
Chapter 6

A federated learning technique with

heterogeneous devices and

networking resources

This chapter proposes a fast federated learning technique to train a model for a given

task at the participant devices in the presence of the heterogeneous device and network-

ing resources. The proposed technique starts with the collection of available resource

information of participant devices and selects a generic model which directly works on

most of the devices. We next propose a knowledge distillation-based early-halting ap-

proach for devices, where the generic model does not fit directly. The early halting in

the FFL technique speeds up the training of the model at the participant devices.

6.1 Introduction

A participant device in FL uses its resources, such as memory and processing power

(which may not be the same for all devices), to load the model and train them lo-

cally. The availability of resources at the participant devices depends on their type

and other installed services. Such heterogeneity in device resources requires unequal
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time to train the model using local datasets. Moreover, a large-size model may not be

successfully trained on a device with limited resources. Similarly, the time required to

share the WPM between each participant device and the central server depends on the

networking resources like bandwidth. The heterogeneity in the device and networking

resources implies that all devices may not simultaneously transfer the WPM to the

central server for the aggregation and hence slow down the FL. Figure 6.1 illustrates

an example scenario of FL that trains a Locomotion Mode Recognition (LMR) model

on the participant devices using local datasets. LMR model recognizes the locomotion

mode used by the participant. The participant devices are the smartphones of different

brands, and they have unequal memory and processing power. Since the participants

are at different locations, the network bandwidth between the devices and central server

may not be the same.

15 Mbps 4.5 Mbps
23 Mbps

Samsung A30 OnePLUS Nord Oppo A52

Central server

· · ·

Figure 6.1: A scenario of FL with heterogeneous resources (unequal memory and processing power
of smartphones, bandwidth).

To address the heterogeneity of resources among the participants in FL, prior studies

proposed mechanisms that discard slow processing participants, called stragglers, from

the federation [48–50]. However, the removal of stragglers hampers effective utilization

of the local dataset (on stragglers) and prohibits performance improvement via FL.
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Some existing work [51] have considered a fixed size model for all the devices of het-

erogeneous resources. The fixed size model may not fully utilize the colossal resources

devices. The existing work [52,53] used Knowledge Distillation (KD) to resize and train

the model that fit on the devices for FL. The KD is a student-teacher learning process.

The training of the student model under the guidance of the teacher model requires

multiple epochs in KD and delays the aggregation process at the central server. The

existing work [54] considered unequal bandwidth issue in FL that faces weight staleness.

Some devices update their WPM multiple times, while others may not participate.

While considering the heterogeneity of device and networking resources, we present

a Fast Federated Learning (FFL) technique to train the deep learning models for pre-

diction or classification tasks at the participant devices using the local datasets. Specif-

ically, we address the following question: how does FL successfully train a model on the

participant devices with heterogeneous resources (unequal memory, processing power,

and bandwidth) using local datasets? To this end, the major contributions and novelty

of this work are as follows:

• Selection of a generic model : The first contribution is to design an approach for se-

lecting a generic model of a given task based on the available resources of participant

devices. The central server collects the information of available resources of partici-

pant devices, divides the devices into categories using k-means clustering, and selects

a model which supports the median category of devices. Different from the exist-

ing work [48, 54, 80], simultaneously considering the devices and networking resources

makes the selected model not arbitrarily large or small and can successfully delay on

insufficient and colossal resource devices.

• Training of the generic model on participant devices with heterogeneous resources : The

next contribution is to design an approach for training of the generic model on partic-

ipant devices using the local dataset with heterogeneous resources. Different from the

existing work [81–83], the approach considers the scenarios where devices have suffi-
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cient, colossal, and insufficient resources to train the model. The participant devices

directly use the generic model in the scenario where available resources of the devices

are sufficient to train the generic model. The approach uses knowledge distillation

(student-teacher learning) to train resized generic models for insufficient and colossal

resource devices. To speed up the training of the model at each participant device,

the approach halts the teacher training after a certain halting epoch. We derive an

expression to find the halting epoch for the given accuracy.

• Aperiodic global update at central server : We propose an aperiodic global update

approach where the central server does not wait to receive the WPM from all the

participants to estimate the updated WPM. The duration of two consecutive global

updates divides into fixed time intervals. The central server aggregates the received

WPM from the participants in each time interval and uses the aggregated WPM in the

next time interval. Unlike existing work [51, 80], the aperiodic global update speedups

the model’s training in the presence of heterogeneous resources.

• Experimental validation: We perform a real-world study to evaluate the feasibility

and performance of the FFL technique. In this study, we recruited 128 student volun-

teers. The volunteers’ smartphones work as participant devices and the central server is

located in the institute to execute the FL operations. The task of the real-world study

was to recognize the locomotion modes used by the participants. The study considered

six locomotion modes: bicycle, bike, car, auto-rickshaw, bus, and train. We also verify

the FFL technique on the existing baseline techniques [52, 54], collected and existing

datasets of locomotion modes [55], and three validation metrics. The results show that

the FFL technique minimizes the training time with high accuracy.

• Motivation: We observed the following limitations in the existing work, which

motivate our work. A model may not achieve adequate accuracy if its weights are

discarded during global aggregation in FL [48]. Reducing the processing power of

the device during training of the model slowdown the aggregation process [80, 81].
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Suppressing the communication round for aggregation [21, 83] also increases the stale

models at the participants. The parallel training and communication come with the cost

of gradient-staleness [54]. Considering a fixed size of lightweight models is not suitable

for unequal resources participant devices [86]. Sending WPM of the lightweight model

to the central server increases the number of the round of global aggregation [52].

Moreover, using KD in FL slowdowns the training of models at the devices [51–53,86].

In summary, the existing FL technique in the presence of heterogeneous resources avoid

the straggler devices during aggression at the central server, delay the aggression process,

and/or reduce the number of aggregation round. To overcome the above limitations, we

propose a fast federated learning technique to train a model at the participant devices

in the presence of heterogeneous resources. The technique early halts the training of

the model and aperiodically updates the WPM of the participant devices.

The rest of the chapter is organized as follows. Section 6.2 presents the FFL tech-

nique to train a model on the participant devices with heterogeneous resources using

local datasets. The real-world study and performance evaluation are discussed in Sec-

tion 6.3 and Section 6.4, respectively. Finally, the chapter concludes in Section 6.5.

6.2 FFL technique

We propose a Fast Federated Learning (FFL) technique to train the deep learning mod-

els for prediction or classification tasks at the participant devices with heterogeneous

resources. Figure 6.2 shows the framework of the FFL technique. The central server

initiates the FFL with the collection of the available resource information from par-

ticipant devices followed by the selection of an un-trained generic model, denoted as

Mo. The server transfers the generic model Mo to all the participant devices. The

generic model Mo is successfully trained on most of the participant devices. We next

propose a KD-based early halting approach for insufficient or colossal resources devices

to train generic model Mo. The halting approach speeds up the training process and
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improves the performance of the model within available resources. Finally, we propose

an aperiodic global update approach that helps the participant devices to share their

updated WPM aperiodically. Algorithm 6.1 shows the steps of the FFL technique.
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Figure 6.2: Illustration of the framework for fast federated learning technique.

6.2.1 Model selection on central server

This work assumes an FL scenario with a set P of N participants, P = {%1, %2, · · · , %N}

and a central server. Each participant initially sends a collaboration request to the

server to show its willingness to participate in the federation. The server extracts

the information of the available resources at participants, i.e., memory, processing

power, and network bandwidth, from the received request. Let α, β, and γ denote

the weightage of processing, bandwidth, and memory, respectively, used to select the

generic model for FFL technique, where α+β+ γ = 1 and 0 < {α, β, γ} < 1 [111,121].

The model selection factor, denoted by S-factor, for a participant device is estimated

as α×processing+ β×bandwidth+ γ×memory [111, 121]. The server uses unit-based

normalization, which brings all resource values into the range [0,1] and estimates S-

factor of all devices. The server uses k-means clustering on S-factor for dividing the
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devices into categories, where k ≤
√
N [122]. The server finally selects a model Mo

which fit on the median category of the devices. The selected model is not arbitrarily

large or small and suitable for more than half of the participant devices. The model

with too large-size WPM may require a high compression ratio, which degrades the

participants’ accuracy with insufficient resources. The small model doesn’t provide

adequate accuracy on the devices. The model selection steps are shown in Procedure 6.1.

Procedure 6.1: Model selection on central server
Input: Resource information of P participants;

1 for each participant %i ∈ P do
2 %i sends collaboration request to central server;
3 Server extracts resources information of %i;
4 Estimate S-factor as α×processing+ β×bandwidth+ γ×memory;

5 Apply k-means clustering on S-factors to categorized P;
6 Select model which fit on the median category of the devices;
7 return Model Mo;

6.2.2 Model training on participant devices

Each participant %i ∈ P trains the received model Mo using local dataset Di. The du-

ration of training and inference on the participant devices depend on their processing

power. Similarly, the storage requirement relies upon the size of the model. In addition,

the available resources on the participant devices may diverge during training and infer-

ence of the model. We consider three scenarios based on the heterogeneity of available

resources on the participant devices. In the first scenario, the available resources are

sufficient to train the model Mo. The other scenarios are possible when the participant

device’s resources are colossal or insufficient to train and perform inference on model

Mo. The model training steps are shown in Procedure 6.2.

6.2.2.1 Participant devices with sufficient resources

In the first scenario, the available resources of participant devices match the requirement

of resources to train and perform inference on model Mo. This scenario is illustrated
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in Figure 6.2. Similarly to the FL technique discussed in [123], the training of Mo on

participant %i incorporates forward and backward propagation for E local iterations.

In addition, we incorporate cross-entropy loss, denoted as LCE(·), during training of

Mo on %i. LCE(·) estimates the discrepancy between predicted and actual labels of

instances in the local dataset Di.

6.2.2.2 Participant devices with colossal resources

A participant %i ∈ P with colossal resources can run a sophisticated model Mi that

achieves better inference performance than small size model Mo. We use reverse KD

technique with cross-entropy loss LCE(·) and distillation loss LDL(·) [124] to generate

Mi from Mo, as shown in Figure 6.2. The training of Mi continued for E local epochs

on Di. Later, the participant %i uses trained Mi for the given task.

The participant %i regenerates Mo from trained Mi for sharing the updated WPM

to the central server for the next round of global aggregation. We use the KD tech-

nique [59] to transfer the knowledge from the trained Mi teacher model to the student

Mo model. The logits of trained Mi become a hard target for Mo; therefore, the com-

parisons of their logits don’t provide satisfactory performance [60]. Moreover, using

un-trained Mi and trained Mi teachers for training student model Mo requires huge

training parameters [61]. To overcome these issues, the FFL technique considers Mi as

un-trained and trained teacher models and Mo as student model with layers sharing as

shown in Figure 6.3. However, the training of Mo by using two teachers (trained Mi

and un-trained Mi) requires enormous resources of the participant device.

The FFL technique early halts the training of the un-trained Mi model after epochs

h1 to overcome the requirement of enormous resources of the participant device, where

h1 < E and E denotes the total required epochs for the training of model Mo. The

early halting saves the device’s resources during training of Mo and therefore fast the

FL. Hereafter, the training of Mo will continue under the guidance of trained Mi.
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Theorem 6.1 proves that the number of epochs h1 to halt the training of un-trained Mi

is sufficient to achieve the desired accuracy from Mo. The early halting technique uses

cross-entropy loss LCE(·), attention loss LAL(·), and distillation loss LDL(·), as shown

in Figure 6.3(a). The performance of Mo can be improved in the supervision of trained

Mi that compares output at each epoch. The comparison is carried out using attention

loss between Mo and trained Mi. The combined loss (Lcomb(·)), which operates during

the simultaneous training of Mo and un-trained Mi, is given by:

Lcomb(·) =





λ1LoCE(·) + λ2LAL(·) + λ3LDL(·) + λ4LiCE(·),

till training of un-trained Mi,

λ1LoCE(·) + λ2LAL(·) + λ3LDL(·).

(6.1)

where, λ1, λ2, λ3, and λ4 are the fractional contribution of different loss functions,

0 < {λ1, λ2, λ3, λ4} < 1. We only optimize the combined loss associated with Mo, as

the contribution of the loss of untrained Mi is uniform throughout the training of Mo.

The early halting optimizes the following problem:

min Locomb(·) (6.2a)

s.t., λ1 + λ2 + λ3 = 1, (6.2b)

0 < {λ1, λ2, λ3} < 1. (6.2c)

6.2.2.3 Participant devices with insufficient resources

A participant %i with insufficient resources can run a less complex model Mi, which

provides inferior inference performance than Mo. We use KD approach [59] to generate

small size model Mi from Mo with cross-entropy loss LCE(·) and distillation loss LDL(·).

The participant uses trained Mi for the given task, as shown in Figure 6.2.

The participant %i regenerates Mo using trained Mi to share the updated WPM to



122 6.2. FFL technique

1 i i+1

L
a

b
e
ls

L
o

s
s

i+1

i+1

L
o

s
s

1 i Distillation loss

L
o

s
s

i+1

Input

Softmax layer

Early halting

i+1

L
o

s
s

1 i

Early halting

Distillation loss

Attention loss

Lt

Lt

Shared layer Ls

Lt

Pre-trained Mi

Un-trained Mo

Pre-trained Mi

Shared layer Ls

Un-trained Mi

Un-traiend Mo

Un-trained Mi
Pre-trained Mi

Pre-trained Mi
Un-trained Mo

Un-trained Mo

(a) Colossal resource participant

(b) Insufficient resource participant

Figure 6.3: Early halting of the training of the generic model.

the central server for the next round of aggregation. We use KD to transfer the knowl-

edge from the trained Mi teacher model to the student model Mo. Due to insufficient

resources on participant %i, it is tedious to train Mo for E epochs in a limited time. We

use the proposed early halting approach as shown in Figure 6.3(b). During the training

of the Mo model, we do not use knowledge from the un-trained model Mi due to limited

resources. The knowledge from trained Mi is used to guide the training of Mo, where

training of Mo is halted at epoch h2 (h2 < E). We can obtain h2 using Theorem 6.1.

6.2.3 Aperiodic global update

Each participant sends the WPM of the trained model to the central server for aggre-

gation. The server may not receive the updated WPM simultaneously from all the par-

ticipants if participant devices have unequal network bandwidth and processing power.

The waiting for the updated WPM from all the participants at the server introduces

unavoidable delays during aggregation. The FFL technique introduces aperiodic global

updates at the server inspired from [125] to overcome the above problem. It allows each

participant %i to aperiodically transfers its updated WPM W
[t]
i to the server at global
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Procedure 6.2: Model training on participant devices
Input: Generic model Mo, h1 h2, and E epochs;

1 for each participant %i ∈ P do
2 if (%i has sufficient resources) then
3 Train Mo on Di;
4 else if (%i has colossal resources) then
5 Train Mi from Mo using reverse KD and Di;

/*Regenerate Mo using early halting for aggregation*/

6 for epoch e ≤ E do
7 if e ≤ h1 then
8 Train Mo using pre-trained and un-trained Mi;

9 else
10 Train Mo using pre-trained Mi;

11 else
12 Train Mi from Mo using KD and Di;

/*Regenerate Mo using early halting for aggregation*/

13 Train Mo using pre-trained Mi for h2 epochs;

14 return Mi for %i and WPM of Mo for central server;

iteration t of T time interval, where t ≤ R and R is the number of global iteration. The

following steps are executed at iteration t:

• Step 1: Let us assume none of the participants has send the updated WPM before t,

and the server has WPM W [t−1]. Let k participants of set P have to send their WPM in

threshold time T . The η and Qi denote the learning rate and the number of instances

in dataset Di, respectively. The server performs aggregation at t+ T and the updated

WPM is given as:

W [t+T ] = W [t−1] − η∇(W ′) where,W ′ =
k∑

i=1

( Qi

Q1 +Q2 + · · ·+Qk

)
W

[t]
i . (6.3)

The sever sends back the updated WPM W [t+T ] to all k participants.

• Step 2: Let l (l ∈ {1, 2, · · · , N −k}) denotes the number of participants, which have

send their WPM in the interval t+T and t+2T . Similar as Step 1, the server performs
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aggregation at t+ 2T to obtain updated WPM W [t+2T ] as:

W [t+2T ] = W [t+T ] − η
(
∇(W ′) + δ∇(W ′)�∇(W ′)� (W [t+T ] −W [t−1])

)
, (6.4)

where, W ′ is evaluated using Equation 6.3 for l participants. δ is a variable lies in

range [0, 1] and symbol � represent element-wise product. This step repeats until all

the participants not send their WMP to the server. Aperiodic global update steps are

shown in Procedure 6.3.

Procedure 6.3: Aperiodic global update
Input: Global aggregation interval T , time threshold T ;

1 Initialize: q ← 1 ;
2 for j ← 1 to T do
3 if j ≤ T then
4 Collect WPM from the participants;

/*Let k participants send WPM in first T interval*/

5 Aggregate WPM from k participants using Equation 6.3;

6 while q < T
T do

7 if q.T < j ≤ (q + 1)T then
8 Collect WPM from the participants;

9 Aggregate WPM using Equation 6.4;
10 q ← q + 1;

11 return Aggregated WPM of Mo at central server;

Algorithm 6.1: Fast federated learning technique

Input: Set P of N participants with their local dataset, global iteration R;
Output: Trained model on each participant %i (1 ≤ i ≤ N);

1 Call Procedure 6.1 to select generic model at central server;
2 Central server shares model to the participants P;
3 for R global integration do

4 Call Procedure 6.2 to train generic model using local dataset at each device;
5 Call Procedure 6.3 to send updated WPM from participant devices to the server;

6 Return Trained model at each participant device;
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6.2.4 Deriving expression for halting epoch

This section derives the expression of halting epoch h in terms of allowable loss vari-

ance ε, where h ≤ E and E is the maximum epochs for training on the participant. Let

WH(e) and WE(e) denote the WPM at epoch e (e ≤ E) when the training of model

at participant incorporates halting or non-halting mechanism, respectively. Similarly,

Lcomb(WH(e)) and Lcomb(WE(e)) represent the combine loss (Equation 6.1) when the

training of model at participant incorporate halting or non-halting mechanism, respec-

tively. To derive the expression for ε, we use the following assumptions as given in [21]:

a) Lcomb(·) is ρ-Lipschitz, i.e., ‖Lcomb(W ) − Lcomb(W ′)‖ ≤ ρ‖W − W ′‖ for random

weights W and w′.

b) Lcomb(·) is β-smooth, i.e., ‖∇Lcomb(W )−∇Lcomb(W ′)‖ ≤ β‖W −W ′‖.

Definition 6.1 (Gradient Discrepancy) For epoch e and WPM W , upper bound of

‖∇WH(e)−∇WE(e)‖ is defined as:

‖∇Lcomb(WH(e))−∇Lcomb(WE(e))‖ = 0; if e ≤ h,

‖∇Lcomb(WH(e))−∇Lcomb(WE(e))‖ ≤ φ(e); otherwise
. (6.5)

From Equation 6.5, we can obtain:

φ =

∑E
e=h ‖∇Lcomb(WH(e))−∇Lcomb(WE(e))‖

E − h .

Lemma 6.1 For epoch e, where e ∈ (h ≤ e ≤ E), we have:

V(‖WH(e)−WE(e)‖Ee=h) ≤ q(e), (6.6)

where q(e) = (1− ηβ)φ
β
((1− ηβ)e + (1− ηβ)), η < 1

β
, η > 0, and β > 0. V(·) denotes

the variance.

Proof: To prove the lemma, we consider the following induction V(‖WH(e)−WE(e)‖Ee=h) ≤
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q(e) and using the rule of gradient update, WH(e+ 1) = WH(e)− η∇Lcomb(WH(e)), we

obtain the following expression:

V(‖WH(e+ 1)−WE(e+ 1)‖E−1e=h )

=V(‖WH(e)− η∇Lcomb(WH(e))− (WE(e)− η∇Lcomb(WE(e)))‖Ee=h).

Using triangle inequality [21] and property of variance: V[aX+b] = a2V(X) for constant

a and b, we obtain:

V(‖WH(e+ 1)−WE(e+ 1)‖E−1e=h ) ≤ (1− ηβ)2V(‖WH(e)−WE(e))‖Ee=h). (6.7)

Using considered induction, we reach to following expression:

V(‖WH(e+ 1)−WE(e+ 1)‖E−1e=h ) ≤ (1− ηβ)2q(e),

=⇒ V(‖WH(e+ 1)−WE(e+ 1)‖E−1e=h ) = q(e+ 1). (6.8)

Using Equation 6.8, we obtain, V(‖WH(e)−WE(e)‖Ee=h) ≤ q(e). Hence proved. �

Theorem 6.1 If V(‖Lcomb(WH(e)) − Lcomb(WE(e))‖Ee=h) ≤ ε, then relation between ε

and e (e = h) is defined as:

ε =

√
ρφ(1− ηβ)e+1

υη(1− βη
2

)
=

√
2ρφ(1− ηβ)e+1

υη(2− βη)
, (6.9)

where η < 1
β

, η > 0, β > 0 and υ = 1
V(‖WH(e)−WE(e)‖Ee=h)

2 .

Proof: For an epoch e ∈ (h ≤ e ≤ E), we assume Ψ(e) as:

Ψ(e) = V(‖Lcomb(WH(e))− Lcomb(WE(e))‖Ee=h). (6.10)

Using β-smoothness of the loss function and property discussed in [126]: Lcomb(W ) ≤
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Lcomb(W ′) +∇Lcomb(W ′)T (W −W ′) + β
2
‖W −W ′‖2, we get the following:

V(‖Lcomb(WH(e+ 1))− Lcomb(WH(e))‖E−1e=h )

≤V(‖∇Lcomb(WH(e))T (WH(e+ 1)−WH(e))‖Ee=h),

≤− η2
(

1− βη

2

)
V(‖∇Lcomb(W (e))‖Ee=h)2. (6.11)

From Equation 6.10, we have following expressions:

Ψ(e) = V(‖Lcomb(WH(e))− Lcomb(WE(e))‖Ee=h),

Ψ(e+ 1) = V(‖Lcomb(WH(e+ 1))− Lcomb(WE(e+ 1))‖E−1e=h ).

Further, using the expression derived in Equation 6.11, we get:

Ψ(e+ 1) ≤ Ψ(e)− η2
(

1− βη

2

)
V(‖∇Lcomb(W (e))‖Ee=h)2. (6.12)

Assuming independent WH(·) and WE(·), we have:

Ψ(e) = V(‖Lcomb(WH(e))− Lcomb(WE(e))‖Ee=h),

≤ V(‖∇Lcomb(WH(e))T (WH(e)−WE(e))‖Ee=h),
Ψ(e)

V(‖WH(e)−WE(e)‖Ee=h)
≤ V(‖∇Lcomb(WH(e))‖Ee=h).

Using value of V(‖∇Lcomb(WH(e))‖Ee=h) in Equation 6.12, we get:

Ψ(e+ 1) ≤ Ψ(e)− υη2
(

1− βη

2

)
Ψ(e)2. (6.13)

Since, Ψ(e+ 1)Ψ(e) > 0, thus, it would not harm the inequality of Equation 6.13 upon
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division on both side.

1

Ψ(e+ 1)
− 1

Ψ(e)
≥
υη
(

1− βη
2

)
Ψ(e)

Ψ(e+ 1)
≥ υη2

(
1− βη

2

)
. (6.14)

Ψ(e)−Ψ(e+ 1)

Ψ(e+ 1)Ψ(e)
=

V(‖Lcomb(WH(e)− Lcomb(WE(e))‖Ee=h)
Ψ(e+ 1)Ψ(e)

−V(‖Lcomb(WH(e+ 1)− Lcomb(WE(e+ 1))‖E−1e=h )

Ψ(e+ 1)Ψ(e)
.

Using ρ-Lipschitz property and Lemma 6.1, we have:

Ψ(e)−Ψ(e+ 1)

Ψ(e+ 1)Ψ(e)
≥ ρηφ(1− ηβ)e+1

Ψ(e+ 1)Ψ(e)
. (6.15)

Using Equation 6.10 and assuming ε > 0, we get:

V(‖Lcomb(WH(e+ 1))− Lcomb(WE(e+ 1))‖E−1e=h ),

V(‖Lcomb(WH(e))− Lcomb(WE(e))‖Ee=h) ≤ ε2. (6.16)

1

Ψ(e+ 1)Ψ(e)
≥ 1

ε2
. (6.17)

Using Equation 6.17 and Equation 6.15, we obtain:

Ψ(e)−Ψ(e+ 1)

Ψ(e+ 1)Ψ(e)
≥ ρηφ(1− ηβ)e+1

ε2
. (6.18)

Using Equation 6.14 and Equation 6.18 and taking limiting condition:

υη2
(

1− βη

2

)
=
ρηφ(1− ηβ)e+1

ε2
.



6.3. Real-world study 129

Since, ε > 0, taking positive value of square root, we obtain:

ε =

√
ρφ(1− ηβ)e+1

υη(1− βη
2

)
=

√
2ρφ(1− ηβ)e+1

υη(2− βη)
. (6.19)

Hence, proved. �

6.3 Real-world study

This section presents a real-world study to evaluate the feasibility and performance of

the proposed work. Firstly, we describe the specifications of participants devices and

central server used in the study. Next, we discuss the task of study, followed by the

challenges observed during the study.

6.3.1 Participants devices and central server in real-world study

In this study, we recruited 128 student volunteers as the participants and a central

server located in the institute to execute the FL operations. The smartphones of the

volunteer work as participant devices which have different specifications and brands,

including Samsung, Redmi, Realme, Honor, Apple iPhone, Oppo, etc. Due to the dif-

ferent specifications and brands, the participant devices have heterogeneous resources,

i.e., memory and processing power. Random Access Memory (RAM) on these smart-

phones lie in the range of 1 GB to 12 GB, as illustrated in Figure 6.4(a). However, the

average availability of RAM is approximate 30%−40% due to pre-installed applications

and operating systems on smartphones. Similarly, the processing power or Central Pro-

cessing Unit (CPU) clock speed lies in different ranges, as illustrated in Figure 6.4(b).

Due to the COVID-19, most of the students are at homes in distinct locations; thus,

network bandwidth between participants and the central server located at the institute

possesses a high level of heterogeneity. Figure 6.4(c) illustrates the network bandwidth

in the ranges. Besides, from Figure 6.4, we can observe that maximum volunteers have
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RAM of 3 GB (41 volunteers), CPU clock speed in the range 2.0− 2.3 GHz (33 volun-

teers), and network speed < 10 Mbps (48 volunteers). Further, the used central server

is a Dell server with an Intel Dual Xeon processor with 256GB RAM operating over a

Gigabit Ethernet connection.
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Figure 6.4: Participants devices and central server in real-world study. (a) RAM specification, (b)
Processing power, and (c) Bandwidth.

6.3.2 Task of study: Locomotion Mode Recognition

This study considered the task of Locomotion Mode Recognition (LMR) using par-

ticipant devices. LMR recognizes the following locomotion modes bicycle, car, bus,

auto-rickshaw, bike, and train, using multiple sensors, including accelerometer, gyro-

scope, and magnetometer. LMR helps in several aspects such as estimating travel

time, optimizing traffic flow, adequate journey planning, estimating travel expenses,

etc [5, 127]. The study considered the LMR task because the FFL technique does not

require sharing of locomotion data, which maintains the data privacy and overcomes

the limitation of the limited bandwidth.

6.3.3 Challenges observed during study

The first challenge we encountered during the study was the inconsistency in the avail-

ability of the participant devices. This inconsistency is a matter of the fact that the

student volunteers are at distinct and remote locations, where they face frequent con-

nection and disconnection from the network. Next, the restrictive movement due to
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pandemic COVID-19 created another challenge of data scarcity. The volunteers col-

lected only a few samples of locomotion modes data. In addition, some volunteers

collected data for a sub-set of classes only. Further, we encountered the challenge of

variation in the sensory data instances due to different brands of smartphones used by

the participants in the real-world study. For example, the sensory instances of Samsung

smartphones were different to that of Xiaomi. Finally, the participants are at distinct

locations; thus, they faced the interruption in power supply. This interruption adversely

hampered the remaining battery of smartphones, and participants left the training.

6.4 Performance Evaluation

This section describes the datasets, baseline techniques, implementation details, and

validation metrics used to evaluate the performance of the proposed FFL technique. In

this section, we carry out the experimental evaluation to validate the performance of

the FFL technique.

6.4.1 Datasets

In this work, we considered the collected LMR dataset and an existing SHL [55] dataset

to evaluate and compare the performance of FFL technique.

6.4.2 Baseline techniques

We considered the existing techniques [52, 54] as baselines, noted as Baseline1 and

Baseline2, to evaluate the performance of the proposed FFL technique. Baseline1 [52]

had selected a lightweight model for FL, which work successfully even on insufficient

resources participant devices. However, such a lightweight model does not give high

accuracy in a heterogeneous scenario where some participants have sufficient or colos-

sal resources. The proposed FFL technique considers this issue and resizes the selected

model based on the available resources of participant devices. Baseline2 [54] proposed
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the mechanism to disjoint the local training and global aggregation operations in FL.

The mechanism allowed the participants to transfer their WPM upon completion of lo-

cal training and immediately get the response of aggregated WPM. Baseline2 supports

asynchronous aggregation where the server does not wait for the WPM of all partici-

pants. Baseline2 allowed the participants to transfer their WPM upon completion of

local training and immediately get the response of aggregated WPM. The aggregated

WPM in asynchronous aggregation creates WPM staleness issue.

6.4.3 Implementation details

We used the Deep Neural Networks (DNN) DeepZero discussed in [127] during ex-

perimental evaluation. We selected DeepZero because it computed automated deep

learning features and combined them with hand-crafted features to achieve high-order

accuracy and introduced some level of parallelism. We have implemented the FFL tech-

nique using Python language with Tensorflow and Keras libraries. FFL incorporated

the functional API of Keras to implement DeepZero. To estimate fractional variables

(λ1, λ2, and λ3) in Equation 6.2, we adopt differential evolution technique [128] on

different loss functions, i.e., cross-entropy loss, distillation loss, and attention loss.

We selected the window size of 20 to reduce the length of dataset instances from

6000 to 300 during pre-processing. Later, we perform the random and disjoint par-

titioning of LMR dataset into training and testing sub-datasets of ratio 80 : 20 using

sklearn.model selection.train test split() in Sklearn model selection [129].

We selected 100 participants from 128 volunteers depending upon their availability

and willingness to participate in FL. All the participants registered their devices with

the central server located in the institute, where unique identifiers are assigned to them

after authentication. All the authorized participants performed the FL operations on

commonly agreed and pre-specified schedules. We used the push style of Internet-

based communication to get updated WPMs and transfer aggregated WPMs to the
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participants. We randomly partitioned training and testing sub-datasets of SHL and

LMR in 100 disjoint parts and provided a unique data portion to each volunteer. We

develop a smartphone application, which incorporates Python libraries of Tensorflow

lite and Keras. Each volunteer needs to install the application to successfully participate

in FL, where training and inference of a lightweight (or large-size) version of DeepZero

are performed on smartphone.

6.4.4 Validation metrics

In this work, we used the following standard classification metrics to evaluate and

compare the performance of the FFL technique: F1-score, accuracy, and leave-one-out

test validation. Let a given dataset consists of a set of A classes, and |A| represents

the number of classes. Let TPi, TNi FPi, and FNi are the true positive, true negative,

false positive, and false negative counts of a class i ∈ A, respectively. The accuracy

metric is computed as:

1

|A|

|A|∑

i=1

TPi + TNi

TPi + TNi + FPi + FNi
. (6.20)

Next, the F1-score is computed as:

1

|A|

|A|∑

i=1

2× TPi
2× TPi + FPi + FNi

. (6.21)

We finally consider the leave-one-out test validation metric that trains the model for

all class labels except for one randomly chosen class label. However, during testing,

the unseen class label is also supplied for predicting the output. Thus, it evaluates the

performance of the classifier for one unseen class label.

6.4.5 Experimental results

In this section, we present the experimental results of the FFL technique on aforemen-

tioned datasets.
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6.4.5.1 Impact of heterogeneous devices and networking resources

This experiment aims to select a generic model that can be easily accommodated on the

participating devices for the FFL technique. The experiment considered the real-world

study where the participant devices have heterogeneous resources (processing power,

bandwidth, and memory).

Figure 6.5(a) illustrates the normalized values of resources of 100 participants de-

vices. We used unit-based normalization, which brings all values into the range [0,1].

The devices are arranged in ascending order of their proceeding capacity then band-

width and memory resources are arranged accordingly. Ellipses e1, e2, and e3 in

Figure 6.5(a) illustrate the normalized values of resources of participant devices, where

e1 and e3 are the devices with least and colossal resources, respectively. We estimate

S-factor using normalized values of resources of participant devices in Procedure 6.1.

Since most of the smartphones of participants have sufficient memory to run the generic

model, we set its weightage to the least value (γ = 0.1) while selecting the model. Fig-

ure 6.5(b) illustrates S-factor when {(α, β, γ)} are {(0.7, 0.2, 0.1)} and {(0.5, 0.4, 0.1)}.

Further, we arrange the estimated S-factors in ascending order and divided the par-

ticipants into eight categories T1,T2, · · · ,T8, based on the possible configurations of

the models. Figure 6.5(c) illustrates the number of participants and the range of S-

factor for each category when α = 0.7, β = 0.2, and γ = 0.1. We observe from the result

that the number of participants in T5 is highest for both S-factors. A generic model

for T5 works on the maximum number of devices. Moreover, the model is also suitable

for T6 to T8 because they have more than the required resources. The selection of a

model for T5 also work on T1 −T4 with some level of compression.

Observation: The first observation from the result is that the real-world study consists

high level of heterogeneity, where all the resources of some devices are either insuffi-

cient or colossal. The next observation is that the networking resource (bandwidth) is

independent of the device resources. Thus, while selecting the generic model, we need to
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consider devices and networking resources simultaneously. Specially, we observed that

the processing and bandwidth are the essential factors for selecting the generic model.

Finally, we observed that a selected generic model must satisfy the requirement of in-

sufficient or colossal resources devices.
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Figure 6.5: Illustration of devices and networking resources and categories of participant devices.

6.4.5.2 Training of the model on each participant device

The objective of this experiment is to highlight the requirement of the resources for

resizing and training of the model based on the categories of devices. Figure 6.6(a) il-

lustrates the normalized values of required device resources for resizing the model using

LMR and SHL datasets. T5 category of devices directly used the selected model and

therefore did not require resources for resizing. To fit the model on other devices, T1-T4

and T6-T8 categories of devices need to compress and enlarge the model, respectively,

as discussed in Algorithm 6.1. Devices of T1 category needs high compression as com-

pared to the enlarge the model for T8. Therefore, T1 needs more resources than T8.
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Similarly, Figure 6.6(b) illustrates the normalized values of required device resources

for training of resized model using FFL technique with LMR and SHL datasets. T1

to T8 increase the size of the models and therefore require more resources. Moreover,

T6-T8 require high resources because they used two teacher models during training,

as shown in Figure 6.6. The results also illustrate that the LMR dataset takes more

resources during resizing and training than SHL datasets because the LMR has more

instances than the SHL.

Observation: The early halting helps to reduce the requirement of resources during train-

ing. Therefore, FFL successfully trains the models on insufficient resource devices by

using early halting.
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Figure 6.6: Illustration of the requirement of resources for resizing and training of the model based
on the category of participant devices, where RR is Required Resources.

6.4.5.3 Performance of FFL technique

The objective of this experiment is to evaluate and compare the performance of the

FFL technique with existing baseline techniques (Baseline1 [52] and Baseline2 [54]).

The results used the generic model selected in previous result, collected LMR and SHL

datasets, and validation metrics as given in Section 6.4.4.

Figure 6.7(a1) illustrates the accuracy of the techniques using Equation 6.20 and

LMR dataset. It shows the FFL gives higher accuracy than Baseline1 and Baseline2

for all categories of devices. It is because Baseline1 used a lightweight model for all

participant devices that inefficiently utilize the available resources of the devices. Sim-
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ilarly, Baseline2 focused only on aggregation and did not consider the limitation of the

resources on the devices. We also observed that FFL gives almost equal accuracy as

Baseline1 and Baseline2 for T1 and T5, respectively. The FFL resizes the model based

on the limited resources of T1 and directly uses the generic model for T5. The higher

category of devices have more resources and therefore gives high accuracy in all the

techniques, as shown in the result. The results in Figure 6.7(a2) give less accuracy than

Figure 6.7(a1) for all the techniques and categories of participant devices because of

the SHL dataset, which has imbalanced classes. In addition, the SHL dataset consists

of more classes than the LMR dataset. This is another reason for less accuracy.

Figure 6.7(b) illustrates the F1-score as given in Equation 6.21, for validating the

preference of the techniques. The class distribution in the collected LMR dataset is

similar; therefore, the true positives and true negatives are important and false nega-

tives, and false positives are not crucial. The results in Figure 6.7(b1) illustrate the

similar behaviour as shown in Figure 6.7(a1). However, it is not true for Figure 6.7(b2),

where false negatives and false positives are crucial and give less accuracy. Finally, we

performed experiments by using a leave-one-out validation metric where instances of

one class are not considered during training. Figure 6.7(c) illustrates the results of the

leave-one-out validation metric where instances of one class are not considered during

training. The results illustrate that difference of the accuracy in Figure 6.7(a1) and Fig-

ure 6.7(c1) is less for colossal resources devices T8 then insufficient resource devices T1.

This is because the colossal resource devices train more successfully than insufficient

resource devices.

Observation: All the techniques give less accuracy and F1-score while using the dataset

with imbalanced class labels. It affects more on insufficient resource devices. We con-

clude from this observation that if the dataset has imbalanced class labels then the se-

lection of the generic model must be favorable for insufficient resource devices.
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Figure 6.7: Illustration of the accuracy, F1-score, and leave-one-out test of the FFL and baseline
techniques [52,54].

6.4.5.4 Impact of early halting on performance and earliness

The objective of this experiment is to illustrate the impact of the early halting on the

performance of participants with colossal and insufficient resources. We also demon-

strate the reduction in FLoating-point OPerations (FLOPs) using the early halting.

We considered the participants of category T7 to describe the impact of the early

halting mechanism on colossal resources participants. Table 6.1 illustrates that sig-

nificant improvement in accuracy and F1-score of Mo is observed up to 60 epochs of
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simultaneous training with un-trained large-size Mi (model on participant %i) under

the guidance of trained Mi. After that, we observe a minor improvement in the accu-

racy and F1-score of Mo. However, the required resources for further training increases

sharply. It indicates that the training of un-trained Mi with Mo do not improve per-

formance despite consuming enormous resources (FLOPs). Therefore, we can halt the

training of un-trained Mi at 60 epochs. Next, Table 6.2 illustrates the fractional contri-

bution of different loss functions (given in Equation 6.2) on the performance of Mo for

participant category T6 and T7. The result illustrates that the increase in resources

of participant devices and reduction in the dataset’s size leads to improved accuracy

and F1-score of Mo. It also decreases the contribution of distillation loss (λ3). When

the difference between the size of Mo and Mi is large, attention loss and cross-entropy

loss help to reduce the deviation of Mo training due to random initialization un-trained

Mi. Thus, contribution of un-trained Mi via distillation loss (λ3) is reduced to improve

performance of Mo.

Table 6.1: Impact of early halting on participants of T7 category.

Epochs 40 50 60 70 80 90 100
Accuracy

(in %)
82.51 87.02 93.08 93.37 93.53 93.97 94.54

F1-score
(in %)

84.21 88.78 94.73 95.03 95.17 95.23 94.83

FLOPs
(×1013)

2.53 2.77 2.93 3.09 3.29 3.56 3.73

Table 6.2: Fractional contributions (λ1, λ2, and λ3) of different loss functions on participants with
colossal resources of categories T6 and T7 using LMR and SHL datasets.

Category Dataset
Fractional weights

Accuracy F1-score
λ1 λ2 λ3

T6
LMR 0.4739 0.3453 0.1808 92.81% 93.93%
SHL 0.4817 0.3641 0.1542 92.43% 93.17%

T7
LMR 0.4953 0.3761 0.1286 93.08% 94.73%
SHL 0.5122 0.3944 0.0934 92.72% 94.31%

Further, we considered participant type T3 to study the role of early halting on
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insufficient resources participants. Table 6.3 depicts the performance improvement up

to 70 epochs during training of Mo under the guidance of lightweight Mi is rapid. After

that, the performance improvement is low, but resource consumption (FLOPs) is high.

Thus, we halt the training of Mo for participant type T3 at 70 epochs.

Table 6.3: Impact of early halting on participants of T3 category.

Epochs 40 50 60 70 80 90 100
Accuracy

(in %)
63.82 72.82 81.07 87.92 88.13 88.74 89.14

F1-score
(in %)

67.17 77.68 85.74 90.03 90.19 90.63 91.20

FLOPs
(×1011)

1.17 1.23 1.41 1.54 1.71 1.82 1.91

Observation: An interesting observation from the result is that the early halting of train-

ing preserves sufficient resources on the participant devices. Therefore, the selection of

halting epoch should be made wisely to preserve resources, speed up the training, and

achieve adequate performance.

6.4.5.5 Impact of aperiodic global update

This experiment aims to determine the impact of aperiodic global updates on the per-

formance of the FFL technique. We estimated the ratio of time threshold T with global

iteration time interval to determine its impact on the performance using LMR and SHL.

Figure 6.8(a) illustrates the accuracy increases with the ratio of T and T up to

0.5 and decreases thereafter for the collected LMR dataset. It is because at a lower

value of T only a few participants are involved in the intermediate aggregations, which

results in inferior quality of aggregated WPM. On the other hand, the increment in T

allowed more devices to participate in intermediate aggregation, which generate precise

aggregated WPM. However, beyond the ratio of 0.5, the number of participants involved

in the intermediate aggregation increases, but the aggregation is performed only once

between two global iterations. The participant devices with colossal resources get the
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updated WPMs quickly but wait for the next global iteration. It results in performance

compromise of colossal resource participants. Figure 6.8(a) also illustrates that optimal

value of T lies in the range of 0.3 to 0.5. T also depends upon the available network

bandwidth. If the average bandwidth of all the participants is high then the optimal

value of T is closer to 0.3 and closer to 0.5 when the average bandwidth is low. Similarly,

Figure 6.8(b) illustrates that SHL gives low F1-score than the LMR dataset for a given

ratio of T and T . It is because SHL has imbalanced classes, as we have discussed

Section 6.4.5.3.

Observation: An interesting observation from the result is that the value of the time

threshold played a decisive role to ensure a high-order performance of the FFL tech-

nique. T should not exceed 0.5 as it restricts the multi-round intermediate aggregation.

This restriction reduced the role of aperiodic global updates and hence compromised the

performance of the FFL technique.
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Figure 6.8: Impact of ratio of time threshold with global iteration time interval.

6.5 Conclusion

This chapter proposed a FFL technique to train a model for a given task at the par-

ticipant devices using its local dataset. Unlike the existing work, the FFL technique

trained the model on participant devices with resource heterogeneity. We first pre-

sented an approach to obtain the generic model, which is not arbitrarily large or small

and suitable for most participant devices. Next, we proposed an early halting approach
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for faster training of the resized model, which fits the insufficient and colossal resource

devices. We finally proposed an aperiodic global update approach for aggregation of

WPM in the presence of unequal bandwidth and processing power of devices. We also

did a real-world study to evaluate the feasibility and performance of the proposed work.

We found the following conclusions from this work: federated learning works success-

fully only when the device and networking resources are considered simultaneously;

generic model must satisfy insufficient and colossal resource devices; if the dataset is

imbalanced, then the selection of the generic model must be favorable for insufficient

resource devices.


