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CHAPTER 4                                                                     
A REAL TIME TWO INPUT STREAM MULTI 

COLUMN MULTISCALE CNN FOR EFFICIENT 

CROWD CONGESTION-LEVEL ANALYSIS 

 Introduction 

The CCA provides congestion information in a crowd scene, which helps with 

crowd disaster management. The CCA can be implemented at the global (Frame-level) 

or local level (Patch-Level). In global-level CCA, the crowd scenes are annotated with 

several congestion levels/classes with the help of crowd density or crowd flow 

information, followed by feature extraction and classification. However, in local-level 

CCA, the crowd scene is divided into different blocks/patches, and then these patches are 

annotated with different congestion classes. The feature extraction and classification are 

done at the patch level only. The division of congestion classes is mainly based on service 

level information provided by Polus et al. [178] or manually defining classes based on 

density and crowd flow information [115]. For example, the congestion classes could be 

free-flow, restricted-flow, jammed-flow, and dense-flow [178] or very-low (VL), low (L), 

medium (M), and high (H), and very high (VH) [115]. The existing conventional 

approaches extract spatial (shape, spectral, texture) [40], [114], [116]–[122] or spatial-

temporal texture features [123], [124] to solve the CCA as a multiclass classification 

problem. These methods lack in extracting fine-grained features, resulting in a high 

misclassification rate, and are computationally very expensive. The existing deep-

learning frameworks utilize CNN architecture [125], [178] to extract spatial features to 

solve the CCA. This chapter proposes a work based on two intuitions (i) extracting only 

spatial features will not increase the accuracy since the crowd scene is affected by 

cluttered background, lighting change, varying crowd densities, and perspective change. 
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Moreover, it does not provide any information related to crowd motion. So, in 

addition to the spatial features, temporal or motion features should be extracted and fused 

with them. Moreover, (ii) the single-column CNN [125], [178] for CCA cannot capture 

features invariant to perspective change or scene change, but multi-column CNN [27] 

with different kernel sizes is capable of extracting invariant features. Hence based on 

these two intuitions, a two-input stream multi-column multi-stage CNN (TIS-MCMS-

CNN) is proposed to solve CCA in real-time, which is discussed in a subsequent section. 

 The Proposed Model: A Real time Two Input Stream Multi Column 

Multiscale CNN    for Efficient Crowd Congestion-level Analysis 

The proposed TIS-MCMS-CNN consists of two input streams of a multi-column 

multi-stage convolutional neural network for the frame-level CCL. Figure 4.1 and Figure 

4.2 shows the overall architecture and the detailed architecture of the TIS-MCMS-CNN, 

respectively. 

 

Figure 4.1: Overall architecture of the proposed model 

The following sub-sections explain details of the proposed model and it’s working 

principle. 

 Network Architecture. 

 Pre-processing and Motion Magnitude Map Extraction. 

 Problem Formulation and Learning Algorithm. 

 Precaution to handle overfitting. 
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Figure 4.2: Detail architecture of the model TIS-MCMS-CNN 
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Table 4.1: TIS-MCMS-CNN layers information 

4.2.1 Network Architecture 

According to Figure 4.2, the proposed architecture contains three main modules such 

as, 

 Two streams of multi-column multi-stage CNN 

 A fusion layer 

 A multi-layer perceptron (MLP) module 

The two streams (see Figure 4.2) are named as stream-1 (the spatial stream) and 

stream-2 (the motion stream). Each stream contains three columns of convolution layers. 

Each column contains three stages of convolution layers of different receptive fields or 

kernel size. The details of the layer information are given in Table 4.1. The activation 

function for each convolution (Conv) layer is a rectified linear unit (ReLU), which is 

followed by a max-pooling (MP) layer. We have taken ReLU for Conv layers, because it 

performs better than logistic, tanh activation functions, and get control of the vanishing 

gradient problem. The ReLU for 𝑘𝑡ℎ neuron at level l can be calculated using the 

following Equation 4.1.  

                                              𝑅𝑒𝐿𝑈(𝑧𝑖𝑛𝑘
)

𝑙
= 𝑚𝑎𝑥{0, 𝑧𝑖𝑛𝑘

}                                                      (4.1) 

, where (𝑧𝑖𝑛𝑘
) is the weighted sum of the information transmitted from neurons of level 

l-1 to the 𝑘𝑡ℎ neuron of level l.  

Layer 

Name 

Filter 

Size 

Number 

of 

Filters 

Layer 

Name 

Filter 

Size 

Number 

of Filters 

Layer 

Name 

Filter 

Size 

Number 

of Filters 

Conv_1_1 5×5 25 Conv_2_1 4×4 25 Conv_3_1 5×5 25 

Conv_1_2 3×3 15 Conv_2_2 3×3 15 Conv_3_2 4×4 15 

Conv_1_3 3×3 10 Conv_2_3 3×3 10 Conv_3_3 2×2 10 

         

Layer 

Name 

Filter 

Size 

Layer 

Name 

Filter 

Size 

Layer 

Name 

Filter 

Size 

Layer 

Name 

Neurons 

MP_1_1 2×2 MP_2_1 2×2 MP_3_1 2×2 FC-1 512 

MP_1_2 2×2 MP_2_2 2×2 MP_3_2 2×2 FC-2 64 

MP_1_3 2×2 MP_2_3 2×2 MP_3_3 2×2 Output 5 
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A fusion layer follows the two streams. The feature maps obtained from the third 

stage of each column are flattened and concatenated in the fusion layer. Next, an MLP 

module follows the fused layer. The MLP module contains three dense connection layers: 

fully connection layer-1 (FC-1), fully connection layer-2 (FC-2), and an output layer. The 

activation function for FC-1 and FC-2 are ReLU.  The output layer containing five 

neurons; each of these neurons is responsible for giving one of five responses like VL, L, 

M, H, VH. The activation function for fully connected layers except the output layer is 

ReLU. The activation of the output layer is SoftMax. The SoftMax function generally 

gives the probability distribution of each target class. So, we have used this function at 

the output layer. The following Equation 4.2 shows the SoftMax activation for 𝑡ℎ𝑒 𝑝𝑡ℎ 

neuron of the seventh layer (output) of our proposed model.  

                 𝑦7𝑝𝑜𝑢𝑡
= 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 ((𝑧𝑖𝑛𝑝

)
7

) =
𝑒

(𝑧𝑖𝑛𝑝
)

7

∑ 𝑒
(𝑧𝑖𝑛𝑝

)
75

𝑝=1

, 𝑓𝑜𝑟 𝑝 = 1,2,3,4,5                         (4.2) 

, where (𝑧𝑖𝑛𝑝
)

7
 is the weighted information transmitted from the sixth layer to the pth 

neuron of the output layer (seventh layer). 

4.2.2 Pre-processing and Motion Magnitude Map Extraction 

In the pre-processing stage, by following the work of Fu et al. [115]we converted 

each colour frame into its Grayscale and resized to 42×40. Let, the RGB video frames 

and it’s resized grayscale images are denoted using set 𝑉𝐹 =  {𝑣𝑓1, 𝑣𝑓2, … . . , 𝑣𝑓𝑇} and 

𝐺𝐹 =  {𝑔𝑓1, 𝑔𝑓2, … . . , 𝑔𝑓𝑇} respectively, where T is the total number of frames. Equation 

4.3 is used to convert the colour frames into grayscale images. 

        𝑔𝑓𝑖 = 0.299 × 𝑅(𝑣𝑓𝑖) + 0.587 × 𝐺(𝑣𝑓𝑖) + 0.114 × 𝐵(𝑣𝑓𝑖), ∀𝑖 = 1,2, … , 𝑇      (4.3) 

, where 𝑅(), 𝐺(), 𝑎𝑛𝑑 𝐵() are red, green, and blue channels of the colour frame 

respectively. The motive behind this pre-processing is to minimize the total memory 
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occupancy of the model, and the idea is adopted from Fu et al. [115]. Then, the motion 

magnitude map of the resized frames is obtained by applying the Lucas-Kanade [179] 

optical flow. The Lucas-Kanade method cannot give dense flow information but still 

provides noise-free motion information. It finds an optical flow between two consecutive 

frames by solving the following constrained equation.  

                                               𝑔𝑓𝑥 × 𝑢 + 𝑔𝑓𝑦 × 𝑣 + 𝑔𝑓𝑑 = 0                                                  (4.4) 

, 𝑔𝑓𝑥  𝑎𝑛𝑑 𝑔𝑓𝑦 are the spatial derivatives of the 𝑑𝑡ℎ frame, 𝑔𝑓𝑇 is the temporal derivative 

of 𝑡ℎ𝑒 𝑑𝑡ℎ 𝑓𝑟𝑎𝑚𝑒, and u, v are the horizontal and vertical optical flow of that frame, 

respectively. The flow magnitude can be obtained by solving the Equation 4.5. 

                                        𝑀𝑎𝑔(𝑥, 𝑦, 𝑑) = √𝑢(𝑥, 𝑦)2 + 𝑣(𝑥, 𝑦)2                                                (4.5) 

, where 𝑀𝑎𝑔(𝑥, 𝑦, 𝑑) refers to the motion magnitude map for the 𝑑𝑡ℎ  frame. The detailed 

description and solution of Equation 4.4 and Equation 4.5 can be found in [179]. Let the 

motion magnitude maps for the set GF is denoted as set 𝑀𝐹 =  {𝑚𝑓1, 𝑚𝑓2, … . . , 𝑚𝑓𝑇}. 

The resized grayscale frame set GF and the motion magnitude set MF are inputted to the 

first stream i.e., the spatial stream and second stream i.e., motion stream of TIS-MCMS-

CNN respectively. The detailed description of the problem formulation and learning 

algorithm is discussed in the following subsection. 

4.2.3 Problem Formulation & Learning Mechanism 

Let 𝐺𝐹 and 𝑀𝐹 are divided into N number of batches of samples. Let tuple 𝑆𝑡𝑥
=

< 𝐺𝐹𝑡𝑥
, 𝑀𝐹𝑡𝑥

> represents pre-processed gray frames and corresponding motion 

magnitude maps for the 𝑡𝑡ℎ batch. Here, for any value of t (ranges from 1 to N) x ranges 

from 1 𝑡𝑜 𝐵𝑎𝑡𝑐ℎ_𝑆𝑖𝑧𝑒. The 𝐵𝑎𝑡𝑐ℎ_𝑆𝑖𝑧𝑒 defines the batch size of 𝑡𝑡ℎ batch samples. We 

assigned resized grayscale frames i.e., 𝐺𝐹𝑡𝑥
 and motion magnitude maps of frames i.e., 

𝑀𝐹𝑡𝑥
to, the first and second stream, respectively. During forward propagation, for each 
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sample in 𝑆𝑡𝑥
, the feature maps of the two-stream CNNs, the activation of the hidden 

layers of MLP and the predicted outputs of the final layer are calculated. The forward 

propagation for the net is discussed below. 

The convolution layers of the two-stream CNNs convolves the input matrix with filters 

and generate feature maps. For the proposed network, the convolution operation of the 

𝑖𝑡ℎ layer for the 𝑗𝑡ℎ  column of 𝑘𝑡ℎ stream is denoted as, 

                                      [𝑓𝑖,𝑘
𝑗

]
𝑆𝑡𝑥

= [𝐶𝑂𝑁𝑉 (𝜃𝐶𝑖,𝑘

𝑗
, [𝑓𝑚𝑖−1,𝑘

𝑗
]

𝑇
)]

𝑆𝑡𝑥

                                            (4.6) 

, where 𝜃𝐶  represents parameters for two-stream CNNs and 𝜃𝐶𝑖,𝑘

𝑗
=

[𝑊𝑖1,𝑘
𝑗

, 𝑊𝑖2,𝑘
𝑗

, … . . , 𝑊𝑖𝑀,𝑘
𝑗

] for i=1,2,3 j=1,2,3 and k=1,2. Each 𝑊𝑖𝑚,𝑘
𝑗

 represents 

𝑚𝑡ℎ convolution kernel’s weight matrix for 𝑖𝑡ℎ layer of 𝑗𝑡ℎ column of 𝑘𝑡ℎ stream and we 

got m=1,2,…,M such kernel parameters for each layer. Remember that the value of M is 

different for different layers. The 𝑓𝑖,𝑘
𝑗

 is the preactivated feature map. The 𝑓𝑚𝑖−1,𝑘
𝑗

 is the 

activated and max pooled feature map obtained from (𝑖 − 1)𝑡ℎ stage of 𝑗𝑡ℎ column of 

𝑡ℎ𝑒 𝑘𝑡ℎ stream. Not that, 𝑓𝑚0,1
0  and 𝑓𝑚0,2

0  represent the inputs to the first and second 

streams, which are 𝐺𝐹𝑡𝑥
and 𝑀𝐹𝑡𝑥

respectively. Each stage consists of a convolution layer 

followed by ReLU, followed by a max pooling layer. The feature map of each stage can 

be calculated as, 

                                                 [𝑓𝑚𝑖,𝑘
𝑗

]
𝑆𝑡𝑥

= [𝑀𝑃 (𝑅𝑒𝐿𝑈(𝑓𝑖,𝑘
𝑗

))]
𝑆𝑡𝑥

                                    (4.7) 

The feature maps obtained after the third stage of all three columns of two streams 

are concatenated by using a fusion layer, and it can be denoted as, 

                                                [𝐹𝑢𝑠𝑒] 𝑆𝑡𝑥 = [𝐶𝑂𝑁𝐶𝐴𝑇𝐸(𝑓𝑚3,𝑘
𝑗

)]
 𝑆𝑡𝑥

                            (4.8) 

It should be noted that the fusion layer only concatenates the flattened feature 

maps of its previous layer; hence there is no weight updating during backpropagation. 
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The next stage of the forward-propagation is to find the activation of the neurons of the 

MLP. The pre-activation for the fully connected layers (5-7 layers) can be calculated as, 

                                        [𝑦𝑖]
𝑆𝑡𝑥 = [𝜃𝑓𝑐𝑖

× [𝑦(𝑖−1)𝑜𝑢𝑡
, 1]

𝑇
]

𝑆𝑡𝑥
                                           (4.9) 

, where 𝜃𝑓𝑐𝑖
= [𝜔𝑖, 𝑏𝑖], and 𝜔𝑖 is the weight matrix connecting neurons from (𝑖 − 1)𝑡ℎ 

layer to the 𝑖𝑡ℎ layer. The 𝑦𝑖 and 𝑦𝑖𝑜𝑢𝑡
 represent pre-activation and the activated neurons 

for 𝑖𝑡ℎ layer. Remember that 𝑦4 = 𝑦4𝑜𝑢𝑡
= 𝐹𝑢𝑠𝑒.  The response of the first two fully-

connected layers of MLP is ReLU, and the activation can be calculated as,  

                                       [𝑦𝑖𝑜𝑢𝑡
]

𝑆𝑡𝑥 = [𝑅𝑒𝐿𝑈(𝑦𝑖)]𝑆𝑡𝑥 , 𝑓𝑜𝑟 𝑖 = 5,6                                (4.10) 

The last layer of the MLP is the classification layer, which contains five neurons. 

The SoftMax activation is used in this layer, and it can be represented as, 

                                 [𝑦𝑖𝑜𝑢𝑡
]

𝑆𝑡𝑥 = [⋃ [𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (𝑦𝑖𝑝𝑜𝑢𝑡
)]4

𝑝=0 ]
𝑆𝑡𝑥

, 𝑓𝑜𝑟 𝑖 = 7.       (4.11) 

Let ∅𝑁𝑒𝑡 = [𝜃𝐶 , 𝜃𝑓𝑐] represent all the parameters of the network. At last, the loss 

is computed by using Cross-Entropy between the true distribution and predicted 

distribution. The cross-entropy loss is a way to find the difference between two 

distributions like true distribution i.e., 𝑇𝑝 and predicted distribution i.e., 𝑦𝑖𝑜𝑢𝑡
. So, the loss 

𝐿(𝑇𝑝, 𝑦𝑖𝑜𝑢𝑡
), can be calculated by using the Equation 4.12. 

                           [𝐿(∅𝑁𝑒𝑡)]𝑆𝑡𝑥 = [𝐿(𝑇𝑝, 𝑦𝑖𝑜𝑢𝑡
)]

𝑆𝑡𝑥 = [− ∑ 𝑇𝑝 log 𝑦7𝑝𝑜𝑢𝑡

4
𝑝=0 ]

𝑆𝑡𝑥
        (4.12) 

, where 𝑇𝑝|p=0,1,2,3,4 is the true distribution of the five density classes, namely VL (0), L 

(1), M (2), H (3), and VH (4) and 𝑦7𝑜𝑢𝑡
 is their predicted distribution. Whenever the true 

distribution and predicted distribution are the same, then the loss function 𝐿(𝑝, 𝑞) is 

minimized. So, we want to find predicted distribution such that − ∑ 𝑝𝑖 log 𝑞𝑖𝑖  is 

minimized. So, the problem for the proposed work can be formulated as an optimization 
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problem which minimizes the loss between the true distribution and the predicted 

distribution, and it can be represented as, 

                       𝑎𝑟𝑔𝑚𝑖𝑛
∅𝑁𝑒𝑡

[− ∑ 𝑇𝑝 log 𝑦7𝑝𝑜𝑢𝑡

4
𝑝=0 ]

𝑆𝑡𝑥
| ∑ 𝑦𝑖𝑝𝑜𝑢𝑡

= 14
𝑝=0                        (4.13) 

By using Lagrangian constraint multiplier, the objective function can be reduced 

to the following form 

                    𝑎𝑟𝑔𝑚𝑖𝑛
∅𝑁𝑒𝑡

[− ∑ 𝑇𝑝 log 𝑦7𝑝𝑜𝑢𝑡
+ 𝜆 ∑ 𝑦𝑖𝑝𝑜𝑢𝑡

− 14
𝑝=0

4
𝑝=0 ]

𝑆𝑡𝑥
                     (4.14) 

, where 𝜆 is the Lagrangian multiplier. If 𝜆 ∑ 𝑦𝑖𝑝𝑜𝑢𝑡
− 14

𝑝=0 =0, then we will get an 

absolute minimum. In this work, the L2 norm as the regularization term and added in the 

optimization function. So, the loss function could look like as, 

                            [𝐿̃(∅𝑁𝑒𝑡)]𝑆𝑡𝑥 = [𝐿(∅𝑁𝑒𝑡) +
𝛼

2
‖∅𝑁𝑒𝑡‖2]

𝑆𝑡𝑥
                                          (4.15) 

, where α is the regularized parameter. 

The model trained and optimized using backpropagation [169] with Adam 

optimizer [170]. For training the network, broadly, we need two things forward 

propagation and backward propagation. The network is trained until early-stopping, or 

𝑖𝑡𝑟 = max _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is satisfied. The early-stopping is a measure used to minimize the 

overfitting and can be found in Keras as an in-built function. In early stopping, we need 

to set patience parameter p, and during training, the model checks whether the validation 

loss or training loss is/is not going down even after crossing the p number of epochs. If it 

is going down, then the training continues otherwise stops. 

4.2.4 Precautions to handle Overfitting 

Overfitting occurs when the model is overly complex to fit the training set tightly, 

which results in remembering the training set but not learning it. It is because of the 

complex model always possesses low bias and high variance. So, overfitting is the 



 

116 

 

 

model's error. If the model is simple, then underfitting may occur. In such a case, the 

model has high bias and low variance. So, there is always a trade-off between bias and 

variance. So, why should we care about bias-variance trade-off and model complexity for 

the deep neural network? Answers to this question are, 

 Deep Neural Networks are highly complex models. 

 It has many parameters and many non-linearities. 

 So, it is easy for them to overfit and drive training errors to zero. 

Hence, we need some regularization. The followings are different forms of regularization, 

which help to handle the overfitting. 

 L2- Regularization. 

 Early-Stopping. 

 Drop-Out. 

 Parameter Sharing and tying. 

 Data Augmentation. 

 Ensemble. 

 Adding noise to inputs and outputs. 

In our proposed model, we implemented L2-regularization and early-stopping to 

handle with overfitting. Larger weights in the neural network make the model overfit such 

that for a small change in the input (during testing), it results in more significant variation 

in the output. So, we must penalize the weights. For this, L1 or L2 regularization can be 

used. We have used the L2 norm as the regularization term and added in the optimization 

function.  
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 Dataset Preparation 

For the experiment and results analysis, a CCL dataset is prepared using the  

publicly available crowd datasets, namely, Pets-2009 S1 View1 [180], UCSD Ped1 and 

Ped2 [181], UMN Plaza-1 and Plaza-2 [182].  The PETS-2009 [180] dataset is the 

benchmark dataset for crowd surveillance. The Pets-2009 S1 mainly meant for crowd 

count and density estimation. It contains three scenarios, like L1, L2, and L3. Each of 

them contains sequences recorded in four views in two timestamps. We selected all the 

view-1 of the three scenarios, which were recorded in different lighting and weather 

conditions. Each view contains a sparse to the dense crowd. The UCSD [181] is a crowd 

anomaly dataset that provides two sequences in two different scenarios, namely, UCSD-

Ped1 and UCSD-Ped2. The Ped1 and Ped2 contain 16000 and 4800 frames, respectively. 

These datasets contain different challenging conditions like varying lighting conditions, 

occlusions, camera jitters. The UMN [182] provides benchmark datasets for crowd 

monitoring. The UMN-Plaza1 and Plaza2 are two surveillance videos recorded in Plaza-

1 and Plaza-2 for crowd monitoring.  

By following the work of Fu et al. [115], each of the frames of these datasets are 

manually annotated with one of five density levels according to the degree of congestion 

of the crowd. The division of crowd scenes (Pets-2009, UCSD) into five density levels 

like Very-Low (VL), Low (L), Medium (M), High (H), and Very-High (VH). The detail 

of the division of crowd density levels is given in the following Table 4.2. Each entry of 

the Table 4.2 shows the range of people for that density class. The UMN Plaza1 and 

Plaza2 contain the very-low crowd, so we divided their density level according to the 

value shown in the following Table 4.2. For UMN Plaza1 and Plaza2 the Very-Low 

depicts to no crowd scenes. The Figure 4.3 shows examples of different congestion levels 

defined on the following datasets. 
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Table 4.2: Details of five congestion levels 

Generally, the recent works on the CCA did not mention whether they have 

trained the model with validating data or not. So, to give a clear understanding of the 

proposed work, we created two datasets, namely Dataset-1 and Dataset-2. In the Dataset-

1, annotated frames for every class are divided into training-set and test-set. Sixty percent 

of each class is taken as training-set and rest 40% as test-set. The Dataset-2 contains 

training-set, validation-set, and test-set. Each density class is divided into 40% of training, 

20% of validation, and 40% of testing. The following Table 4.3 and 4.4 show the division 

of datasets into "Dataset-1" and "Dataset-2". 

Figure 4.3: Examples of crowd scenes of different crowd congestion-levels 

 

Datasets 

Defining Class Level Densities 

Very-Low 

(VL) 

Low (L) Medium 

(M) 

High (H) Very-High 

(VH) 

UCSD_Ped1 [181] 0-8 9-16 17-24 25-32 >32 

UCSD_Ped2 [181] 0-8 9-16 17-24 25-32 >32 

Pets_2009 [180] 0-8 9-16 17-24 24-32 >32 

UMN_Plaza1 [182] 0 1-3 4-6 7-10 >10 

UMN_Plaza2 [182] 0 1-3 4-6 7-10 >10 

Dataset VL L M H VH 

 

PETS-

2009-

S1-V1 

     
 

UCSD-

Ped1 

     
 

UCSD-

Ped2 

     
 

UMN-

Plaza1 

     
 

UMN-

Plaza2 
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Table 4.3: Details of "Dataset-1" 

Dataset 

Name 

Training Samples Testing Samples 

VL L M H VH Total VL L M H VH Total 

UCSD-Ped1 

[181] 

1713 3808 1462 1006 409 8398 1143 2539 975 671 274 5602 

UCSD-

Ped2[181] 

221 1326 669 322 195 2733 148 885 447 216 131 1827 

UMN Plaza1 

[182] 

116 275 132 65 234 822 78 184 89 44 157 552 

UMN 

Plaza2[182] 

91 373 231 234 71 1000 62 249 154 156 48 669 

Pets_2009 

[180] 

52 116 165 102 301 736 35 78 110 68 202 493 

 

Table 4.4: Details of "Dataset-2" 

Samples UCSD-

Ped1 

UCSD-

Ped2 

UMN-

Plaza1 

UMN 

Plaza2 

Pets-

2009 

T
ra

in
in

g
 

S
a

m
p

le
s 

VL 1370 176 92 72 41 

L 3046 1060 220 298 92 

M 1169 535 105 184 132 

H 804 257 52 187 81 

VH 327 156 187 56 240 

V
a

li
d

a
ti

o
n

 

S
a

m
p

le
s 

VL 343 45 13 19 11 

L 762 266 55 75 24 

M 293 134 27 47 33 

H 202 65 24 47 21 

VH 82 39 47 15 61 

T
es

ti
n

g
 

S
a

m
p

le
s 

VL 1143 148 78 62 35 

L 2539 885 184 249 78 

M 975 447 89 154 110 

H 671 216 44 156 68 

VH 274 131 157 48 202 

 Experimental Setup 

The codes for the proposed model were written from scratch in python using Keras 

libraries and TensorFlow. The parameters of the model, such as learning rate and weights, 

are initialized to 0.01 and default values, respectively. The hyperparameters such as batch 

normalization with momentum, number of iterations, L2 regularization are initialized to 

0.95, 500, and 0.01, respectively. For Adam optimiser [170], the decay rates of first 

moment i.e.,  𝛽1 and second moment i.e., 𝛽2 were set to 0.9 and 0.999 respectively. The 

batch sizes of 64,128, 256, 64 used for Pets-2009, UCSD-Ped1, UCSD-Ped2, UMN, 
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respectively. The codes were executed on the laptop containing Intel CORE i7 processor 

with 8 GB of RAM and 4 GB of NVIDIA GPU. 

  Result Analysis and Discussion  

The performance analysis is performed by implementing the proposed TIS-

MCMS-CNN as well as three state-of-the-art techniques proposed by Fu et al. [115], 

Alzalani et al. [114] and Kim et al. [123] on the prepared datasets like Dataset-1 and 

Dataset-2. The Figure 4.4 to Figure 4.13 shows the confusion matrix heatmaps of the 

proposed model for the Dataset-1 and Dataset-2. 

 

Figure 4.4: Confusion Matrix-Heatmap of TIS-

MCMS-CNN for Pets-2009 of Dataset-1. 

 

Figure 4.5: Confusion Matrix-Heatmap of 

TIS-MCMS-CNN for Pets-2009 of Dataset-2. 

 

Figure 4.6: Confusion Matrix-Heatmap of TIS-

MCMS-CNN for UCSD-Ped1 of Dataset-1. 

 

Figure 4.7: Confusion Matrix-Heatmap of 

TIS-MCMS-CNN for UCSD-Ped1 of Dataset-

2. 
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Figure 4.8: Confusion Matrix-Heatmap of TIS-

MCMS-CNN for UCSD-Ped2 of Dataset-1. 

 

Figure 4.9: Confusion Matrix-Heatmap of TIS-

MCMS-CNN of UCSD-Ped2 of Dataset-2. 

 

Figure 4.10: Confusion Matrix-Heatmap of TIS-

MCMS-CNN for UMN-Plaza1 of Dataset-1. 

 

Figure 4.11: Confusion Matrix-Heatmap of 

TIS-MCMS-CNN for UMN-Plaza2 of Dataset-

2. 

 

Figure 4.12: Confusion Matrix-Heatmap of TIS-

MCMS-CNN for UMN-Plaza2 of Dataset-1. 

 

Figure 4.13: Confusion Matrix-Heatmap of 

TIS-MCMS-CNN for UMN-Plaza2 of Dataset-

2. 
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4.5.1 Pets-2009 

Table 4.5 shows the results of different approaches using Dataset-1 and Dataset-2 

of Pets-2009. From the Table 4.5, it can be noticed that the proposed architecture provides 

better results as compared with the state-of-the-art techniques. The values mentioned in 

bold letters are the best in Table 4.5. Irrespective of challenges such as lighting changes, 

dynamic crowd shape, and occlusion exists in the dataset, the accuracy of the proposed 

model for the Dataset-1 is 96.97%, with only 15 misclassified samples. The accuracy for 

the Dataset-2 is 95.94%, with only 20 misclassified samples. It proves that the proposed 

architecture can extract efficient features irrespective of challenging situations and 

outperforms the MS-CNN [115], CLBP [114], and MLP [123] in terms of Accuracy, 

Error Rate, Recall (R), Specificity (S), Precision (P), False Positive Rate (FPR) and 

Fi_Score. 

Table 4.5: Performance Analysis of several approaches using Dataset Pets-2009 

Dataset Approaches Performance Metrics 

Accuracy Error R S P FPR F1_score 

Dataset-

1 

MS-CNN [115] 0.9412 0.0588 0.9338 0.9856 0.9298 0.0144 0.9309 

CLBP[114] 0.9290 0.0710 0.9104 0.9821 0.9227 0.0179 0.9150 

MLP[123] 0.5071 0.4929 0.4082 0.8635 0.3200 0.1365 0.2920 

TIS- MCMS-

CNN 

0.9697 0.0303 0.9667 0.9926 0.9624 0.0074 0.9644 

Dataset-

2 

MS-CNN [115] 0.9329 0.0671 0.9104 0.9826 0.9285 0.0174 0.9183 

CLBP[114] 0.9290 0.071 0.9085 0.9819 0.9242 0.0181 0.9145 

MLP[123] 0.5010 0.4990 0.3290 0.8580 0.2665 0.1420 0.2896 

TIS- MCMS-

CNN 

0.9594 0.0406 0.9507 0.9895 0.9535 0.0105 0.9513 

4.5.2 UCSD-Ped1 

The proposed method achieves the highest accuracy of 97.21% and 96.63% for 

Dataset-1 and Dataset-2 of UCSD-Ped1, respectively, as compared with the state-of-the-

art techniques. Out of 5602 test cases, the misclassified samples are 156 and 189 for 
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Dataset-1 and Dataset-2, respectively. The proposed method shows better performance in 

terms of Error, Recall (R), Specificity (S), Precision (P), False positive rate (FPR), and 

F1-score. Table 4.6 shows details of the achieved performance measurements for 

different approaches. The values mentioned in bold letters are the best in the table. 

Table 4.6: Performance analysis of several approaches on UCSD-Ped1 

Dataset Approaches 

Performance Metrics 

Accuracy Error R S P FPR F1_score 

Dataset-

1 

MS-CNN [115] 0.9509 0.0491 0.9536 0.9849 0.9348 0.0151 0.9411 

CLBP[114] 0.9135 0.0865 0.8925 0.9737 0.9224 0.0263 0.9062 

MLP[123] 0.4732 0.5268 0.2654 0.8220 0.3129 0.1780 0.2480 

TIS- MCMS-

CNN 0.9721 0.0279 0.9719 0.9915 0.9727 0.0085 0.9721 

Dataset-

2 

MS-CNN [115] 0.9309 0.0691 0.9269 0.9783 0.9459 0.0217 0.9359 

CLBP[114] 0.9135 0.0865 0.8925 0.9737 0.9224 0.0263 0.9062 

MLP[123] 0.4716 0.5284 0.249 0.8192 0.2961 0.1808 0.1936 

TIS- MCMS-

CNN 0.9663 0.0337 0.9593 0.9887 0.978 0.0113 0.9682 

4.5.3 UCSD-Ped2  

Out of 1427 test cases of UCSD-Ped2, the proposed model results in misclassified 

samples of 26 and 21, with the accuracy of 98.19% and 98.52 % for Dataset-1 and 

Dataset-2, respectively. The performance analysis on UCSD-Ped2 is given in Table 4.7, 

and it can be noticed that the proposed architecture performs better than other techniques 

in terms of Error, Recall (R), Specificity (S), Precision (P), False positive rate (FPR), and 

F1-scores. Thus, it capably handles the challenging situations that exist in the dataset. 

Table 4.7: Performance analysis of several approaches on UCSD-Ped2 

Dataset Approaches 

Performance Metrics 

Accuracy Error R S P FPR F1_score 

Dataset-

1 

MS-CNN [115] 0.9217 0.0783 0.8943 0.9756 0.9231 0.0244 0.9075 

CLBP[114] 0.8955 0.1045 0.8467 0.9669 0.9040 0.0331 0.8703 

MLP[123] 0.5095 0.4905 0.2560 0.8143 0.2054 0.1857 0.3552 

TIS- MCMS-

CNN 0.9819 0.0181 0.9813 0.9953 0.9716 0.0047 0.9762 

Dataset-

2 

MS-CNN [115] 0.8747 0.1253 0.8349 0.9633 0.8789 0.0367 0.8511 

CLBP[114] 0.9020 0.0980 0.8608 0.9684 0.9138 0.0316 0.8830 

MLP[123] 0.5014 0.4986 0.2149 0.812 0.2043 0.1880 0.1610 

TIS- MCMS-

CNN 0.9852 0.0148 0.9766 0.9954 0.9839 0.0046 0.9801 
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4.5.4 UMN Plaza1 and Plaza2 

The proposed method achieves an accuracy of 98.55% and 97.64% with 

misclassified samples of 8 and 13 for Dataset-1 and Dataset-2 of UMN-Plaza1, 

respectively. Similarly, for UMN-Plaza2, the proposed method again performs well in 

terms of accuracy and other measures, as shown in Table 4.8 and Table 4.9. The values 

mentioned in bold letters are the best in the table. Although CLBP [110] performs better 

in Dataset-2, it takes much time to process a frame. The time analysis for all the 

approaches is discussed in Section 4.5.6.  

Table 4.8: Performance analysis of several approaches on UMN-Plaza1 

Dataset Approaches 

Performance Metrics 

Accuracy Error R S P FPR F1_score 

Dataset-

1 

MS-CNN [115] 0.9511 0.0489 0.9521 0.9880 0.9360 0.0120 0.9435 

CLBP[114] 0.9837 0.0163 0.9856 0.9960 0.9813 0.0040 0.9832 

MLP[123] 0.7717 0.2283 0.7068 0.9423 0.7564 0.0577 0.6607 

TIS- MCMS-

CNN 0.9855 0.0145 0.9827 0.9963 0.9846 0.0037 0.9834 

Dataset-

2 

MS-CNN [115] 0.9511 0.0489 0.9521 0.9880 0.9360 0.0120 0.9435 

CLBP[114] 0.9837 0.0163 0.9856 0.9960 0.9813 0.0040 0.9832 

MLP[123] 0.7100 0.2900 0.6131 0.9232 0.5722 0.0768 0.5880 

TIS- MCMS-

CNN 0.9764 0.0236 0.9651 0.9941 0.9736 0.0059 0.9680 

Table 4.9: Performance analysis of several approaches on UMN-Plaza2 

Dataset Approaches 

Performance Metrics 

Accuracy Error R S P FPR F1_score 

Dataset-

1 

MS-CNN [115] 0.8879 0.1121 0.8884 0.9666 0.9226 0.0334 0.8975 

CLBP[114] 0.7653 0.2347 0.8715 0.9391 0.8876 0.0609 0.8370 

MLP[123] 0.7280 0.2720 0.5770 0.9225 0.6016 0.0774 0.5600 

TIS- MCMS-

CNN 0.9701 0.0299 0.9738 0.9925 0.9614 0.0075 0.9669 

Dataset-

2 

MS-CNN [115] 0.9178 0.0822 0.9245 0.9749 0.9458 0.0251 0.9314 

CLBP[114] 0.7638 0.2362 0.8702 0.9387 0.8873 0.0613 0.8361 

MLP[123] 0.7250 0.2750 0.5846 0.9218 0.5910 0.0782 0.5681 

TIS- MCMS-

CNN 0.9701 0.0299 0.9738 0.9925 0.9614 0.0075 0.9669 

4.5.5 Ablation Study 

The ablation study is done to show the impact of each stream that is spatial and 

motion stream individually. The results are shown in Table 4.10. The values mentioned 

in bold letters are the best in the table. The accuracies of two streams are very low as 
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compared with the proposed architecture. It can be concluded from Table 4.10 that neither 

spatial stream nor the motion stream solely capable of capturing discriminant features. 

Generally, cluttered background, dynamic crowd shape, and occlusion affect the spatial 

stream, and static objects like humans affect the motion stream. Moreover, when we 

combine these two features, the performance increases. 

Table 4.10: Performance analysis of Ablation Study on Different Datasets 

Datasets 

 

 

Approache

s 

Performance Metrics 

 

Acc Error R S P FPR 

F1_sco

re 

P
et

s-
2

0
0

9
 

 

D
a

ta
se

t-
1
 

Spatial-

Stream 0.9574 0.0426 0.9412 0.9893 0.9537 0.0107 0.9454 

Motion-

Stream 0.9087 0.0913 0.8960 0.9758 0.9026 0.0242 0.8974 

Proposed 

Model 0.9697 0.0303 0.9667 0.9926 0.9624 0.0074 0.9644 

D
a

ta
se

t-
1
 

Spatial-

Stream 0.9493 0.0507 0.9347 0.9876 0.9307 0.0124 0.9308 

Motion-

Stream 0.8966 0.1034 0.8851 0.9739 0.8835 0.0261 0.8824 

Proposed 

Model 0.9594 0.0406 0.9507 0.9895 0.9535 0.0105 0.9513 

U
C

S
D

- 
P

ed
1

 

 

D
a

ta
se

t-
1
 

Spatial-

Stream 0.9529 0.0471 0.9107 0.9858 0.9578 0.0142 0.9297 

Motion-

Stream 0.8954 0.1046 0.8792 0.9681 0.9043 0.0319 0.8904 

Proposed 

Model 0.9721 0.0279 0.9719 0.9915 0.9727 0.0085 0.9721 

D
a

ta
se

t-
1
 

Spatial-

Stream 0.9531 0.0469 0.9506 0.9855 0.9598 0.0145 0.9549 

Motion-

Stream 0.8563 0.1437 0.8172 0.9568 0.8644 0.0432 0.8366 

Proposed 

Model 0.9663 0.0337 0.9593 0.9887 0.978 0.0113 0.9682 

U
C

S
D

- 
P

ed
2

 

 

D
a

ta
se

t-
1
 

Spatial-

Stream 0.9535 0.0465 0.9333 0.9882 0.9361 0.0118 0.9297 

Motion-

Stream 0.9064 0.0936 0.8577 0.9731 0.8867 0.0269 0.8677 

Proposed 

Model 0.9819 0.0181 0.9813 0.9953 0.9716 0.0047 0.9762 

D
a

ta
se

t-
1
 

Spatial-

Stream 0.9819 0.0181 0.9778 0.9950 0.9753 0.0050 0.9764 

Motion-

Stream 0.8862 0.1138 0.8445 0.9668 0.8507 0.0332 0.8462 

Proposed 

Model 0.9852 0.0148 0.9766 0.9954 0.9839 0.0046 0.9801 

U
M

N
- 

P
la

za
1
 

 
D

a
ta

se
t

-1
 

Spatial-

Stream 0.9438 0.0562 0.8734 0.9859 0.9455 0.0141 0.8829 

Motion-

Stream 0.9674 0.0326 0.9613 0.9921 0.9559 0.0079 0.958 
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Proposed 

Model 0.9855 0.0145 0.9827 0.9963 0.9846 0.0037 0.9834 

D
a

ta
se

t-
1
 

Spatial-

Stream 0.8877 0.1123 0.8227 0.9744 0.8658 0.0256 0.8004 

Motion-

Stream 0.9638 0.0362 0.9546 0.9912 0.9512 0.0088 0.9522 

Proposed 

Model 0.9764 0.0236 0.9651 0.9941 0.9736 0.0059 0.968 

U
M

N
- 

P
la

za
2

 

 

D
a

ta
se

t-
1
 

Spatial-

Stream 0.9118 0.0882 0.9423 0.9775 0.9093 0.0225 0.9208 

Motion-

Stream 0.8759 0.1241 0.7729 0.9612 0.8441 0.0388 0.7599 

Proposed 

Model 0.9701 0.0299 0.9738 0.9925 0.9614 0.0075 0.9669 

D
a

ta
se

t-
1
 

Spatial-

Stream 0.8819 0.1181 0.9194 0.9719 0.8742 0.0281 0.8834 

Motion-

Stream 0.8670 0.1330 0.7884 0.9605 0.8396 0.0395 0.8013 

Proposed 

Model 0.9701 0.0299 0.9738 0.9925 0.9614 0.0075 0.9669 

4.5.6 Time Analysis 

The average time required to process the test frames were also calculated. It was 

found that the proposed approach achieved around 29.45 (≈30) frames per second. 

Although MS-MCNN performs better still, the proposed model can provide results in 

real-time. Table 4.11 shows average frames per second achieved for test cases by different 

approaches. 

Table 4.11: Test frames processing time of several approaches 

Frame-rate Vs 

Approaches 

Approaches 

MS-

CNN[115] 
MLP[40] CLBP[123] 

SIS-MCMS-

CNN 

TIS-

MCMS-

CNN 

Average 

Execution Time 

(frames/seconds) 65 25 0.143 43.49 29.45 

 Conclusion  

In this work, a TIS-MCMS-CNN was proposed to perform crowd congestion-

level analysis at the global or frame level. This model extracted features invariant to 

perspective change and scene changes. The CCA dataset was created using publicly 

available crowd datasets: Pets-2009, UCSD Ped1, UCSD Ped2, UMN Plaza-1, and UMN 

Plaza2 by annotating different crowd congestion levels. The created dataset was divided 
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into two sets named "Dataset-1" and "Dataset-2" based on training, validation, and testing 

samples. The proposed model achieved accuracies of 96.97%, 97.21%, 98.19%, 97.01% 

and 98.55% on Dataset-1. For Dataset-2 the proposed model achieved accuracies of 

95.94%, 96.63%, 98.52%, 97.01% and 97.64%. In addition, several state-of-the-art 

approaches were also implemented and experimented on the created dataset. The 

proposed model outperforms the state-of-the-art techniques in terms of Accuracy (Acc), 

F1_score, Precision (P), Recall (R), and Specificity (S). The architecture processed an 

average of nearly 30 test frames per second in real-time.  

In this chapter, an efficient model for the CCA is proposed, and discussed its 

working. An extensive experimental analysis was conducted, which showed the proposed 

model's superiority over the state-of-the-art models. In the next chapter, another essential 

task of CA, i.e., CBA using deep learning approaches, will be discussed.   

 

 

 

 

 

 

 

 

 

 

 

 

 


