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CHAPTER 3                                                             
VIDEO-BASED CROWD COUNTING AND 

DENSITY ESTIMATION USING DEEP LEARNING 

TECHNIQUES  

 Introduction  

In this chapter, two video-based CCDE methods based on deep learning have been 

proposed. The first methodology, entitled "AMS-CNN: Attentive Multi-Stream CNN for 

Video-based Crowd Counting," is designed to exploit spatial, temporal, and spatial 

foreground features from the video sequences. All these multi-features are fused to 

enhance the quality of feature modeling for crowd counting. The proposed model 

minimizes the effect of cluttered background by extracting spatial foreground features. In 

addition, the attention mechanism is designed to pay attention to each feature type's 

response to crowd counting and improves the model's performance.  

The second method, "A Novel Cascaded Deep Architecture with Weak-

Supervision for Video Crowd Counting," is proposed. The proposed crowd counting 

model consists of cascading two deep models trained one after another. This model can 

handle crowd shape change due to perspective distortion, minimize the effect of the 

cluttered background, and consider both the local and global crowd distribution for crowd 

counting. The model also utilizes a Weak-Supervision learning mechanism to minimize 

the error caused due to the point-level annotation during ground-truth density map 

generation. The proposed models are evaluated on three publicly available benchmark 

video-based crowd counting datasets: the Mall [57], the Venice [4], and the UCSD [59]. 

In addition, an extensive ablation study is performed to show the effectiveness of the 

proposed models. 
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The detailed explanations of the two proposed methods are illustrated in the 

subsequent subsections. 

 AMS-CNN: Attentive Multi-Stream CNN for Video-based Crowd 

Counting 

The spatial and temporal features are essential for video-based CCDE [20, 94, 95] 

but will not improve the model's accuracy because the crowd counting system is mainly 

affected by the cluttered background. So, in addition to spatial-temporal features, features 

corresponding to the foregrounds of the crowd scenes must be considered. Instead of 

adopting a simple multi-cue feature fusion strategy without understanding each feature 

type's response for the CCDE, an attention-based density map fusion strategy should be 

adopted for the CCDE to improve the performance of the crowd counting system. These 

are the main motivations behind the design of AMS-CNN.  

3.2.1 Proposed Method and Model 

The proposed AMS-CNN constitutes four modules:  

 Multi-Stream deep CNN (MS-CNN). 

 Stream-wise Attentive Density Map Module (SADMM).   

 Relative Average Attentive Density (RAAD) map layer. 

 Final Density Map Generation Module (FDMGM).  

The architecture of the proposed model is illustrated in Figure 3.1. The detailed 

structure of SADMM is given in Figure 3.2. The main motive for designing the MS-CNN 

is to extract the deep spatial, temporal, and spatial-foreground features from three cues of 

the video dataset: frames, the volume of frames, and the foregrounds of the frames. The 

MS-CNN has three streams: Spatial Stream, Temporal Stream, and Spatial Foreground 

Map (FM) stream (see Figure 3.1). The frame, the frame's volume, and the frame's 
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foreground image at timestamp t are inputted individually to Spatial-Stream, Temporal-

Stream, and Spatial Foreground Stream.  

 

Figure 3.1: Architecture of the proposed AMS-CNN model 
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Figure 3.2: Blocks of proposed AMS-CNN 

The Spatial-Stream, Temporal-Stream, and Spatial-Foreground-Stream are 

designed using 3D-CNN. The features of the three streams are concatenated and followed 

by three stages of 2D convolution (Conv2D) blocks to generate crowd density maps. 

Further, to improve the accuracy of the proposed model, a stream-wise attentive density 

map module (SADMM) is proposed. The SADMM learns three stream-wise attentive 

density maps using three stream-wise attention blocks: the spatial attentive density map 

(SADM) block, temporal attentive density map (TADM) block, and foreground attentive 

density map (FADM) block. Each of the three attention blocks contains three stages of 

2D-CNN blocks and is intended to generate crowd density maps.  

The three stream-wise attentive density maps are fused by obtaining their relative 

average using a learnable relative averaged attentive density-map (RAAD) layer. Finally, 

the relative averaged attentive density map is stacked with the density map from the MS-

CNN and inputted into the final density map generation module FDMGM). The FDMGM 
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contains two stages of 2D-CNN blocks, where its second block provides final density 

maps. The proposed architecture is trained in an end-to-end manner. 

The section is further divided into the following subsections to illustrate the 

working of the AMS-CNN. 

 Detail Architecture of AMS-CNN. 

 Pre-processing. 

 Loss Function for MS-CNN. 

 Loss Functions for SADM, FADM, and TADM  

 Final Loss Function. 

 Training or Learning Process. 

 Handling Overfitting. 

3.2.1.1  Detail Architecture of AMS-CNN 

Each of the three streams of the MS-CNN contains five Conv3D blocks. Each of 

the Conv3D blocks has three layers: a Conv3D layer, an activation (ReLU) layer, and a 

batch normalization (BN) layer. Each stream has two 3D average pooling layers (3DAP-

A and 3DAP-B). The 3DAP-A and 3DAP-B downscale their input features to 
1

4
  and 

1

8
 of 

their shapes, respectively. All the layer’s detail is mentioned in Table 3.1. The 3DAP-A 

and 3DAP-B are followed after Conv3D_Block1 and Conv3D_Block3, respectively. 

The padding property of all the layers has been set as “same.” The features of the 

three streams are concatenated and inputted into a three-stage CNN module which 

contains cascading of Conv2D_BlockA, Conv2D_BlockB, and Conv2D_BlockD. The 

Conv2D_BlockC is used for crowd density estimation for the MS-CNN. Each 
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Conv2D_BlockA and Conv2D_BlockB has two layers: Conv2D followed by Rectified 

Linear Unit (ReLU) activation layer. The Conv2D_BlockD has one kernel with a size 

(1×1) and is used to generate a crowd density map. 

Table 3.1: Layer Details of AMS-CNN 

Block 

Names 

Layers 

Within 

the Block 

Number 

of 

Kernels 

Size of 

Kernel 

Block 

Names 

Layers 

Within the 

Block 

Number 

of 

Kernels 

Size of 

Kernel 

Conv3D

_Block1 

Conv3D 40 (5, 5, 5) Conv3D_B

lock9 

Conv3D 70 (3, 3, 3) 

ReLU  NA  ReLU  NA 

BN BN 

Conv3D

_Block2 

Conv3D 50 (4, 4, 4) Conv3D_B

lock10 

Conv3D 80 (3, 3, 3) 

ReLU  NA  ReLU NA 

BN BN 

Conv3D

_Block3 

Conv3D 60 (4, 4, 4) Conv2D_B

lockA 

Conv2D 20 (3, 3) 

ReLU  NA  ReLU NA 

BN 

Conv3D

_Block4 

Conv3D 70 (3, 3, 3) Conv2D_B

lockB 

Conv2D 40 (3, 3) 

ReLU  NA  ReLU NA 

BN 

Conv3D

_Block5 

Conv3D 80 (3, 3, 3) Conv2D_B

lockC 

Conv2D 1 (1, 1) 

ReLU  NA  Sigmoid NA 

BN 

Conv3D

_Block6 

Conv3D 40 (3, 3, 3) Conv2D_B

lockD 

Conv2D 1 (1, 1) 

ReLU  NA Sigmoid NA 

BN 

Conv3D

_Block7 

Conv3D 50 (3, 3, 3) 3DAP_A 3D Average 

Pooling 

NA (2, 2, 2) 

ReLU  NA 

BN 

Conv3D

_Block8 

Conv3D 60 (3, 3, 3) 3DAP_B 3D Average 

Pooling 

NA (4, 4, 4) 

ReLU  NA 

BN 

To improve the accuracy of the proposed model, we introduced a SADMM 

module that contains three blocks: SADM, FADM, and TADM. Each of these blocks 

contains a cascading of three Conv2D blocks: Conv2D_BlockA, Conv2D_B, and 

Conv2D_BlockC. The Conv2D_BlockC has two layers: a Conv2D followed by a 

Sigmoid activation. We have chosen the Sigmoid activation instead of ReLU for 

generating sigmoidal stream-wise attentive density-maps. Then the RAAD layer takes all 

the three-stream-wise attentive density maps and generates relative average attentive 
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density maps. Finally, the relative averaged attentive density map is stacked with the 

density map obtained by the MS-CNN followed and fed into the FDMGM module. The 

FDMGM module has two Conv2D blocks: Conv2D_BlockB and Conv2D_BlockD. The 

Conv2D_BlockD has only one Conv2D layer with only one kernel of size (1×1) and 

generates the final crowd density map. We have mentioned the details of the layers in 

Table 3.1. 

3.2.1.2  Pre-processing 

The datasets have been pre-processed before training the AMS-CNN. We need 

three different video cues to input on three streams, 

 The RGB color frame for the Spatial-Stream 

 The volume of frames for the Temporal-Stream and 

 The foreground image of the frame at the timestamp, t for the Spatial (FM)-

Stream. 

Let the video dataset contains a T number of RGB frames. We resized the RGB 

frame into size [200×200×3]. Let the resized frames are represented by a set RF =

{rf1, rf2, … , rfT}. Next, we obtained the frames' foreground image by applying the Mixture 

of Gaussian-2 (MOG2) [168] using OpenCV.  The process of obtaining the foreground 

image is illustrated in Algorithm 3.1. Here, an OpenCV function 

(cv2.createBackgroundSubtractorMOG2) is used to create the background model for the 

video dataset. Then for each frame, we used another method of OpenCV, i.e., apply() to 

obtain the frame's foreground mask. Each frame's foreground image is obtained by 

performing elementwise multiplication of the binary foreground mask with every channel 

of the resized frame. 
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Algorithm-3.1 Obtaining foreground images from the frames 

Input: Resized frameset, 𝑅𝐹 = {𝑟𝑓1, 𝑟𝑓2, … , 𝑟𝑓𝑇}, where T is the total 

number of frames 

Output: A set of foreground images from 𝑅𝐹, 𝐹𝐺 = {𝑓𝑔1, 𝑓𝑔2, … , 𝑓𝑔𝑇}. 

Parameters: history, variance threshold (𝑣𝑎𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), detect 

shadows (𝑑𝑒𝑡𝑒𝑐𝑡𝑆ℎ𝑎𝑑𝑜𝑤𝑠) 

MOG2=cv2.createBackgroundSubtractorMOG2(ℎ𝑖𝑠𝑡𝑜𝑟𝑦 = 5, 

𝑣𝑎𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 128,𝑑𝑒𝑡𝑒𝑐𝑡𝑆ℎ𝑎𝑑𝑜𝑤𝑠 = 𝑇𝑟𝑢𝑒) [168] 

for 𝑖 = 1 𝑡𝑜 𝑇 do 

     1.  mask = MOG2.apply(𝑟𝑓𝑖) // To obtain foreground mask 

     2.  r =  𝑟𝑓𝑖[: , : ,1] //Obtaining the Red channel of the resized frame 

     3.  g = 𝑟𝑓𝑖[: , : ,2] //Obtaining the Green channel of the resized frame 

     4.  b = 𝑟𝑓𝑖[: , : ,3] //Obtaining the Blue channel of the resized frame 

     5.  Create a variable 𝑓𝑔𝑖 whose size is same as 𝑟𝑓𝑖 

     6.  𝑓𝑔𝑖[: , : ,1] = r .∗ mask //Here .∗ means elementwise multiplication 

     7.  𝑓𝑔𝑖[: , : ,2] = g .∗ mask 

     8.  𝑓𝑔𝑖[: , : ,3] = b .∗ mask 

end for 

 

Let the foreground images of RF are represented by a set FG = {fg1, fg2, … , fgT}. 

For temporal feature extraction, the volume of frames (grayscale) is obtained at the 

timestamp, t, which is composed of frames at a time, t, t − 1, …. The size of the volume 

of three, four, and five frames are considered for the experiment. Let the volume of frames 

is represented by the set VF = {vf1, vf2, … , vfT}.  Now the three cues of the video dataset 

(𝑅𝐹, 𝑉𝐹, and 𝐹𝐺) are inputted into the Spatial stream, the Temporal stream, and the 

Spatial-Foreground stream, respectively. 

3.2.1.3  Loss Function for MS-CNN 

Let 𝜃𝑀𝑆−𝐶𝑁𝑁 represent all the learnable parameters corresponding to the MS-CNN. 

For the given three sets of image cues: 𝑅𝐹, 𝑉𝐹, and 𝐹𝐺, let the predicted density map of 
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the MS-CNN is represented as, 𝐹𝑖
𝑀𝑆−𝐶𝑁𝑁(𝑟𝑓𝑖, 𝑣𝑓𝑖 , 𝑓𝑔𝑖; 𝜃𝑀𝑆−𝐶𝑁𝑁)|𝑖=1,2,…,𝑇, where 𝑇 is the 

total number of frames in the video dataset. Now we need to find the loss between the 

predicted density map (𝐹𝑀𝑆−𝐶𝑁𝑁) and ground-truth density map (𝐺𝑇) for the proposed 

MS-CNN. The MSE is used to capture the loss between the predicted and the ground-

truth density maps. Let the loss function is represented by using Equation 3.1.  

          𝐿𝑜𝑠𝑠1 = 𝐿𝑜𝑠𝑠(𝜃𝑀𝑆−𝐶𝑁𝑁) =
1

𝑇
∑ (𝐹𝑖

𝑀𝑆−𝐶𝑁𝑁 − 𝑔𝑡𝑖)
2𝑇

𝑖=1                                (3.1) 

3.2.1.4  Loss Functions for SADM, FADM and TADM 

The three-stream-wise attention density map modules of SADMM are intended to 

provide three density maps. Let 𝜃𝑆𝐴𝐷𝑀, 𝜃𝐹𝐴𝐷𝑀, and 𝜃𝑇𝐴𝐷𝑀 represent all the learnable 

parameters of the SADM, FADM, and TADM. Let the feature maps obtained from 

3DAP_B layer of Spatial-Stream, Spatial-Foreground Stream, and Temporal-Stream are 

represented as 𝑓𝑚𝑖,3𝐷𝐴𝑃_𝐵
𝑆𝐴𝐷𝑀 , 𝑓𝑚𝑖,3𝐷𝐴𝑃_𝐵

𝐹𝐴𝐷𝑀  and 𝑓𝑚𝑖,3𝐷𝐴𝑃_𝐵
𝑇𝐴𝐷𝑀  respectively, where 𝑖 = 1,2, … , 𝑇. 

Now, for the given feature maps: 𝑓𝑚𝑖,3𝐷𝐴𝑃_𝐵
𝑆𝐴𝐷𝑀 , 𝑓𝑚𝑖,3𝐷𝐴𝑃_𝐵

𝐹𝐴𝐷𝑀  and 𝑓𝑚𝑖,3𝐷𝐴𝑃_𝐵
𝑇𝐴𝐷𝑀 , let the 

predicted density maps of the SADM, FADM, and TADM are represented as 

𝐹𝑖
𝑆𝐴𝐷𝑀(𝑓𝑚𝑖,3𝐷𝐴𝑃_𝐵

𝑆𝐴𝐷𝑀 ; 𝜃𝑆𝐴𝐷𝑀), 𝐹𝑖
𝐹𝐴𝐷𝑀(𝑓𝑚𝑖,3𝐷𝐴𝑃_𝐵

𝐹𝐴𝐷𝑀 ; 𝜃𝐹𝐴𝐷𝑀) and 

𝐹𝑖
𝑇𝐴𝐷𝑀(𝑓𝑚𝑖,3𝐷𝐴𝑃_𝐵

𝑇𝐴𝐷𝑀 ; 𝜃𝑇𝐴𝐷𝑀) respectively, where 𝑖 = 1,2, … , 𝑇. The MSE is now used to 

capture the loss between the predicted density map and the ground-truth density map for 

the SADM, FADM, and TADM, represented in Equation 3.2, 3.3,  and 3.4 respectively. 

                  𝐿𝑜𝑠𝑠2 = 𝐿𝑜𝑠𝑠(𝜃𝑆𝐴𝐷𝑀) =
1

𝑇
∑ (𝐹𝑖

𝑆𝐴𝐷𝑀 − 𝑔𝑡𝑖)
2𝑇

𝑖=1                                (3.2) 

                  𝐿𝑜𝑠𝑠3 = 𝐿𝑜𝑠𝑠(𝜃𝐹𝐴𝐷𝑀) =
1

𝑇
∑ (𝐹𝑖

𝐹𝐴𝐷𝑀 − 𝑔𝑡𝑖)
2𝑇

𝑖=1                               (3.3) 

                  𝐿𝑜𝑠𝑠4 = 𝐿𝑜𝑠𝑠(𝜃𝑇𝐴𝐷𝑀) =
1

𝑇
∑ (𝐹𝑖

𝑇𝐴𝐷𝑀 − 𝑔𝑡𝑖)
2𝑇

𝑖=1                                   (3.4) 

The RAAD is a learnable module that finds the relative density maps from the 

three density maps obtained in the SADMM. The size of these three density maps is the 
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same; let it be [𝑚 × 𝑛]. The relative average attentive density maps (𝐹𝑖
𝑅𝐴𝐴𝐷) can be 

obtained using Equations 3.5 to 3.8. 

                                           𝑤1 = 𝑆𝑢𝑚(𝐹𝑖
𝑆𝐴𝐷𝑀)                                                         (3.5) 

                                           𝑤2 = 𝑆𝑢𝑚(𝐹𝑖
𝐹𝐴𝐷𝑀)                                                         (3.6) 

                                           𝑤3 = 𝑆𝑢𝑚(𝐹𝑖
𝑇𝐴𝐷𝑀)                                     (3.7)   

𝐹𝑖
𝑅𝐴𝐴𝐷 = [

𝑤1

𝑤1+𝑤1+𝑤1
] × 𝐹𝑖

𝑆𝐴𝐷𝑀 + [
𝑤2

𝑤1+𝑤1+𝑤1
] × 𝐹𝑖

𝐹𝐴𝐷𝑀 + [
𝑤3

𝑤1+𝑤1+𝑤1
] × 𝐹𝑖

𝑇𝐴𝐷𝑀         (3.8) 

Here the symbol 𝑆𝑢𝑚(. ) is used to find out the sum of all elements of the feature 

map.  

3.2.1.5  Final Loss Function and Optimization 

The FDMGM is proposed to obtain the final crowd density map. The two crowd 

density maps: 𝐹𝑖
𝑅𝐴𝐴𝐷 and 𝐹𝑖

𝑀𝑆−𝐶𝑁𝑁, are concatenated and inputted into the FDMGM. Let 

𝜃𝐹𝐷𝑀𝐺𝑀 represent all the learnable parameters of the FDMGM. Let the final crowd 

density map obtained from FDMGM be represented as 

𝐹𝑖
𝐹𝑖𝑛𝑎𝑙(𝐶𝑜𝑛𝑐𝑎𝑡𝑒(𝐹𝑖

𝑅𝐴𝐴𝐷 , 𝐹𝑖
𝑀𝑆−𝐶𝑁𝑁); 𝜃𝐹𝐷𝑀𝐺𝑀). Here the terminology 𝐶𝑜𝑛𝑐𝑎𝑡𝑒(. ) 

represents the simple concatenation operation. Next, the MSE loss between the predicted 

density map and the ground-truth density map for the FDMGM is obtained using 

Equation 3.9. 

              𝐿𝑜𝑠𝑠5 = 𝐿𝑜𝑠𝑠(𝜃𝐹𝐷𝑀𝐺𝑀) =
1

𝑇
∑ (𝐹𝑖

𝐹𝑖𝑛𝑎𝑙 − 𝑔𝑡𝑖)
2𝑇

𝑖=1                                    (3.9) 

Now, the final loss function is obtained by summing all the losses obtained from 

Equation 9 to 13 and let it is represented as, 

                               𝐿𝐹𝑖𝑛𝑎𝑙 = 𝐿𝑜𝑠𝑠1 + 𝐿𝑜𝑠𝑠2 + 𝐿𝑜𝑠𝑠3 + 𝐿𝑜𝑠𝑠4 + 𝐿𝑜𝑠𝑠5                        (3.10) 

Now, the problem can be deduced to an optimization problem where we have to 

minimize Equation 3.11, which can be represented as. 

                                                    𝑎𝑟𝑔𝑚𝑖𝑛
𝜃𝑁𝐸𝑇

 [𝐿𝐹𝑖𝑛𝑎𝑙 ]                                                      (3.11) 
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Here 𝜃𝑁𝐸𝑇 = [𝜃𝑀𝑆−𝐶𝑁𝑁, 𝜃𝑆𝐴𝐷𝑀 , 𝜃𝑇𝐴𝐷𝑀, 𝜃𝐹𝐴𝐷𝑀, 𝜃𝐹𝐷𝑀𝐺𝑀] contains all the trainable 

parameters. 

Now Equation 3.11 is minimized using the backpropagation algorithm [169] and 

Adaptive Momentum (Adam) [170] optimizer. The training is done in a mini-batch 

manner. We used early-stopping to halt the network and also to avoid overfitting. In early 

stopping, we have to set a patience parameter. If the monitoring metric, i.e., training loss 

in our case, is not improved (minimized) even after the patience value, the training will 

be halted; otherwise, it will be continued. The patience parameter is set to 30. 

Overfitting becomes a major concern in geting a robust deep model. In the 

proposed work, we have used the 𝐿2 norm and early-stopping to overcome the overfitting. 

The 𝐿2 norm will penalize the weight to regularize the kernel parameters. All the 

convolution layers of the AMS-CNN have the kernel-regularize as 𝐿2 norm, whose 

regularize parameter is set to 0.01. Early-stopping is used to halt the training and avoid 

overfitting. 

3.2.2 Experimental Setup 

The proposed AMS-CNN has been coded in the PyCharm editor using Keras and 

TensorFlow. The codes were executed using different computing nodes of the Super 

Computer, i.e., the Param-Shivay, which is available in the institute. The batch size for 

the Mall [57], the Venice, and the UCSD was set to 64, 8, and 64, respectively. The 

learning rate 𝜂, momentum of batch normalization, regularized parameter of 𝐿2, and 

decay rates for first (𝛽1) and second moment (𝛽2) of Adam optimizer [170] are initialized 

to 0.001, 0.95, 0.01, 0.9, and 0.999, respectively. The maximum iteration was 2000. Early 

stopping with patience of 30 is used to stop the model's training and avoid overtraining 

the model. 
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3.2.3 Results Analysis and Discussion 

3.2.3.1  The Mall Dataset 

The proposed model has been experimented with different sizes of frames’ volume 

(used in the Temporal-Stream). Different sizes of frames’ volume (𝐹𝑉) like 3, 4, and 5 

are considered. The comparative analysis of results on the Mall dataset [57] is illustrated 

in the following Table 3.2, where the values in bold letters are the highest in the table. 

The results of the AMS-CNN are compared with the other 14 state-of-the-art approaches. 

It can be observed from Table 3.2 that the AMS-CNN with 𝐹𝑉 = 5 achieves better results 

as compared with AMS-CNN with 𝐹𝑉 = 3 and AMS-CNN with 𝐹𝑉 = 4. The proposed 

AMS-CNN with 𝐹𝑉 = 5 achieves MAE and RMSE of 2.47 and 3.08, respectively. Figure 

3.3 shows a bar graph representing the predicted crowd count on the Mall dataset [57] by 

the AMS-CNN (𝐹𝑉 = 5). 

Table 3.2: Comparative Analysis of Results on the Mall Dataset [57] 

Model Names MAE  RMSE 

LBP + Ridge Regression [57] 6.73  19.18 

Kernel Ridge Regression (KRR) [58] 6.61  18.85 

Gaussian Process Regression (GPR) [59] 7.15  21.34 

Count Forest [70] 5.75  10.88 

CNN-MRF [171] 4.66  9.01 

Faster R-CNN [172] 4.65  7.26 

MCNN [27] 4.74  8.64 

CCNN [28] 5.36  9.34 

ConvLSTM-nt [12] 2.53  11. 

ConvLSTM [12] 2.24  8.5 

Bidirectional ConvLSTM [12] 2.10  7.6 

DAL-SVR [173] 2.40 9.57 

DIGCrowd [174] 3.21 16.4 

ST-CNN [32] 4.03  5.87 

Proposed AMS-CNN (𝐹𝑉 = 3) 2.94 3.63 

Proposed AMS-CNN (𝐹𝑉 = 4) 2.60 3.25 

Proposed AMS-CNN (𝐹𝑉 = 5) 2.47 3.08 

It can be noticed from Table 3.2 that the conventional approaches such as LBP + 

Ridge [57], KRR [58], GPR [59], and Count Forest [70] perform poorly as compared with 

the deep learning approaches. Among the single image-based techniques like CNN-MRF 
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[171], Faster R-CNN [172], MCNN [27], CCNN [28], DAL-SVR [173], and DIGCrowd 

[174], the DAL-SVR [173] performs better with MAE=2.4 and RMSE=9.57. However, 

the difference between the MAE and RMSE is very high. This is because of the high 

difference between the ground-truth counts and the DAL-SVR's [173] predicted count. 

Among the video-based CCDE approaches such as ConvLSTM-nt [12], 

ConvLSTM [12], Bidirectional ConvLSTM [12], ST-CNN [32], and the proposed AMS-

CNN, the Bidirectional ConvLSTM [12] has the better MAE (=2.10) but very poor RMSE 

(=7.6). The high RMSE indicated that the Bidirectional ConvLSTM [12] could not predict 

consistent count and resulted in a high deviation from the ground truth. From Table 3.2, 

we can find that the proposed AMS-CNN (FV=5) achieves the highest RMSE of 3.08 

compared to all the approaches. It places third and fourth highest in MAE compared to 

video-based CCDE and all in the list, respectively. Nevertheless, the difference between 

the MAE value of AMS-CNN (FV=5) with Bidirectional ConvLSTM [12], ConvLSTM 

[12], and DAL-SVR [173] is very less. The AMS-CNN (FV=5) performs far better than 

the recent video-based CCDE model, i.e., ST-CNN [32]. A significant thing can be 

observed from Table 3.2 that the difference between ground-truth and predicted count of 

AMS-CNN (FV=5) is very less, and thus concluded that the proposed model results in 

consistent prediction and do not result in high deviation from ground-truth as far as the 

mentioned methods in Table 3.2. Hence, it can be conclude that the proposed model 

possesses better MAE and RMSE. So, the AMS-CNN (FV=5) model provides a 

comparatively better solution. 

3.2.3.2  The Venice Dataset 

Table 3.3 shows a comparative analysis of several approaches on the Venice 

dataset [4]. The values in bold letters in Table 3.3 are the highest in the table. The 
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proposed AMS-CNN with FV=5 gets better results compared to AMS-CNN with FV=3 

and AMS-CNN with FV=4.  

 

Figure 3.3: Predicted crowd counts on the Mall dataset [57]. 

 

Figure 3.4: Predicted crowd counts on the Venice dataset [4] 

 

Table 3.3: Comparative Analysis of Results on the Venice Dataset [4]. 

Model Name MAE RMSE 

MCNN [27] 145.4 147.3 

Switch-CNN [85] 52.80 59.50 

CSR-Net [94] 35.80 50.00 

ECAN [4] 20.50 29.90 

Proposed AMS-CNN (𝐹𝑉 = 3) 30.52 42.58 

Proposed AMS-CNN (𝐹𝑉 = 4) 28.79 37.66 

Proposed AMS-CNN (𝐹𝑉 = 5) 23.64 28.75 
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Among all models mentioned in Table 3.3, the ECAN [4] achieves the highest 

MAE of 20.5, and the AMS-CNN (FV=5) achieves the highest RMSE of 28.75. Figure 

3.4 shows the bar graph representation of predicted count against ground-truth count on 

the Venice dataset [4].  

The proposed model performs better than the state-of-the-art approaches like 

MCNN [27] and Switch-CNN [85], and CSR-Net [94]. Although ECAN [4] obtains the 

highest MAE, the difference between MAE and RMSE is more than the proposed model. 

This is because the ECAN [4] could not make a consistent prediction and generally results 

in a very high deviation of prediction count from the ground-truth count. So, by 

considering these facts, the proposed AMS-CNN (FV=5) performs better than the state-

of-the-art models [4][27][85][94] in the presence of very high-density crowd scenes. 

3.2.3.3  The UCSD Dataset 

The experimental results obtained by the proposed model are compared with 16 

state-of-the-art techniques and illustrated in Table 3.4. The values mentioned in bold 

letters in Table 3.4 are the best in the table. The proposed AMS-CNN with FV=5 performs 

better than AMS-CNN with FV=3 and FV=4. The AMS-CNN (FV=5) obtains MAE and 

RMSE of 1.46 and 1.82, respectively. Figure 3.5 shows a bar graph that presents the 

ground truth count versus predicted count for the UCSD dataset [168]. According to Table 

3.4, we can find that the deep learning-based approaches [12], [28], [85], [90], [111], 

[163], [173], [175]–[177] perform better than the traditional approaches [57], [59], [60], 

[68], [70].  

As far as deep learning-based CCDE techniques are concerned, we can find that 

the video-based CCDE techniques [12], [111] perform better than the single-image-based 

CCDE approaches [28], [85], [90], [173], [175]–[177]. 
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Figure 3.5: Predicted crowd counts on the UCSD dataset [59] 

Table 3.4:  Comparison of results of several models on the UCSD Dataset [59] 

Model Name  MAE  RMSE 

Gaussian process regression [59]   2.24  7.97 

Ridge regression [57] 2.25  7.82 

Cumulative attribute regression 

(CAR) [60] 

2.07  6.90 

Density map + MESA [68] 1.70 - 

Count forest [70] 1.60  4.40 

CCNN [28] 1.5125 - 

CrossCrowdNet [175] 1.60 3.31 

DAL-SVR [173] 1.29 2.10 

Switch-CNN [85] 1.62 2.1 

ConvLSTM-nt [12] 1.73 3.52 

ConvLSTM  [12] 1.30 1.79 

Bidirectional ConvLSTM [12]  1.13 1.43 

AFP [177] 1.16 2.29 

FCN-rLSTM [111]  1.54 3.02 

MDMF-CC [90] 1.35 1.88 

MS-GAN [176] 1.78 3.03 

Proposed AMS-CNN (𝐹𝑉 = 3) 2.46 3.32 

Proposed AMS-CNN (𝐹𝑉 = 4) 1.88 2.57 

Proposed AMS-CNN (𝐹𝑉 = 5) 1.46 1.82 

Among the video-based CCDE approaches, the bidirectional ConvLSTM [12] 

performs better with MAE=1.13 and RMSE=1.43. The proposed model places second as 

far as video-based CCDE models are concerned. One of the reasons for getting such a 

result may be due to the fact that the UCSD contains low-resolution crowd scenes with 
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Grayscale frames. So, we can conclude that the proposed model performs reasonably well 

compared to other state-of-the-art approaches. 

3.2.3.4  Ablation Study 

An ablation study has been performed on the proposed AMS-CNN to show the 

performance of different modules of the proposed model. We developed different models 

based on different possible combinations of modules of AMS-CNN. We have considered 

the following possible combinations during the ablation study. 

 The multi-stream deep CNN (MS-CNN) (without stream-wise attentive density 

map module). 

 The spatial attentive density map (SADM) guided Spatial-Stream (SADM-

Spatial-Stream).  

 The foreground attentive density map (FADM) guided Spatial-Foreground-

Stream (FADM-Foreground-Map-Stream). 

 The temporal attentive density map (TADM) guided Temporal-Stream (TADM-

Temporal-Stream). 

Table 3.5: Comparison of results of different models during ablation study 

The model used for 

Ablation study 

The Mall 

Dataset 

The Venice 

Dataset 

The UCSD 

Dataset 

MAE RMSE MAE RMSE MAE RMSE 

SADM-Spatial-Net 4.64 6.01 52.44 64.65 2.76 3.60 

FADM-Spatial Foreground 

Net 

4.73 6.07 48.16 70.77 2.77 4.65 

TADM-Temporal Net 

(𝐹𝑉 = 5) 

2.98 3.77 37.00 41.67 2.82 3.65 

MS-CNN (𝐹𝑉 = 5) 3.58 4.45 35.85 48.77 2.23 2.84 

AMS-CNN (𝐹𝑉 = 3) 2.94 3.63 30.522 42.58 2.46 3.32 

AMS-CNN (𝐹𝑉 = 4) 2.60 3.25 28.79 37.66 1.88 2.57 

AMS-CNN (𝐹𝑉 = 5) 2.47 3.08 23.64 28.75 1.46 1.82 
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Figure 3.6: Predicted Crowd Counts of different models on the Mall dataset [57] 

 

 

Figure 3.7: Predicted Crowd Counts of different models on the Venice dataset [4] 

 

Figure 3.8: Predicted Crowd Counts of different models on the UCSD dataset [59] 
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Table 3.5 shows a comparison of results of different models during the ablation 

study on the Mall [57], the Venice [4], and the UCSD [59]. The values mentioned in bold 

letters in Table 3.5 are the best in the table. Figures 3.6, 3.7 and 3.8 show the graphical 

representation of predicted crowd counts versus ground-truth counts by different ablation 

study models on the Mall dataset [57], the Venice Dataset [4], and the UCSD dataset [59], 

respectively. It can be observed from Table 3.5 that the AMS-CNN (FV=5) performs 

better among other modules. Individual modules other than AMS-CNN (FV=5) are not 

capable of providing better results. So, it can be summarized that the AMS-CNN (FV=5) 

takes all the advantages of its modules, and the counting system's performance is 

improved. 

 A Novel Cascaded Deep Architecture with Weak-Supervision for 

Video Crowd Counting  

The state-of-the-art video-based CCDE approaches [12], [32], [33], [111] based 

on the DMR technique, extract spatial and temporal features from the crowd videos. 

However, such approaches are lacking in extracting scale-invariant features to handle 

scale changes due to perspective distortion, do not take measures to minimize the effect 

of the cluttered background, and are error-prone due to the manual process for point label 

annotations for crowd heads. This study proposes a novel cascaded deep architecture with 

weak supervision for video crowd counting to address these issues. The following 

subsection discusses the detail of the proposed model. 

3.3.1 Proposed Method and Model  

This work proposes a novel cascading of two deep models for video-based CCDE. 

The two deep models are trained one after another. The first deep model, also termed the 

Local Density map Regression (LDR) model, can handle crowd head shape change, 
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minimize background influences, and generate crowd density maps using three sub-

modules:  

 The Mani-Fold Multiscale spatial-temporal Feature Fusion Module (MF-

MSFFM) 

 The Head Attention Module (HAM), and  

 The Density Map Regression Module (DMRM)  

The second deep model, i.e., the Global Crowd Count Regression (GCCR) 

module adopts weakly-supervision strategy, generates the global crowd count values 

using the proposed MLP module. The overall block diagram of the proposed model is 

illustrated in Figure 3.9. 

 

Figure 3.9: Block diagram of the proposed cascaded deep model 

According to Figure 3.9, the proposed deep model contains the following main 

components. 

 Pre-processing the dataset. 

 Crowd density map generation using the LDR Module 

o Mani-Fold Multi-Scale spatial-temporal Feature Fusion Module (MF-

MSFFM) 

o Head Attention guided Density Map Regression Module (HA-DMRM) 

 Head Attention module (HAM) 

 Density Map Regression Module (DMRM) 
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 Scene-level crowd counting using Weakly-Supervised Global crowd counting 

regression (GCCR) Module  

3.3.1.1  Pre-processing. 

At first, the video dataset is converted into frames. The RGB frames are resized 

to [200 × 200] and converted into grayscale images. Let the total 𝑁 number of resized 

grayscale frames be denoted by 𝑆 = {𝑠1, 𝑠2, … … , 𝑠𝑁}. The candidates for the proposed 

model are the volume of frames; let these be represented by a set 𝑉 =

{𝑣1, 𝑣2, … . . , 𝑣𝑡 , … . . 𝑣𝑁}. Here volume of frames at the timestamp, 𝑡 is obtained by 

stacking frames at the timestamp, 𝑡, 𝑡 − 1, … , 𝑡 − 𝑛, where 𝑛 is the size of the volume. 

The experiments are conducted with sizes 𝑛 of 3, 4, 5, and 6 consecutive frames. Apart 

from the volume of frames, ground-truth crowd density maps and crowd head maps are 

also required for the proposed model. The ground-truth crowd density maps are obtained 

using Equation 2.3. The crowd head maps are obtained by following the work of HA-

CCN [89]. The size of the crowd head maps is the same as the density maps. Let a set 

𝐻𝑀 = {ℎ𝑚1, ℎ𝑚2, … . . , ℎ𝑚𝑁}, represent the crowd head maps for the 𝑁 number of 

frames. 

3.3.1.2  Working of the LDR Module 

The detailed architecture of the proposed model is illustrated in Figures 3.10 and 3.11. 

The main motive behind the LDR model is to obtain crowd density maps by minimizing 

the background influences.  

3.3.1.2.1 Architectural details 

According to Figure 3.10, the LDR module constitutes two modules: MF-MSFFM and 

HA-DMRM. The HA-DMRM has submodules like HAM and DMRM. The MF-MSFFM 
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is designed with three columns of multi-layer 3D-Atrous-Net with different sizes of 

receptive fields. 

 

Figure 3.10: Details of layers used in the proposed architecture 
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Figure 3.11: Details of DMRM 

Table 3.6: Details of layers used in the proposed architecture 

Blocks Name Blocks Details Number of 

Kernels 

Kernel Size Dilation 

Rate 

 

Dil_Con3DBlock11 

Dil_Con3D 20 3, 3, 3 5, 5, 5 

BN  

NA ReLU 

Dil_Con3DBlock12 Dil_Con3D 30 3, 3, 3 5, 5, 5 

BN NA 

ReLU 

Dil_Con3DBlock13 Dil_Con3D 60 3, 3, 3 4, 4, 4 

BN NA 

ReLU 

Dil_Con3DBlock14 Dil_Con3D 80 3, 3, 3 4, 4, 4 

BN NA 

ReLU 

Dil_Con3DBlock15 Dil_Con3D 100 3, 3, 3 4, 4, 4 

BN NA 

ReLU 

Dil_Con3DBlock21 Dil_Con3D 20 3, 3, 3 4, 4, 4 

BN NA 

ReLU 

Dil_Con3DBlock22 Dil_Con3D 30 3, 3, 3 4, 4, 4 

BN NA 

ReLU 

Dil_Con3DBlock35 Dil_Con3D 100 2, 2, 2 1, 1,1 

BN NA 

ReLU 

Conv2D_Block1 Conv2D 20 2, 2  

ReLU NA 

Dil_Con3DBlock23 Dil_Con3D 60 3, 3, 3 4, 4, 4 

BN  

NA ReLU 

Dil_Con3DBlock24 Dil_Con3D 80 3, 3, 3 3, 3, 3 

BN NA 

ReLU 

Dil_Con3DBlock25 Dil_Con3D 100 3, 3, 3 3, 3, 3 

BN  

NA ReLU 

Dil_Con3DBlock31 Dil_Con3D 20 2, 2, 2 2, 2, 2 

BN  

NA ReLU 
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Dil_Con3DBlock32 Dil_Con3D 30 2, 2, 2 2, 2, 2 

BN  

NA ReLU 

Dil_Con3Dblock33 Dil_Con3D 60 2, 2, 2 2, 2, 2 

BN  

NA ReLU 

Dil_Con3DBlock34 Dil_Con3D 80 2, 2, 2 1, 1,1 

BN  

NA ReLU 

Conv2D_Block1 Conv2D 20 2, 2 NA 

ReLU NA 

Conv2D_Block2 Conv2D 30 2, 2 NA 

ReLU NA 

Conv2D_Block2 Conv2D 1 1, 1 NA 

Sigmoid NA 

 

The inputs to the multicolumn Atrous-Net are the volumes of frameset 𝑉. Each 

column contains five dilation 3D convolution blocks, identified as 

𝐷𝑖𝑙_𝐶𝑜𝑛3𝐷𝐵𝑙𝑜𝑐𝑘𝑖,𝑗 (ℎ𝑒𝑟𝑒, 𝑡ℎ𝑒 𝑐𝑜𝑙𝑢𝑚𝑛 𝑖𝑛𝑑𝑒𝑥 𝑖 = 1,2,3 𝑎𝑛𝑑 𝑏𝑙𝑜𝑐𝑘 𝑖𝑛𝑑𝑒𝑥 𝑗 =

1,2,3,4,5). Each dilation 3D convolution block constitutes three things: A 3D dilation 

convolution layer (Dil_Conv3D), a batch normalization (BN) layer, and a ReLU 

activation layer. The 3D average pooling (3DAP) layers are used to downscale the feature 

maps. In each column 𝑖 (𝑖 = 1,2,3), the pooling layers i.e., 3𝐷𝐴𝑃𝑖,1 follows after 

𝐷𝑖𝑙_𝐶𝑜𝑛3𝐷𝐵𝑙𝑜𝑐𝑘𝑖,2, the 3𝐷𝐴𝑃𝑖,2 follows after 𝐷𝑖𝑙_𝐶𝑜𝑛3𝐷𝐵𝑙𝑜𝑐𝑘𝑖,3 and the 3𝐷𝐴𝑃𝑖,3 

follows after 𝐷𝑖𝑙_𝐶𝑜𝑛3𝐷𝐵𝑙𝑜𝑐𝑘𝑖,4. These average pooling layers downscale the feature 

maps to its half. The skip connections are used to fuse in-layer multiscale features. For 

this, in each column 𝑖 (𝑖 = 1,2,3), the 3𝐷𝐴𝑃𝑖,4 follows after 𝐷𝑖𝑙_𝐶𝑜𝑛3𝐷𝐵𝑙𝑜𝑐𝑘𝑖,3 and the 

3𝐷𝐴𝑃𝑖,5 follows after 𝐷𝑖𝑙_𝐶𝑜𝑛3𝐷𝐵𝑙𝑜𝑐𝑘𝑖,4. The 3𝐷𝐴𝑃𝑖,4, and 3𝐷𝐴𝑃𝑖,5 (𝑓𝑜𝑟, 𝑖 =

1,2,3) downscale feature maps to 
1

4
 and 

1

2
 respectively. The layer details are illustrated in 

Table 1. The features obtained from 𝐷𝑖𝑙_𝐶𝑜𝑛3𝐷𝐵𝑙𝑜𝑐𝑘𝑖,5, 3𝐷𝐴𝑃𝑖,4 and 3𝐷𝐴𝑃𝑖,5 from each 

column 𝑖 (𝑖 = 1,2,3) are fused by concatenating them. The fused multiscale features are 

forwarded to the HAM to learn the head maps. The HAM contains a merging layer using 
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Conv2D with a single kernel having a size (1 × 1). The output of HAM is inputted in the 

DMRM module. The Detail architecture of DMRM is illustrated in Figure 3.12, and layer 

details are illustrated in Table 3.6. The DMRM module contains three Conv2D blocks. 

Each of the first two Conv2D blocks contains Conv2D layers followed by the ReLU 

activation layer. The Conv2D_Block3 merges the feature maps by using a single kernel 

having a size (1 × 1). The Sigmoid activation function is used to activate the feature map 

of Conv2D_Block3. The output of Conv2D_Block3 provides the predicted density map. 

The second deep model, i.e., the GCCR module, has an MLP module with three dense 

layers, each having a dense connection with 256, 512, and 1 neuron. The input to the MLP 

is the sum of predicted crowd density maps. All the layers of the proposed model are 

padded with zeros. 

3.3.1.2.2 Manifold multiscale spatial-temporal feature extraction 

The scale variation due to perspective distortion in videos can be handled by 

extracting multiscale spatial-temporal features from the crowd scene. In the proposed 

work, the multiscale spatial-temporal features are extracted in a manifold manner. By 

following the idea of Zhang et al.[30], a multicolumn (three-column in the proposed 

model) architecture is proposed for multiscale feature extraction. The three columns of 

multi-layer 3D Atrous-Net with receptive fields of different sizes are designed. The 

Atrous-Net is also called as dilated CNN. Each column can provide features of different 

scales. We have used Atrous-Net instead of normal CNN layers due to the following 

reasons. 

 It can occupy a larger receptive field with lesser parameters. 

 The resolution of the output image is not lost. 

The features from three different columns are fused. In addition to the multiscale 

features extracted from three columns, we added multiscale features from two different 
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layers (𝐷𝑖𝑙_𝐶𝑜𝑛3𝐷𝐵𝑙𝑜𝑐𝑘𝑖,3 𝑎𝑛𝑑 𝐷𝑖𝑙_𝐶𝑜𝑛3𝐷𝐵𝑙𝑜𝑐𝑘𝑖,4) of each column, 𝑖 and the value of 

𝑖 = 1,2 𝑎𝑛𝑑 3. To maintain the resolution of features obtained from 

𝐷𝑖𝑙_𝐶𝑜𝑛3𝐷𝐵𝑙𝑜𝑐𝑘𝑖,3 𝑎𝑛𝑑 𝐷𝑖𝑙_𝐶𝑜𝑛3𝐷𝐵𝑙𝑜𝑐𝑘𝑖,4 same as the multicolumn features, we 

downscale these feature maps by 
1

4
 and 

1

2
 respectively. Let, the multiscale features 

obtained from the volume of frameset 𝑉 is represented by a set 𝐹 = {𝑓1, 𝑓2, … … , 𝑓𝑁}.   

3.3.1.2.3  Head attention guided density map regression module (HA-DMRM) 

The crowd density estimation models generate the crowd density maps by mapping 

the learned feature sets onto the ground-truth crowd density maps. However, the ground-

truth crowd density maps are obtained from annotated head points. In such a scenario, the 

ground-truth density maps contain only crowd head distributions. Hence, during 

regression, if the learned multiscale features are mapped onto the head areas before 

regressing onto the density maps, we can minimize the influence of cluttered 

backgrounds. Such types of mapping can be seen in the work of HA-CCN [48]. The 

proposed HA-DMRM module constitutes two modules: the HAM and the DMRM. The 

principle design of HAM follows the HA-CCN [48], which is discussed below. 

a.  The Working of HAM 

The HAM contains only a single Conv2D layer with Sigmoid activation. The 

Conv2D layer provides a single activation map and merges all the incoming feature 

maps using (1 × 1) convolution. The output of the sigmoidal activation map will be 

used for predicting the head maps. Let ∅𝐻𝐴𝑀, represents all the trainable parameters 

connecting with the HAM. Let 𝑃ℎ𝑚 = {𝑝ℎ𝑚1
, 𝑝ℎ𝑚2

, … . , 𝑝ℎ𝑚𝑁
} represent the set of 

predicted head maps for N number of input samples. 

Let ℎ𝑚𝑖 be the ground truth head map of the 𝑖𝑡ℎ crowd scene. The loss is captured 

by using binary Cross-Entropy between the ground-truth head map (ℎ𝑚𝑖) and the 



 

 

 

93 

predicted head map (𝑝ℎ𝑚𝑖
) for the 𝑖𝑡ℎ crowd scene. Let 𝐿𝑜𝑠𝑠𝑖(ℎ𝑚𝑖, 𝑝ℎ𝑚𝑖

) be the 

Cross-Entropy loss (CE-Loss) on the 𝑖𝑡ℎ crowd scene and can be represented as 

follows. 

[𝐿𝑜𝑠𝑠𝐻𝐴𝑀]𝑖 = [𝐿𝑜𝑠𝑠(∅𝐻𝐴𝑀)]𝑖 = 𝐿𝑜𝑠𝑠𝑖(ℎ𝑚𝑖, 𝑝ℎ𝑚𝑖
) = − ∑ ℎ𝑚𝑖𝑝

log 𝑝ℎ𝑚𝑖𝑝

𝑆𝑖𝑧𝑒
𝑝=1           (3.12) 

, here 𝑠𝑖𝑧𝑒 represents the size of the output feature map of HAM.  

b.  The Working of the DMRM 

The DMRM module generates crowd density maps for 𝑖𝑡ℎ sample from the 

predicted head maps, i.e., 𝑝ℎ𝑚𝑖
. The main focus is to generate crowd density maps 

from de-background head maps. Let ∅𝐷𝑀𝑅𝑀 be the set of learnable parameters 

connecting with the DMRM. Let the predicted crowd counts for 𝑡ℎ𝑒  𝑖𝑡ℎ crowd scene 

be represented by 𝑝𝑖. In the experiment the squared error is used to capture the loss 

between the predicted and ground-truth crowd counts, which can be represented as 

follows.  

            [𝐿𝑜𝑠𝑠𝐷𝑀𝑅𝑀]𝑖 = [𝐿𝑜𝑠𝑠(∅𝐷𝑀𝑅𝑀)]𝑖  = 𝐿𝑜𝑠𝑠𝑖(𝑝𝑖, 𝑔𝑡𝑖) = (𝑝𝑖 − 𝑔𝑡𝑖)2                 (3.13) 

3.3.1.2.4 Optimizing the LDR 

The LDR module is trained in an end-to-end manner and batch wise stochastic 

gradient descent approach is adopted. Let the trainable parameters of the LDR module 

be represented by a set ∅𝐿𝐷𝑅 = [∅𝐻𝐴𝑀, ∅𝐷𝑀𝑅𝑀]. The LDR module is trained using batch 

manner where the final loss is derived by combining the loss of HAM and DMRM for 

a given  𝑏𝑡ℎ  batch of sample 𝐾, which can be represented as, 

                      [𝐿𝑜𝑠𝑠𝐿𝐷𝑅]𝑏 = 𝐿𝑜𝑠𝑠𝐻𝐴𝑀 + 𝐿𝑜𝑠𝑠𝐷𝑀𝑅𝑀 

                                                =
1

𝐾
∑ 𝐿𝑜𝑠𝑠𝑖(ℎ𝑚𝑖 , 𝑝ℎ𝑚𝑖

)𝐾
𝑖=1 +

1

𝐾
∑ 𝐿𝑜𝑠𝑠𝑖(𝑝𝑖, 𝑔𝑡𝑖)

𝐾
𝑖=1           (3.14) 

The problem can be treated as an optimization problem where the total loss, 

𝐿𝑜𝑠𝑠𝐹𝑖𝑛𝑎𝑙 is minimized which can be represented as follows, 
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                                                              𝑎𝑟𝑔𝑚𝑖𝑛
∅𝐿𝐷𝑅

   [𝐿𝑜𝑠𝑠𝐿𝐷𝑅]𝑏                                            (3.15) 

For optimizing the Equation 3.15, the Adam optimiser [170] is used. The 

Algorithm 3.2 describes step by step procedures adopted to optimize the Equation 3.15. 

Algorithm-3.2 Training and Optimizing the LDR Module 

Input: Volume of frames, 𝑉 = {𝑣1, 𝑣2, … . . , 𝑣𝑡, … . . 𝑣𝑁}. The 𝑁 represents total 

number of sequences in a video dataset.  

Ground-Truth Crowd Head Maps: The set 𝐻𝑀 =
{ℎ𝑚1, ℎ𝑚2, … . . , ℎ𝑚𝑁} represents ground truth crowd head maps for 𝑁 frames. 

Ground-Truth Crowd Density Maps: The set 𝐺𝑇 =
{𝑔𝑡1, 𝑔𝑡2, … . . , 𝑔𝑡𝑁} represents ground truth crowd density maps for 𝑁 frame 

sequences. 

Parameters: 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 (𝜂), 𝐿𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (∅𝐿𝐷𝑅), 

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚. 
Initialisation: 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 = 2500, b𝑎𝑡𝑐ℎ_𝑆𝑖𝑧𝑒, 𝑘𝑒𝑟𝑛𝑒𝑙 regularize value of 𝐿2 −
𝑛𝑜𝑟𝑚 = 0.01 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 1, 𝜂 = 0.001, and the patience parameter of early 

stopping is set to 30. 

Output: Optimize the LDR Module 

While early_stopping or 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 is fulfilled, do 

     For each batch b = 1 to ⌈
𝑁

𝐵𝑎𝑡𝑐ℎ_𝑆𝑖𝑧𝑒
⌉do 

          For each sample 𝑖 in batch 𝑏𝑡 do 

                1.  Obtain the multiscale feature 𝐹𝑖 . 
                2.  Find the loss of HAM i.e., [𝐿𝑜𝑠𝑠𝐻𝐴𝑀]𝑖 and also loss of DMRM i.e.,   

                      [𝐿𝑜𝑠𝑠𝐷𝑀𝑅𝑀]𝑖 using Equation 3.12 and 3.13 respectively.                             

          end for 

         3. Obtain the mean of cumulative of loss for the given batch 𝑏 using 

             Equations 3.15. 

         4. Find the gradients of the loss [𝐿𝑜𝑠𝑠𝐿𝐷𝑅]𝑏 using [169]. 

         5. Obtain Cumulative History of gradients, and optimize Equation 3.15 by 

             updating 

             LDR’s learnable parameters ∅𝐿𝐷𝑅 , using Adam [170] optimizer.   

     End For 

    6. 𝑐𝑜𝑢𝑛𝑡𝑒𝑟+= 1 

 End While 

3.3.1.3  Working of the Weakly-Supervised GCCR module. 

The GCCR module contains an MLP module designed to map the global density 

map attribute to ground-truth global crowd count. By adopting the process of Savner et 

al. [45], the main objective behind GCCR is to consider the global density property and 

adopt a weakly-supervision methodology to regression to crowd count instead of density 
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maps and improve the performance. The global density property is obtained by summing 

all elements of the crowd density map. Let the global density property for all the 𝑁 

samples be represented by a set 𝐺𝐷 = {𝑔𝑑1, 𝑔𝑑2, … . , 𝑔𝑑𝑁}. For 𝑖𝑡ℎ sample, the global 

density property can be obtained by using the following equation. 

                                                                     𝑔𝑑𝑖 = ∑ 𝑝𝑖𝑗

𝑆𝑖𝑧𝑒
𝑗=1                                               (3.16) 

Now, the 𝑔𝑑𝑖 is inputted to the MLP. The MLP contains two hidden dense 

connection layers having 256 and 512 neurons. The second hidden layer is densely 

connected with the output layer with a single neuron. The output layer predicts global 

crowd counts. The ground-truth global crowd count has to be generated, which is obtained 

from ground-truth density maps. Let the set 𝐺𝐶 = {𝑔𝑐1, 𝑔𝑐2, … . , 𝑔𝑐𝑁} represent the set 

of ground truth global crowd counts. For 𝑖𝑡ℎ sample, the ground truth global crowd 

count 𝑔𝑐𝑖 can be obtained using Equation 3.17. 

                                                            𝑔𝑐𝑖 = ∑ 𝑔𝑡𝑖𝑗

𝑆𝑖𝑧𝑒
𝑗=1                                                       (3.17) 

Let the predicted global crowd count be represented by using a set 𝑃𝐺𝐶 =

{𝑝𝑔𝑐1, 𝑝𝑔𝑐2, … . , 𝑝𝑔𝑐𝑁}. Let 𝜃𝐺𝐶𝐶𝑅 represents all the trainable parameters of the GCCR 

module. This paper utilizes the squared error to capture the loss between 𝑝𝑔𝑐𝑖 and 𝑔𝑐𝑖 for 

𝑖𝑡ℎ sample, which can be represented as in Equation 3.18.  

                             [𝐿𝑜𝑠𝑠𝐺𝐶𝐶𝑅]𝑖 =  𝐿𝑜𝑠𝑠𝐺𝐶𝐶𝑅𝑖
(𝑝𝑔𝑐𝑖, 𝑔𝑐𝑖) = (𝑝𝑖 − 𝑔𝑡𝑖)2                        (3.18) 

The optimization is done using batch manner. For a given  𝑏𝑡ℎ  batch of sample 

𝐾, the loss is represented as in Equation 3.19.  

                                                  [𝐿𝑜𝑠𝑠𝐺𝐶𝐶𝑅]𝑏 =
1

𝐾
∑ (𝑝𝑖 − 𝑔𝑡𝑖)2𝐾

𝑖=1                                   (3.19) 

Now, the loss can be minimized by solving the following optimization problem 

using the Adam optimizer [170], 

                                                        𝑎𝑟𝑔𝑚𝑖𝑛 
𝜃𝐺𝐶𝐶𝑅

[𝐿𝑜𝑠𝑠𝐺𝐶𝐶𝑅]𝑏                                                  (3.20) 
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The Algorithm-3.3 describes step by step procedures adopted to optimize the 

Equation 3.20. 

Algorithm-3.3 Training and Optimizing the GCCR Module 

Input: Global Density Property,  𝐺𝐷 = {𝑔𝑑1, 𝑔𝑑2, … . , 𝑔𝑑𝑁}. The 𝑁 represents total 

number of sequences in a video dataset.  

Ground-Truth Global Crowd Count: The set 𝐺𝐶 =

{𝑔𝑐1, 𝑔𝑐2, … . , 𝑔𝑐𝑁} represents ground truth global crowd counts for 𝑁 frames. 

Parameters: 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 (𝜂), 𝐿𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝜃𝐺𝐶𝐶𝑅), 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚. 

Initialisation: 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 = 2500, 𝐵𝑎𝑡𝑐ℎ_𝑆𝑖𝑧𝑒, 𝑘𝑒𝑟𝑛𝑒𝑙 regularize value of 𝐿2 −

𝑛𝑜𝑟𝑚 = 0.01 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 1, , 𝜂 = 0.001, and  the patience parameter of early 

stopping is set to 30. 

Output: Optimize the GCCR Module 

While early_stopping or 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 is fulfilled, do 

     For each batch b = 1 to ⌈
𝑁

𝐵𝑎𝑡𝑐ℎ_𝑆𝑖𝑧𝑒
⌉do 

          For each sample 𝑖 in batch 𝑏𝑡 do 

                1.  Feed forward the features to the output layer. 

                2.  Obtain the output and find the loss of GCCR i.e.,  [𝐿𝑜𝑠𝑠𝐺𝐶𝐶𝑅]𝑖 using  

                     Equation 3.18.                              

          end for 

         3. Obtain the mean of cumulative of loss for the given batch 𝑏 i.e.,  

             [𝐿𝑜𝑠𝑠𝐺𝐶𝐶𝑅]𝑏 using Equation 3.19. 

         4. Find the gradients of the loss [𝐿𝑜𝑠𝑠𝐺𝐶𝐶𝑅]𝑏 using [169]. 

         5. Obtain Cumulative History of gradients, and optimize Equation 3.20 by 

             updating GCCR’s learnable parameters 𝜃𝐺𝐶𝐶𝑅 , using Adam [170] optimizer.   

        End For 

    6. 𝑐𝑜𝑢𝑛𝑡𝑒𝑟+= 1 

 End While 

For optimizing the two-deep models, i.e., LDR and GCCR, we have used 

backpropagation [169] with Adam optimizer [170]. The learning rate 𝜂 is set to 0.001. 

We have used 𝐿2 kernel regularization and set the value of the regularization parameter 

to 0.01. 

3.3.2 Experimental Setup 

The two deep models have been coded from scratch in python using Keras 

libraries and TensorFlow. Several computing nodes of the Param-Shivay supercomputer 
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are used to execute the code. The models are implemented separately in a cascading 

fashion. The models are trained by setting the total number of epochs to 1000. The batch 

size for the Mall [57], Venice [4], and UCSD [59] is set to 64, 8, and 64, respectively. 

The regularization is of utmost importance to avoid overfitting or underfitting. In the 

proposed model, the 𝐿2 regularization is used to regularize all the convolution layers' 

kernel weights and early stopping to halt the training of the proposed models. The 

regularization parameter value is set to 0.01 and the patience parameter of early stopping 

to 24. The learning rate 𝜂, momentum of batch normalization, regularized parameter of 

𝐿2, decay rates for first (𝛽1) and second moment (𝛽2) of Adam optimiser[170] are 

initialized to 0.001, 0.95, 0.01, 0.9, and 0.999, respectively. The maximum iteration was 

to 2000.  

3.3.3 Results Analysis and Discussion 

3.3.3.1  The Venice Dataset 

The LDR module is implemented separately with different sizes of the input set. 

We have limited the experiments with frames’ volume (𝐹𝑉) of sizes 3, 4, 5, and 6. The 

comparison of results with six state-of-the-art approaches are illustrated in Table 3.7.  The 

values mentioned in bold letters in Table 3.7 are the best in the table. On the Venice 

dataset, the LDR module with 𝐹𝑉 = 3, 𝐹𝑉 = 4, 𝐹𝑉 = 5 and 𝐹𝑉 = 6 achieve <MAE and 

RMSE> of <31.27, 47.63>, <30.52, 37.77>, <28.29, 39.50> and <24.58, 34.76> 

respectively. The LDR module with 𝐹𝑉 = 6 performs better than other sizes of the 

volume of frames. The LDR (𝐹𝑉 = 6) + GCCR module achieves MAE and RMSE of 

18.59 and 27.52 for global crowd counting. The single-image crowd counting models like 

MCNN[27], Switch-CNN[85], CSR-Net[94] and ECAN[4] achieves <MAE, RMSE> of 

<145.4, 147.3>, <52.8, 59.5>, <35.8, 50.00> and <20.5, 29.9> respectively. The 

ECAN[4] performs better as compared with other single image crowd counting models. 
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There are only two video-based crowd counting models implemented on the Venice 

dataset: AMS-CNN[33] and TMCMS-ST Atrous-Net[34]. These two models achieve 

<MAE and RMSE> of <23.64, 28.75> and <49.17, 58.22>. However, the proposed video-

based crowd counting model performs better than the AMS-CNN and ECAN[4]. Hence, 

we can conclude that the proposed model effectively handles the challenges and results 

in achieving better performance as far as Venice is concerned. Figure 3.12 and Figure 

3.13 show plotting of predicted versus ground-truth crowd count on the Venice dataset[4] 

by the LDR and LDR+GCCR modules, respectively. 

Table 3.7: Comparisons of Results of several approaches on Venice 

Approaches/Models  MAE  RMSE 

Switch-CNN[85] 52.80 59.50 

MCNN[27] 145.4 147.3 

CSR-Net[94] 35.8 50.00 

ECAN[4] 20.50 29.90 

AMS-CNN[33] 23.64 28.75 

TMCMS-ST Atrous-Net[34] 49.17 58.22 

LDR (𝐹𝑉 = 3) 31.27 47.63 

LDR (𝐹𝑉 = 4) 30.52 37.77 

LDR (𝐹𝑉 = 5) 28.29 39.50 

LDR (𝐹𝑉 = 6) 24.58 34.76 

LDR (𝐹𝑉 = 6) + GCCR 18.59 27.52 

 

 

Figure 3.12: Predicted versus Ground-truth Crowd Counts of LDR-Module on the Venice 

Dataset [4] 
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Figure 3.13:  Predicted versus Ground-truth Crowd Counts of LDR+GCR-Module  on the 

Venice Dataset [4] 

3.3.3.2  The Mall Dataset 

The results obtained on the Mall dataset [57] are compared with 16 state-of-the-

art approaches. The comparison of results is mentioned in Table 3.8, where the values in 

bold letters are highest in the table. The proposed LDR module with 𝐹𝑉 = 3, 𝐹𝑉 = 4, 

𝐹𝑉 = 5 and 𝐹𝑉 = 6 achieve <MAE and RMSE> of <3.12, 4.02>, <3.02, 3.74>, <2.52, 

3.21> and <2.40, 3.02> respectively. Among different sizes of FV, the LDR module 

performs better with  𝐹𝑉 = 6. So, we have used the output of LDR with 𝐹𝑉 = 6 as input 

to the GCCR module. The GCCR module (i.e., LDR (𝐹𝑉 = 6)+GCCR) achieves MAE 

and RMSE of 2.34 and 2.97, respectively. Figure 3.15 and Figure 3.16 show a line graph 

representing the predicted versus the ground-truth crowd count on the Mall dataset [57] 

by the proposed LDR (𝐹𝑉 = 6) and LDR (𝐹𝑉 = 6)+GCR modules, respectively.  

The conventional models like Ridge regressor [57], kernel ridge regression (KRR) 

[58], gaussian process of regression (GPR) [59], and Count Forest [70] produce abysmal 

results as compared with the proposed LDR and LDR+GCCR module.  Among the single 

image-based techniques like MCNN [27], CCNN [28], CNN-MRF [171], Faster R-CNN 

[172], DAL-SVR [173], and DIGCrowd [174], the DAL-SVR [173] performs better with 

MAE and RMSE of 2.4 and 9.57 respectively.  
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Table 3.8: Comparisons of Results of several approaches on the Mall dataset [57] 

Approaches/Models MAE  RMSE 

Ridge Regression [57] 6.73  19.18 

KRR [58] 6.61  18.85 

GPR [59] 7.15  21.34 

Count Forest [70] 5.75  10.88 

CNN-MRF [171] 4.66  9.01 

Faster R-CNN [172] 4.65  7.26 

MCNN [27] 4.74  8.64 

CCNN [28] 5.36  9.34 

ConvLSTM-nt [12] 2.53  11.2 

ConvLSTM [12] 2.24  8.5 

Bidirectional ConvLSTM [12] 2.10 7.60 

DAL-SVR [173] 2.40 9.57 

DIGCrowd [174] 3.21 16.4 

ST-CNN [32] 4.03  5.87 

AMS-CNN [33] 2.47 3.08 

DAL-SVR [173] 2.40 9.57 

DIGCrowd [174] 3.21 16.4 

TMCMS-ST Atrous-Net [34] 3.72 4.74 

Proposed LDR (𝐹𝑉 = 3) 3.12 4.02 

Proposed LDR (𝐹𝑉 = 4) 3.02 3.74 

Proposed LDR (𝐹𝑉 = 5) 2.52 3.21 

Proposed LDR (𝐹𝑉 = 6) 2.40 3.02 

Proposed LDR (𝐹𝑉 = 6)+GCCR 2.34 2.97 

Among the video-based CCDE approaches such as AMS-CNN [33], TMCMS-ST 

Atrous-Net  [34], ST-CNN [32], ConvLSTM [12], ConvLSTM-nt [12], Bidirectional 

ConvLSTM [12], R-DCNN [163], LDR, and LDR+GCCR, the Bidirectional-ConvLSTM 

[12] has the better MAE, i.e., 2.1 but the proposed LDR+GCCR approach achieves better 

RMSE of 2.97. The counting model should have low MAE, RMSE, and the difference 

should be minimal.   
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Figure 3.14: Predicted versus Ground-truth Crowd Counts of LDR-Module on the Mall 

Dataset [57] 

 

Figure 3.15: Predicted versus Ground-truth Crowd Counts of LDR+GCCR Module on the 

Mall Dataset [57] 

Based on the above discussions, we can conclude that the proposed model 

provides better results than other listed video-based CCDE approaches by obtaining 

minimum RMSE and comparatively better MAE. So, the head attentive spatial-temporal 

features fusion model yields in comparatively better solution among all. 

3.3.3.3  The UCSD Dataset 

The comparison of results with other state-of-the-arts on the UCSD dataset [59] is 

illustrated in Table 3.9. The values mentioned in bold letters in Table 3.9 are the best in 

the table. The proposed LDR achieves <MAE, RMSE> of <2.85, 3.75>, <2.67, 3.73>, 

0

10

20

30

40

50

60

1

2
8

5
5

8
2

1
0
9

1
3
6

1
6
3

1
9
0

2
1
7

2
4
4

2
7
1

2
9
8

3
2
5

3
5
2

3
7
9

4
0
6

4
3
3

4
6
0

4
8
7

5
1
4

5
4
1

5
6
8

5
9
5

6
2
2

6
4
9

6
7
6

7
0
3

7
3
0

7
5
7

7
8
4

8
1
1

8
3
8

8
6
5

8
9
2

9
1
9

9
4
6

9
7
3

1
0
0

0

1
0
2

7

1
0
5

4

1
0
8

1

1
1
0

8

1
1
3

5

1
1
6

2

1
1
8

9

C
ro

w
d
 C

o
u
n
ts

Number of Test Frames

Ground Truth LDR

0

10

20

30

40

50

60

1

2
8

5
5

8
2

1
0

9

1
3

6

1
6

3

1
9

0

2
1

7

2
4

4

2
7

1

2
9

8

3
2

5

3
5

2

3
7

9

4
0

6

4
3

3

4
6

0

4
8

7

5
1

4

5
4

1

5
6

8

5
9

5

6
2

2

6
4

9

6
7

6

7
0

3

7
3

0

7
5

7

7
8

4

8
1

1

8
3

8

8
6

5

8
9

2

9
1

9

9
4

6

9
7

3

1
0

0
0

1
0

2
7

1
0

5
4

1
0

8
1

1
1

0
8

1
1

3
5

1
1

6
2

1
1

8
9

C
ro

w
d

 C
o

u
n
ts

Number of Test Frames

Ground Truth LDR+GCCR



 

102 

 

 

<1.95, 2.37> and <1.47, 1.85> on 𝐹𝑉 = 3, 4, 5 𝑎𝑛𝑑 6 respectively. On the other hand, the 

LDR (𝐹𝑉 = 6)+GCCR obtains MAE=1.45 and RMSE=1.84. We observe little 

improvement by LDR (𝐹𝑉 = 6)+GCCR over the LDR module.   

Table 3.9: Comparisons of Results of several approaches on UCSD 

Model Name  MAE  RMSE 

GPR [59]   2.24  7.97 

Ridge regression [57] 2.25  7.82 

CAR [60] 2.07  6.90 

Density map + MESA [68] 1.70 NA 

Count forest [70] 1.60  4.40 

CCNN [28] 1.51 - 

CrossCrowdNet [175] 1.60 3.31 

Switch-CNN [85] 1.62 2.1 

DAL-SVR [173] 1.29 2.10 

ConvLSTM-nt [12] 1.73 3.52 

ConvLSTM  [12] 1.30 1.79 

Bidirectional ConvLSTM [12]  1.13 1.43 

AFP [177] 1.16 2.29 

FCN-rLSTM [111]  1.54 3.02 

MDMF-CC [90] 1.35 1.88 

MS-GAN [176] 1.78 3.03 

AMS-CNN [33] 1.46 1.82 

Proposed LDR (𝐹𝑉 = 3) 2.85 3.75 

Proposed LDR (𝐹𝑉 = 4) 2.67 3.73 

Proposed LDR (𝐹𝑉 = 5) 1.95 2.37 

Proposed LDR (𝐹𝑉 = 6) 1.47 1.85 

Proposed LDR (𝐹𝑉 = 6)+ GCCR 1.45 1.84 

 

Among other techniques, the Bidirectional ConvLSTM [12] obtain MAE=1.13 and 

RMSE=1.43, which is the highest performance as far as Table 3.9 is concerned. The 

proposed model is placed in sixth and fourth positions in Table 3.9 in terms of MAE and 

RMSE. Nevertheless, the performance difference between the proposed model and other 

techniques [12], [90], [173], [177] is less. Figure 3.16 and Figure 3.17 show plotting of 

predicted versus ground-truth crowd count on the UCSD dataset by the LDR and 

LDR+GCCR modules, respectively. 
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Figure 3.16: Predicted versus Ground-truth Crowd Counts of LDR-Module on the UCSD 

Dataset [59] 

 

Figure 3.17: Predicted versus Ground-truth Crowd Counts of LDR+GCCR Module on the 

UCSD Dataset [59] 

3.3.3.4  Ablation study  

An ablation study on the proposed cascaded model is conducted to study the 

impact of each module of the cascaded deep model on video-based crowd counting. The 

proposed is split into the following independent modules based on the combination of 

different each stream of the LDR module with the GCR module, 

 LDR (FV=6) (Column1): It contains the Column1 of LDR followed by HAM and 

DMRM. 

 LDR (FV=6) (Column2): It contains the Column2 of LDR followed by HAM and 

DMRM. 

 LDR (FV=6) (Column3): It contains the Column3 of LDR followed by HAM and 

DMRM. 
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 LDR (FV=6) (WO-HA): It contains the MF-MSFFM followed by DMRM. Here, 

the main objective is to observe the model’s response without head attention (WO-

HA). 

 LDR (FV=6) (WO-MLFI): It contains all the modules of LDR but without multi-

layer feature inclusion (WO-MLFI) 

 LDR (FV=6) (WO-MLFI -HA): It contains all the modules of LDR but without 

multi-layer feature inclusion and head attention (WO-MLFI-HA) 

 LDR (FV=6): The exact LDR module 

 LDR (FV=6) + GCCR: The proposed cascaded deep model. 

The training procedures are the same as described in the first paragraph of Section 5. 

The following Table 3.10 shows the comparison of results of different modules of the 

proposed model. 

Table 3.10: Comparisons of results for ablation study on the different datasets 

Several Module Name The Mall Dataset The Venice 

Dataset 

The UCSD Dataset 

[59] 

MAE  RMSE MAE  RMSE MAE  RMSE 

LDR (FV=6) (Column1) 2.62 3.36 31.81 46.57 3.49 4.64 

LDR (FV=6) (Column2) 2.80 3.50 35.41 50.75 3.40 4.91 

LDR (FV=6) (Column3) 3.20 3.97 28.03 47.11 4.73 7.01 

LDR (FV=6) (WO-HA) 2.91 3.58 38.16 55.22 3.77 5.13 

LDR (FV=6) (WO-MLFI) 2.68 3.39 36.55 53.69 3.48 4.71 

LDR (FV=6) (WO-MLFI -HA) 2.97 3.76 40.34 59.21 2.83 3.45 

LDR (FV=6) 2.40 3.02 24.58 34.76 1.47 1.85 

LDR (FV=6) + GCCR 2.34 2.97 18.59 27.52 1.45 1.84 

On the Venice dataset [4], the Column1, the Column2, and the Column3 obtains 

<MAE, RMSE> of <31.81, 46.57>, <35.41, 50.75> and <28.03, 47.11> respectively. The 

Column3 of the proposed model performs better other two columns. The without head 

attention modules like LDR (FV=6) (WO-HA) achieve MAE=38.16 and RMSE=55.22, 

which performs less compared to LDR (FV=6) and LDR (FV=6) + GCCR. The LDR 

(FV=6) (WO-MLFI) and LDR (FV=6) (WO-MLFI -HA) obtain <MAE, RMSE> of 

<36.55, 53.69> and <40.34, 59.21> respectively. Now, by comparing these modules' 
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performances with the proposed module, it can be pointed out that individual modules 

could not achieve the performance we get by combining them. 

The Column1, Column2 and Column3 of the proposed model achieve <MAE, 

RMSE> of <2.62, 3.36>, <2.80, 3.50> and <3.20, 3.97> respectively on the Mall dataset 

[57]. Among the three columns, Column1 performs better. The without head maps model, 

i.e., LDR (FV=6) (WO-HA), gets MAE and RMSE of 2.91 and 3.58 and performs 

comparatively low concerning LDR and LDR + GCCR. Hence, the head attention module 

becomes important to minimize the background influence and improve performance. The 

three-column architecture without multi-layer feature inclusion, i.e., LDR (FV=6) (WO-

MLFI), achieves MAE and RMSE of 2.68 and 3.39, respectively. On the other hand, the 

LDR (FV=6) (WO-MLFI -HA) module achieves MAE=2.97 and RMSE=3.76. Whereas 

the proposed LDR (FV=6) and LDR (FV=6) + GCCR achieves <MAE, RMSE> of <2.40, 

3.02> and <2.34, 2.97> respectively. So, it can be summarized that the manifold 

multiscale fusion, head attention modules, and the GCCR modules are requirements for 

better performance.  

In Table 3.10, the three columns individually achieve <MAEs, RMSEs> of <3.49, 

4.64>, <3.40, 4.91> and <4.73, 7.01>. Similar kinds of performances have been achieved 

by the modules LDR (FV=6) (WO-HA) and LDR (FV=6) (WO-MLFI). However, the 

LDR (FV=6) (WO-MLFI -HA) module obtains MAE=2.83 and RMSE=3.45. Unlike 

Mall [57] and Venice [4], the individual modules' performance is quite less than the 

proposed models' performance on the UCSD dataset [59]. On the other hand, the proposed 

model achieves MAE=1.45 and RMSE=1.84, which are near similar values as compared 

with other state-of-the-art approaches. 
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 Conclusion 

This chapter proposed two video-based CCDE approaches using deep learning 

techniques. The first model, AMS-CNN, enhanced feature quality and minimized the 

effect of cluttered background by infusing deep spatial foreground features. At the same 

time, the second model overcomes the issues of varying crowd shape and background 

details in crowd videos. Also, the second model used a weak supervision learning 

mechanism to minimize the error caused due to point-level annotations. Both the models 

were evaluated on three publicly available datasets: the Mall [57], the Venice [4], and the 

UCSD [59], and the performance metrics used were MAE and RMSE. The first model 

achieved <MAE, RMSE> of <2.47, 3.08>, <23.64, 28.75> and <1.46, 1.82> on the Mall 

[57], the Venice [4], and the UCSD [59] respectively while the second deep model 

achieved <MAE, RMSE> of <2.34,2.97>, <18.59, 27.52> and <1.45, 1.84> on the Mall 

[57], the Venice [4], and the UCSD [59] respectively outperforming the state-of-the-art 

methods. The second model outperforms the first model by extracting multiscale spatial-

temporal features, considering both local-global crowd properties, and adopting weak 

supervision to overcome point-level annotation errors, which are not addressed in the first 

model. An extensive ablation study of both models was performed to show the efficacy 

of different modules. 

This chapter discussed the work done on the task of CCDE for analyzing crowd 

videos using deep learning techniques. The next chapter will discuss the proposed work 

for the CCA. 

  

 


