC8 

[147] 

57.32 25.89 17.22 25.51 46.64 34.50 40.59 

Conventional 

Machine 

Learning 

HOT 

[2] 

62.18 38.27 25.67 28.20 36.53 38.17 36.29 

DT 

[2] 

74.82 30.47 23.43 27.94 36.88 38.71 36.10 

Proposed 

Multitasking Model 

78.77 77.82 35.19 41.70 93.59 65.41 80.89 
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Figure 6.7 Confusion Matrix of the proposed model on the MED dataset 

In contrast, the conventional machine learning techniques have very poor 

performance and achieved the highest mean accuracy of 38.80% using the HOG features 

[2]. Nevertheless, the proposed model outperforms the state-of-the-art conventional and 

deep learning techniques in different performance metrics. The confusion matrix of the 

proposed multitasking model on the MED dataset [2] is illustrated in Figure 6.7. 

From the confusion matrix (Figure 6.7), it can be observed that, for congestion 

classes, the proposed model is more biased towards the normal crowd scenes on the MED 

dataset [2]. A similar kind of trend can be seen in the Obstacle class. However, the 

congestion and obstacle classes are not biased against each other. Due to similar 

appearance and motion patterns of both congestion and the obstacle with the normal 

scenes, most of the classes of congestion and obstacle are biased towards normal crowd 

scenes. 

In addition to the analysis of the above results, the proposed model's performance 

is also compared with the recent work, i.e., the Novel-Descriptors [187] for crowd 

behavior prediction published in ICIP'21. Table 6.5 shows a comparison of the results of 

the proposed method with the Novel-Descriptors [187]. The numbers in bold letters 

represent highest values in Table 6.5. 

 

 



 

 

 

177 

Table 6.5: Comparison of results against Novel_Descriptor [187] for the CBP on the 

MED dataset [2].  

Model Precision Recall F1 Score 

COF [187] 52.50 60.00 56.00 

CD [187] 73.17 83.33 77.92 

BD [187] 56.52 74.29 64.20 

Proposed  80.90 81.26 79.40 

 

The overall precision, recall and F1-Score of the proposed model are 80.90%, 81.26% 

and 79.40% which are far better than the Novel-Descriptor [187]. 

6.5.1.2  The GTA Dataset 

The performance comparisons of approaches for the CBP on the GTA dataset are 

illustrated in Table 6.6. The values in bold letters represent highest values in Table 6.6. 

The proposed model achieves overall accuracy, mean accuracy of 85.85%, 72.64 

respectively. The individual class accuracy for the Normal, Panic and Fight scenes are 

86.15%, 31.79% and 100.00% respectively. When we compare the obtained results with 

the state-of-the-art method, it can be observed that the proposed model performs better. 

The confusion matrix of the proposed model on the GTA dataset is illustrated in Figure 

6.8. An observation can be drawn from the confusion matrix that, the panic situations are 

almost equally biased with the normal crowd scene as well as Fight scenes. In contrast, 

the Spatial-Temporal Net obtains biased results on Fight scenes. Overall, the proposed 

model performs better than the state-of-the-art approaches. 

Table 6.6: Comparison of results for CBP on the GTA dataset 

Approaches Classification accuracy (%) 

per individual behavior classes 

Mean-

ACC 

(%) 

Accuracy 

(%) 

Normal Panic Fight 

Spatial-

Temporal 

Net[23] 

83.80 61.20 28.90 71.70 - 

Proposed 86.15 31.79 100.00 72.64 85.85 
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Figure 6.8: Confusion matrix of the proposed model on GTA dataset 

6.5.2 Comparative Results Analysis with Crowd Counting Models 

Five Five state-of-the-art models such as Real-CNN [97], CNN-Crowd [23], 

MCNN [27], Dense Crowd [22], and VGG-16 [188] are coded and implemented on the 

MED [2]  and the GTA [146] for crowd counting. During the implementation of MCNN 

[27], Real-CNN [97], and VGG-16 [188], their output layer is replaced with a single 

neuron as the main focus of the study is single count regression using weak supervision 

and not on the density map-based regression. The input shape to these models [22], [23], 

[27], [97] is set to (224 × 224 × 3).  

6.5.2.1  The MED Dataset 

The comparative analysis of the results with the crowd counting models is 

illustrated in Table 6.7. Values in bold letters represent best in Table 6.7. The proposed 

model achieves MAE and RMSE of 4.71 and 6.11 respectively on the MED dataset [2]. 

Whereas the state-of-the-art methods such as CNN-Crowd [23], Dense-Crowd [22], 

MCNN [27] and VGG-16 [188] obtain <MAE, RMSE> of <6.80, 12.86>, <8.65, 11.13>, 

<5.21, 7.84> and <7.54, 8.93> respectively. So, compared to the state-of-the-arts [23][22] 

[27] [188], the proposed model performs better in terms of MAE and RMSE. 
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Table 6.7: Comparison of results for crowd counting on the MED dataset [2] 

Model MAE RMSE 

CNN Crowd [23] 6.80 12.86 

Dense Crowd [22] 8.65 11.13 

VGG-16 [188] 7.54 8.93 

MCNN [27] 5.21 7.84 

Proposed 4.71 6.11 

6.5.2.2  The GTA Dataset 

The comparison of crowd counting results with the state-of-the-arts on the GTA 

dataset [146] is illustrated in Table 6.8. Values in bold letters represent best in Table 6.8. 

The proposed model achieves MAE and RMSE of 13.08 and 16.39 respectively. In 

contrast, the state-of-the-art approaches such as CNN-Crowd [23], VGG-16 [188], 

MCNN [27], Real-CNN [97] achieve <MAE, RMSE) of <33.91, 36.94>, <36.98, 39.75>, 

<32.06, 49.24> and <32.31, 49.89>, respectively. So, the proposed model performs better 

than the state-of-the-art approaches. 

Table 6.8: Comparison of results for crowd counting on the GTA dataset [146] 

Approaches Performance Metrics 

MAE RMSE 

CNN-Crowd  [23] 33.91 36.94 

VGG-16 [188] 36.98 39.75 

MCNN [27] 32.06 49.24 

Real-CNN [97] 32.31 49.89 

Proposed Model 13.08 16.39 

6.5.3 Ablation Study 

Apart from the results analysis, an ablation study has been conducted to show the 

effectiveness of individual modules of the proposed model. The following modules are 

obtained from the proposed model for ablation study. 

 CNN as Backbone: In this case, the whole DSCNN is replaced by the CNN layers 

as backbone. 

 2-Scale: Here, the proposed model with two scales of FABs i.e., FAB-3 and FAB-

4 of scales (100 × 100) and (50 × 50) are used.  
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 3-Scale: Here, the proposed model with the three scales of FABs i.e., FAB-2, 

FAB-3 and FAB-4 of scales (150 × 150), (100 × 100) and (50 × 50) are used. 

 Backbone Only or No Attention: Here, no attention or FAB blocks are used. 

 No Skip: Here, the proposed model without the skip connection in the FAB blocks 

are used. 

The comparison of results of different modules during ablation study are illustrated 

in Table 6.9 for the MED dataset. 

Table 6.9: Comparison of models during ablation study for the MED dataset  [2] 

Model 

Performance Metrics 

Accuracy MAE RMSE 

F1-

Score Recall Precision 

Class Wise F1-Score 

Panic  Fight Congestion Obstacle Normal 

CNN 78.00 5.16 6.62 76.25 77.88 78.00 64.3 72.08 41.25 54.76 85.32 

2-Scale 78.50 4.50 5.76 77.21 78.51 77.84 75.43 69.55 32.02 61.46 85.90 

3-Scale 78.85 4.74 6.04 76.40 78.85 79.37 79.11 60.90 38.10 54.95 86.59 

No-Skip 77.74 4.76 5.97 74.87 77.78 77.02 73.93 64.83 19.22 53.36 85.98 

Backbone 77.40 4.69 5.92 75.11 77.4 76.60 75.24 65.53 24.30 53.44 85.66 

Proposed 

Model 80.89 4.71 6.11 79.40 81.26 80.90 87.05 73.65 51.33 53.29 87.50 

 

During ablation study on the MED dataset, the modules like ‘CNN as backbone’, 

‘2-Scale’, ‘3-Scale’, ‘No-Skip’ and ‘Backbone Only’ get <accuracy, MAE, RMSE> of 

<78.00%, 5.16, 6.62>, <78.50%, 4.50, 5.76>, <78.85, 4.74, 6.04>, <77.74%, 4.76, 5.97> 

and <77.40, 4.69, 5.92> respectively. When the backbone is replaced with the CNN, the 

classification accuracy as well as counting performance are also less than the proposed 

model. Among these modules, the 3-Scale model performs better. The backbone of the 

model performs poorly in terms of accuracy and slightly better in terms of MAE with 

respect to the proposed model. However, the proposed model takes advantages of 

different modules and performs better than the state-of-the-art approaches. 

On the other hand, the results of the ablation study for different modules are 

illustrated in Table 6.10 for the GTA dataset. Values in bold letters represent best in Table 
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6.10. The model with CNN as the backbone performs better than other modules in terms 

of accuracy. i.e., 79.20%. However, in terms of MAE, the No-Skip model performs better 

than other modules of ablation study. However, none of these individual modules 

performs as better as the proposed multitasking model. 

Table 6.10: Comparison of models during ablation study for the GTA dataset  

Model Performance Metrics 

Accuracy MAE RMSE F1-

Score 

Recall Precision Class Wise F1-Score 

  

Panic  

  

Fight 

Normal 

CNN 79.20 41.14 43.03 77.95 79.20 83.94 81.40 48.25 82.16 

2-Scale 72.08 46.76 47.64 70.70 72.08 83.15 72.03 48.25 75.28 

3-Scale 54.69 59.59 60.53 50.84 54.69 57.77 66.28 45.55 35.51 

No-Skip 46.88 18.88 23.00 41.84 46.88 47.40 59.57 24.60 27.22 

Backbone 55.42 36.15 45.49 53.33 55.42 54.87 79.75 23.32 32.72 

Proposed 

Model 85.85 13.08 16.32 84.24 85.85 87.55 88.32 48.25 89.44 

 Conclusion 

This chapter proposed a multitasking crowd analysis model which performed two 

important tasks: Crowd Counting and Crowd Behavior Prediction. A multitasking crowd 

analysis dataset using the available benchmarks crowd behavior datasets was also 

developed. The model outperforms recent state-of-the-art approaches as far as crowd 

behavior classification and crowd counting are concerned. For crowd behavior 

classification, the proposed model improved the mean accuracy by 22.01% and 1.31% 

concerning the SOTA for the MED and the GTA dataset, respectively. Similarly, for 

crowd counting, the proposed model improved the MAE by 6.17% and 59.51% 

concerning SOTA for the MED and the GTA dataset, respectively. However, the model 

bias toward normal crowd scenes when it deals with congestion and panic crowd scenes 

of the real-world scenario-based dataset, i.e., the MED dataset. On the other hand, the 

proposed model is almost equally biased towards normal and fight scenes when it deals 

with panic scenes of computer-simulated datasets, i.e., GTA. So, the future study will 

focus on addressing this limitation by proposing a more sophisticated method and model. 


