
Chapter 5

A game theory-based passenger

assistance system using Fog

computing

In the previous chapters, we discussed two challenges encountered in locomotion mode

detection, i.e., unseen classes and noisy labels in the dataset. We proposed the deep

learning-based approach, which incorporates zero-shot learning for handling unseen

class labels in the dataset. Next, we dealt with the challenge of frequently occurring

noisy labels in the dataset result in performance diminution. By resolving both the

challenges in locomotion mode detection, we have built the classifier that is robust

against both unseen classes and noisy labels in the dataset. This chapter presents the

mechanism for task processing on smartphones and proposes a Fog computing based

transportation system. The system uses multiple Fog devices to assist the passengers.

A passenger generates a task and forwards it to the Fog devices for further processing

using the Edge device. Selected Fog devices parallelly process the fraction of the task

so that the complete task processes within the time constraint.
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5.1 Introduction

The public transport in urban society needs to be intelligent and interactive for provid-

ing better service to passengers. For example, the transportation system for the tourists

should be capable of guiding the passengers about the routes and nearby sights. With

the recent advancements in Internet technology and smart devices, the passengers no

longer need to rely on the conventional traveling aids (e.g., explanatory brochure or

road maps) as they can avail required information using online sources. Such informa-

tion can be access locally or from the Cloud. Cloud computing suffers from substantial

communication delay and requires continuous long-range communication network (such

as 4G or 5G). Such networks consume huge power of smart devices. It is convenient if

the vehicle locally assists the passengers by providing a faster response to their queries

using the preloaded information. However, due to infrequent updates of information

and limited local resources, the vehicle can not provide sufficient information.

Fog computing mitigates the shortcomings of Cloud computing and local process-

ing [14]. The layered architecture of Fog computing comprises Edge Devices (EDs), Fog

Devices (FDs), and Cloud. The FDs can interact with each other and provide parallel

processing of the data. The interaction among the FDs overcomes the limitation of

unequal storage and computation power of the FDs. Transportation system using Fog

computing can assist passengers in the processing of task and updating the information

about their journey. Figure 5.1 illustrates an example scenario for passenger assistance,

where a passenger on a sightseeing vehicle (such as hop-on-hop-off) captures some im-

ages of a monument using the smartphone. Next, the smartphone wirelessly transfers

the images with the query to the vehicle which acts as ED. The vehicle processes the

query if they can solve or further forwards to the Road Side Unit (RSU) which acts as

FD. The RSU processes the query and transfers the query response to the passenger.

In this chapter, we present a Transportation System using Fog computing (TSF)

for passenger assistance. TSF uses multiple FDs (RSUs) that are interconnected with
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Figure 5.1: An example of transportation system using Fog computing.

each other and the Cloud, as shown in Figure 5.2. EDs (vehicles) collect data from

the users and forward it to the connected FD, called primary FD (p-FD). The p-FD is

connected with other FDs and the Cloud. Such devices have different processing power;

therefore, require unequal processing cost. Based on the availability of the resources,

given constraints, and the cost, the p-FD decides to offload the fractions of the task

to the secondary FDs (s-FDs). The objective of this work is to address the following

problem: what are the fractions of a task offloaded to the p-FD, s-FDs, and Cloud for

processing the task within the given time constraint and requires minimal cost? To

solve the problem, we use the competitive game approach and Knapsack algorithm for

partitioning the task among the p-FD, s-FDs, and Cloud. Apart from this, we made

the following contributions:

• We first estimate transmission and processing delays of data associated with a

task. We next present a reputation model which provides the confidence for

successful completion of the given task. The existing work for offloading the task

using Fog computing [14–19,44–46] have not considered the reputation of FDs.

• Next, we present Fog computing based transportation system, which comprises

two phases. First phase selects suitable FDs for processing a task using the signal

to interference noise ratio. The second phase estimates the fraction of the task
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process at p-FD and offloads to s-FDs, such that the task must be processed

within given time constraint. The available resources to process a given task

using FD depends upon the load at the time of processing. The proposed work

considers the actual processing capability or available resources at each FD instead

of the average or pre-fixed processing capability, which is assumed by the existing

work [14, 42, 43, 47]. We present a Knapsack based task offloading algorithm to

fully utilize the resources of the s-FDs.

• Further, we present a competitive game model and near Nash Equilibrium (ε-

NE) solution to estimate the optimal fraction of the task to be solved at p-FD

and offloaded s-FDs. Such fractions of task are the input of Knapsack based

task offloading algorithm. The ε-NE solution agrees by all FDs; therefore, no FD

deviates from task processing. The existing work not considered the cooperation

among FDs; thus, they may deviate from task processing, whenever they have

higher utility [44–46].

• Finally, we validate the TSF system and experimentally analyze impact of data

size, task deadline, devices, and game parameters on accuracy and system cost.

• Motivation of this work: This work is motivated by the following shortcomings

of the existing work. First, the existing literature on task offloading using Fog com-

puting [14–17, 42–46] presented hierarchical networks for consisting of Edge, Fog, and

Cloud layers for distributed tasks execution. However, the existing work do not consider

the interaction among the FDs, i.e., offload from one FD to others. Next, a few prior

work [14, 42, 43, 47] considered heterogeneity of FDs limited to the transmission of the

complete task; hence, utilizing available resources inefficiently. Next, the existing work

on task offloading in Fog computing [44–46] incorporated offloading of complete task

from one device to another. However, to ensure load balancing among FDs, task parti-

tioning is requisite to assign the most appropriate device to execute the task. Finally,

the existing work have not considered the reputation of FDs during task offloading.
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The rest of the chapter is organized as follows: In next section, we present the

preliminaries and network topology used in this work. Further, Section 5.3 presents the

proposed TSF system, followed by competitive game models in Section 5.4. We present

prototype setup and performance evaluation in Section 5.5. The chapter ends with the

conclusion in Section 5.6.

5.2 Preliminary and network topology

This section discusses the network topology and terms involved in this chapter. We also

describe transmission and communication delays, followed by the reputation model.

5.2.1 Network Topology

We use the hierarchical network topology which consists of layered based devices, as

illustrated in Figure 5.2. The leaf devices (e.g., smartphone of passengers) collect D

bits data and wirelessly forward to Edge devices (e.g., vehicle). The Edge devices store,

route, and forward data D to Fog devices (e.g., RSUs) denoted as FDs. We assume

that initially all FDs have similar processing capacity f . The FDs have higher storage,

computation, and communication capabilities compared to Edge devices. The FDs are

connected with each other and also with the Cloud. Let {F1, F2, F3, . . . , FN} and

FN+1 denote N FDs and Cloud, respectively. The task T of size D is executed at

Fog layer with task distribution among FDs. In adverse case when FDs are incapable

of processing the task T completely, the remaining portion of the task is offloaded to

Cloud to meet out time constraint.

5.2.2 Transmission and computation delays

• Data transmission delay: Let Bij, hij, and zij represent the bandwidth, channel

coefficient, and path loss frequency between devices i and j, respectively. The data



90 5.2. Preliminary and network topology

transmission rate Ri,j from Fi to Fj can be calculated using Shannon channel capacity

Ri,j = Bij log2

(
1 +

zijh
2
ij

σ2

)
. Time to transmit D bits data from Fi to Fj is given as:

Ti,j =
D
Ri,j

=
D

Bij log2

(
1 +

zijh2ij
σ2

) . (5.1)

p-FD initially does not have the available resource information of the selected s-

FDs. Therefore, the initial task offloading decision on p-FD is of equally splitting the

task having the same datasize. Next, the p-FD informs s-FDs of their sub-tasks to

be allocated. Later, the s-FDs estimate the time based on the available resources and

notify the p-FD about the portion of the task they can process. Finally, the p-FD

updates the offloading decision based on the received responses from s-FDs. During the

update of decisions, the task and corresponding datasize vary from one s-FD to other.

•Data computation delay: Let fj denote the computation capability of a FD Fj ∈ N

in accordance with number of CPU cycles in one time unit. The computation time T cj

for execution of task T of D bits at Fj is T cj = D×q
fj

, where q denotes CPU cycles required

for processing one bit.

• Result transmission delay: Transmitting the result of size d bits from Fj to the

source Fi incurs result transmission delay T rji as:

T rj,i =
d

Ri,j

=
d

Bij log2

(
1 +

zijh2ij
σ2

) . (5.2)

The total delay (T) is the sum of data transmission, computation, and result trans-

mission delays, is given as:

T = Ti,j + T cj + T rj,i. (5.3)
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5.2.3 Reputation model

The successful inference of the data portion is a binary event that can be represented

using beta distributions. Let rij and wij represent the positive and negative reputa-

tion feedback, respectively, of FD Fj by neighboring FD Fi. The reputation function

F(x|rij, wij) of Fj in terms of Fi is given as:

F(x|rij, wij) =
ΓΓΓ(rij + wij + 2)

ΓΓΓ(rij)ΓΓΓ(wij)
pr

i
j(1− p)wi

j , (5.4)

where, ΓΓΓ(·) is a gamma function and value of variable x, rij and wij lie between [0, 1] [112].

The expectation value of the reputation function E[F(x|rij, sij)] =
rij+1

rij+w
i
j+2

.
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Figure 5.2: Network topology for the TSF system, passengers at bottom layer are sitting in vehicles.

Definition 5.1 (Reputation rating) The expected value of reputation function pro-

vides a rating to the FD between [0, 1]. It is convenient to convert expected value to a

reputation feedback between [−1, 1]. Therefore, reputation rating Ri
j can be defined as:

Ri
j =

(
E[F(x|rij, wij)]− 0.5

)
× 2 =

rij − wij
rij + wij + 2

. (5.5)

Definition 5.2 (Combined reputation rating) Let E[F(x|rij, wij] and E[F(x|rkj , wkj )]

be the reputation function of FD j by p-FD i and s-FDs {k = {n}/j}, respectively. The
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combined reputation rating of FD j for p-FD i is as follows:

ri,kj = brij + (1− b)
∑

k={n}/j
rkj ,

wi,kj = bwij + (1− b)
∑

k={n}/j
wkj , (5.6)

where, 0 ≤ b ≤ 1 is a bias factor that indicates the importance of feedback. The

reputation rating of s-FD j for p-FD i can be defined as:

rij =
ri,kj − wi,kj

ri,kj + wi,kj + 2
. (5.7)

Definition 5.3 (Nash Equilibrium) If each player of the game selects a strategy,

none of the players can enhance their payoff by changing its strategy, while other play-

ers keep their strategies unchanged; then the game is said to have reached the Nash

Equilibrium (NE). It is achieved, when for each player i there exist strategy s?i , where

s?i ∈ Si (Si is strategies set of ith player), such that utility Ui of each player i holds:

Ui(s
?
i , s−i) ≥ Ui(si, s−i), ∀i ∈ N ,

Ui(s
?
i , s

?
−i) ≥ Ui(si, s−i). (5.8)

5.3 TSF system

This section proposes Transportation System using Fog computing (TSF) which in-

volves two phases, Phase I: selection of secondary Fog devices and Phase II: task of-

floading and distributed execution.

5.3.1 Phase 1: Selection of secondary Fog devices

Initially, a FD receives data from the ED which work as p-FD, denoted as Fi, in the

system. The p-FD communicates with the nearby FDs (Fj,∀j ∈ N ) to offload the
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task T . The estimation of Signal to Interference plus Noise Ratio (SINR) for each pair

(Fi, Fj) increases the reliability of data transmission between Fi and Fj. Let Gi,j and

di,j denote fading power gain and distance between Fi and Fj, respectively. The SINR

Si,j can be obtained as:

Si,j =
Gj,iqjzjd−γj,i

σ2 +
∑

j∈N Gr,iprzrd−γr,i
, (5.9)

where, qj is frequency of path loss and γ denote path-loss. Let T be the minimum

value of SINR required for the successful transmission of data from Fi to Fj. The p-

FD Fi considers the s-FDs (Fj) only if the SINR of pair (Fi, Fj) higher than threshold

T . Such selected s-FDs are only participating for task offloading. We therefore finally

obtain a set of n s-FDs that can provide a significant level of reliability in the successful

offloading of the task.

5.3.2 Phase II: Task offloading

This phase involves initialization and offloading decision update steps. In the initial-

ization step, randomly fractions of the task is offloaded on the FDs for the execution.

These randomly assigned values are updated using the competitive game model, which

is discussed in Section 5.4. In the offloading decision update step, the portion of the

task assigned to each s-FD is updated based on the available resources on the s-FD.

5.3.2.1 Initialization

Let p-FD (Fi) receives a task T of size D that is to be executed within a time constraint

τmax. Let time required to execute the task at p-FD be τ > τmax, with the processing

capacity f bits/sec, i.e., τ=D/f . The p-FD partitions τ in τi and τ − τi to execute T

within τmax. Portion τi is executed on Fi and τ − τi is equally divided among n selected

Fj such that a s-FD executes τj=
τ−τi
n

portion of T , where Fj ∈ N and 1 ≤ j ≤ n.

Initially, offloading decision is made by considering equal capacity of FDs. However,
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the processing capability of each FD may not be equal as it depends on the available

resources. Fi, Fj assign initial value of the portion of task to be execute i.e., τi and τj.

5.3.2.2 Estimation of the optimal value of τi and τj

In this section, competitive game model is used for task offloading among FDs. Initial

value of τi and τj are taken as input and the optimal values of τi and τj are estimated

using the competitive game model, discussed in Section 5.4.

5.3.2.3 Offloading decision update

In this step, the offloading decision is updated based on the current resources available

on s-FDs. The current computation capability of Fj can be higher or lower than aver-

age processing capability f which depending on available resources. The task portion

estimated by initial offloading decision for each Fj is D′ = f × τj, whereas, the actual

task portion that Fj can complete is D′j = fj × τj. Using actual processing capability

fj of s-FD, we can define task execution as an indicator function 1{f>fj}. The indicator

function gives value 1 when f > fj and 0 otherwise. If 1{f>fj} = 0 then Fj will complete

the estimated task portion D′ in time τ ′j = D′/fj. Thus, Fj is idle for time Ij = τj− τ ′j.

The total task bits W remaining for execution is sum of task bits left from different Fj:

W =
n∑

j

1{f>fj}bD′ −Djc. (5.10)

W can be offloaded to the Cloud or other s-FDs which are idle for time Ij. As the

processing cost at Cloud is higher than Fj; therefore, Fj are preferred for further task

offloading. W may or may not be executed completely on a single Fj with limited Ij.

This enforces to divide W in such a way that maximum bits of W can be transferred to

Fj with highest Ij. The remaining task distribution on idle Fj closely resembles with

Knapsack problem. Let ηj be the fraction of W assigned on Fj with Knapsack on
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time constraints th. The Knapsack problem for W bits task allocated is defined as:

max
z∑

j=1

ηjWIj,

s.t.,
z∑

j=1

ηjW

(
1

fj

)
≤ th, (5.11)

where, ηj ∈ [0, 1) and z is the number of Fj remains idle during task execution. The op-

timization problem of Knapsack is solved using Algorithm 5.1. The stopping condition

is reached when either the task is completely assigned or no more available Fj.

5.4 Competitive game model for task offloading

This section presents a competitive game model for task offloading among FDs. First,

we derive the utility functions of p-FD and s-FDs. Next, we present the p-FD utility

maximization problem for estimating the optimal task partitions. The optimal price

taken by the s-FDs is estimated with the utility maximization problem of s-FDs. Finally,

the section proposes a near Nash Equilibrium (ε-NE) solution among s-FDs for the

following competitive game:

• Players: s-FDs (total n s-FDs) and p-FD.

• Actions: The action of the p-FD is to select an optimal task fraction τi that

maximizes its utility. On the other hand, each s-FD determines the price pj for

their service to the p-FD to maximize their utilities.

• Utility function: The utility functions of p-FD Fi and s-FD Fj are Ui(·) (Equa-

tion 5.16) and Uj(·) (Equation 5.17), respectively.

5.4.1 Utility of primary Fog device

The utility function Ui(·) of p-FD Fi have following terms:

• Price gain from Edge device: The p-FD Fi receives a price pi per unit time from
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Algorithm 5.1: Knapsack based task offloading.
Input: W , th z, fj , Ij ∀j ∈ z.
Output: Suitable fj to execute W bits data.

1 t← 0, η0 ← 1. /* Variables initialization */
2 Calculate W using Equation 5.10.

3 f(ηj) = th−
(
t+ ηjW

1
fj

)
.

4 Arrange Fj in descending order as per Ij . /* Select ηj from Fj as Knapsack th */
5 for j ← 1 to z do
6 while t < th do
7 if f(ηj) ≥ 0 then

8 t← t+ ηjW
(

1
fj

)
.

9 return

10 else
/* select ηj ∈ [0, 1), using Bisection method */

11 ηj ← Bisection method().
12 if ηj = 0 then
13 /* Remaining W bits executed on Cloud */
14 return

15 t← t+ ηjW
(

1
fj

)
.

16 W ←W − ηjW , ηj ← ηj .

Function Bisection method()
tl ← .02, a← 0, b← 0.98, miter ← 20,i← 1.
while i ≤ miter do

nj ← (a+b)
2 .

if f(nj) = 0 or b−a
2 < tl then

return nj

if |f(nj)| == |f(a)| then
a← c

b← c, i← i+ 1

return 0

the Edge device, which generates the task. Since the task completes its execution

in time τ ; therefore, the price gain Le = pi × τ .

• Cost of task execution: The p-FD decides to execute τi portion; thus, the cost

incurred for utilizing its resources for task execution is defined as:

Lc = ch log
(

1− τi
τ

)
, (5.12)

where, ch is a constant cost coefficient as given in [113].
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• Service cost to s-FDs: (τ − τi) portion of task is offloaded to n s-FDs, which

provide service at the price pj per unit time. The service cost paid by p-FD Fi

also depends on the reputation rij of the s-FD Fj, given by Equation 5.7. The

service cost Ls paid to the s-FDs is computed as:

Ls =
n∑

j=1

rij × pj × τj. (5.13)

• Discomfort cost: The s-FD can either accept or reject the task, based on its

available resources. When a s-FD Fj rejects the assigned task by Fi, it creates a

discomfort Dij to the p-FD Fi. Let l be the number of s-FDs that were unsuc-

cessful in completing their previous offloaded task. The discomfort cost Ld with

given pricing constant C can be defined as:

Ld =
l∑

j=1

Dij =
l∑

j=1

(1− rij)C
(

log
(

1− τj
τ

))
. (5.14)

Utility function Ui(·) of p-FD Fi is the sum of price it receives for task computation,

service cost paid for offloading, cost of its own resources, and discomfort cost.

Ui(τi) = Le − Lc − Ls − Ld

= piτ − ch log
(

1− τi
τ

)
−

n∑

j=1

rijpjτj −
l∑

j=1

(1− rij)C
(

log
(

1− τj
τ

))
. (5.15)

Now using Taylor series expansion [114] in Equation 5.15 and removing higher order

terms we get utility of p-FD Fi as:
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Ui(τi) =piτ − ch
(
τi
τ

+
(τi)

2

τ 2

)

−
n∑

j=1

rijpj

(
τ − τi
n

)
−

l∑

j=1

(1− rij)C
(
τ − τi
nτ

+
(τ − τi)2
n2τ 2

)
. (5.16)

5.4.2 Utility of secondary Fog device

Utility function Uj(·) of s-FD Fj holds these terms:

• Price gain from p-FD: The s-FD announces a price pj per unit time that p-FD

have to pay for executing task fraction τj on s-FD. The price gain is given as:

Kd = rij × pj × τj.

• Cost of task execution: The s-FD executes τj portion of the task and the cost Kc

incurred upon using its resources is: Kc = ch log
(
1− τj

τ

)
.

• Price gain of multiple offloading: This price is the part of the profit the p-FD

gains by executing the task on n s-FDs in parallel mode. The price pr is a

constant fraction of the gain by the p-FD. The price gain of multiple offloading

is: Km = n× pr × τj.

Utility Uj(·) of s-FD Fj is calculated by considering the price received from the p-FD

and the cost of executing the offloaded task. Uj(·) is calculated as follows:

Uj(pj) =Kd +Kc +Km = rijpjτj − ch log
(

1− τj
τ

)
+ nprτj,

=
(
rijpj −

ch
τ

+ npr

)
τj −

chτj
2

τ 2
. (5.17)

• Problem 1: Utility maximization of primary Fog device:

max
τi

Ui(τi)

s.t. max

{
τi,
τ − τi
n

}
< τmax, (5.18)
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where, τmax is maximum allowable execution time of task T .

Theorem 5.1 The optimal task allocation is:

τ ?i =

∑l
j=1

(1−rij)C
nτ

(1 + 2/n)− ch
τ

+
∑n

j=1
rijpj
n

2
τ2

(
ch +

∑l
j=1(1− rij)

C
n2

) ,

τ ?j =
τ − τ ?i
n

. (5.19)

Proof: Consider the utility function of primary Fog device from Equation 5.16. Let

λ1 and λ2 denote Lagrangian multipliers. The Lagrangian form of problem given in

Equation 5.18 can be represented as:

L(τi) =piτ − ch
(
τi
τ

+
(τi)

2

τ 2

)
−

n∑

j=1

rijpj

(
τ − τi
n

)
−

l∑

j=1

(1− rij)C
(
τ − τi
nτ

+
(τ − τi)2
n2τ 2

)

+ λ1(τi − τmax) + λ2

(
τ − τi
n
− τmax

)
,

s.t. λ1(τi − τmax), λ2
(
τ − τi
n
− τmax

)
= 0, (5.20)

The first order derivative of L(·) w.r.t. τi is obtained as:

dL(τi)

dτi
= −ch

(
1

τ
+

2τi
τ 2

)
+

n∑

j=1

rijpj

(
1

n

)
+ λ1 −

λ2
n

+
l∑

j=1

(1− rij)C
(

1

nτ
+

2(τ − τi)
n2τ 2

)
.

The second order derivative of L(·) w.r.t. τi, i.e., d2L(τi,λ)
d2τi

= −2ch
τ2
−∑l

j=1(1 −

rij)C
(

2
n2τ2

)
is negative, which indicates the utility function given in Equation 5.16

is concave and continuous. Therefore, we conclude that the problem given in Equa-

tion 5.18 have at least one unique solution. Using Karush Kuhn Tucker condition and
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solving for different λ1 and λ2, the maximal utility is obtained at λ1, λ2 = 0 and τ ?i as:

τ ?i =

∑l
j=1

(1−rij)C
nτ

(1 + 2/n)− ch
τ

+
∑n

j=1
rijpj
n

2
τ2

(
ch +

∑l
j=1(1− rij)

C
n2

) . (5.21)

This implies τ ?j =
τ−τ?i
n

and hence proved. �

Proposition 5.1 τi lies in the range 0 ≤ τi ≤ τ , if following condition holds:

∑l
j=1,j 6=i(1− rij)C

τ
+

n∑

j=1,i 6=j
rijpj ≤

3nch
τ

. (5.22)

Proof: Using τi from Equation 5.21, we get τi = η
β
, where, η =

∑l
j=1

(1−rij)C
nτ

(1+2/n)−
ch
τ

+
∑n

j=1
rijpj
n

and β = 2
τ2

(
ch +

∑l
j=1(1− rij)

C
n2

)
. Since τi lies in the range 0 ≤ τi ≤ τ ,

it implies 0 ≤ η
β
≤ τ =⇒ η

β
≤ τ ; thus, η ≤ βτ . Substituting η and β in the inequality

η ≤ βτ , we can obtain:

∑l
j=16=i(1− rij)k

nτ
− ch
τ

+

∑n
j=16=i rijpj

n
+ 2

∑l
j=16=i(1− rij)k

n2τ
≤ 2

τ 2

(
ch +

l∑

j=16=i
(1− rij)

k

n2

)
τ.

On solving above, we can obtain
∑l

j=1,j 6=i(1−rij)k

nτ
+

∑n
j=1,j 6=i rijpj

n
≤ 3ch

τ2
and hence proved. �

Proposition 5.2 The portion of task allocated to the primary FD is unique and optimal

solution for Problem 1 given in Equation 5.18.

Proof: (Uniqueness) Task portion allocated to the p-FD, as given in Equation 5.21,

is unique, when it holds positivity, monotonicity, and scalability. Using Proposition 5.1,

we confirm that τi ≥ 0, which is sufficient to prove positivity of task portion τi. Let

τi and τ̃i are the portions of task allocated to the p-FD. Equation 5.19 indicates that

if τi ≥ τ̃i, then Ui(τi) ≤ Ui(τ̃i), therefore, we conclude τi holds monotonicity. Using

Equation 5.19, we get γUi(τi)− Ui(γτi) ≥ 0; hence, we prove scalability.
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(Optimality) The utility function Ui(τi) of the problem given in Equation 5.18 is a

quadratic function for given τi and the constraint is an affine function. It indicates that

the problem in Equation 5.18 is a convex optimization problem. From Equation 5.21,

τ ?i = min(τi, τ
max). Let us consider τi ≥ τmax and hence τ ?i = τmax. The objective

function Uj(pj), defined in Equation 5.17 is an increasing function w.r.t. pj and direcly

depends upon the value of τj (i.e. τ − τi). The function would be maximum for

τi < τmax, which contradicts our assumption. Therefore, τ ?i = τi and ends the proof. �

For simplifying the expressions further, let us consider η = D1 + 1
n
(rijpj), where D1 =

∑l
j=1

(1−rij)C
nτ

(1 + 2/n) − ch
τ

+
∑

k 6=j rikpk

n
. The value of τj can be computed using the

value of η as τj = τ−τi
n

= 1
n

(
τ − D1

β

)
− rijpj

n2β
= D2 − rijpj

n2β
, where, D2 = 1

n

(
τ − D1

β

)
.

Substituting value of τj in Equation 5.17, we obtain the utility of s-FD Fj as:

Uj(pj) = (rijpj −
ch
τ

+ npr)(D2 −
rijpj
n2β

)− ch
τ 2

(
D2 −

rijpj
n2β

)2

. (5.23)

• Problem 2: Utility maximization of secondary Fog device:

max
pj

Uj(pj)

Theorem 5.2 The optimal price set by secondary FD for executing task portion τj is:

p?j =
λ− θ∑k 6=j rikpk

κ(rij)
, (5.24)

where, λ = ch
n2βτ
− pr

nβ
+ τ

n

(
1 + 2ch

n2βτ

)
− D1

nβ

(
1 + 2ch

n2βτ

)
, κ = 2

n2β
+
(

1 + ch
n2βτ2

)
, and

θ = 1
n2β

(
2chrij

(n2β)2τ2
+ 1
)

Proof: The utility of s-FD can be obtained from Equation 5.23. The first order deriva-

tive of Uj(pj) w.r.t pj can be written as:
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dUj(pj)

dpj
= rij

(
D2 −

rijpj
n2β

)
−
(
rijpj −

ch
T

+ npr

) rij

n2β
− 2chrij
n2βτ 2

(
D2 −

rijpj
n2β

)
. (5.25)

The second-order derivative of Equation 5.25 is given as follows:

d2Uj(pj)

d2pj
= − r2ij

n2β

(
2 + 2

ch
n2βτ

)
. (5.26)

As the second order derivative is negative, the utility function of the s-FD poses maxima

at pj for which
dUj

dpj
= 0. The matrix for equation for pj can be written as:

pjrijκ+
∑

k 6=j,k 6=i
rikpkθ = λ, (5.27)

where, λ = ch
n2βτ
− pr

nβ
+ τ

n

(
1 + 2ch

n2βτ

)
− D1

nβ

(
1 + 2ch

n2βτ

)
, κ = 2

n2β
+
(

1 + ch
n2βτ2

)
, and

θ = 1
n2β

(
2chrij

(n2β)2τ2
+ 1
)

. Let A and Λ be the coefficient matrix. The result can be

expressed in matrix form as:

A︷ ︸︸ ︷


κri1 ri2θ . . . rinθ

ri1θ κri2 . . . rinθ

...
...

. . .
...

ri1θ ri2θ . . . κrinθ




p︷ ︸︸ ︷


p1

p2
...

pn




=

Λ︷ ︸︸ ︷

λ




1

1

...

1



. (5.28)

By using strictly diagonal dominant theorem [115], A is non-singular matrix, iff

κrij ≥ 0,∀j ∈ n. As rij is the reputation which is always greater than zero and κ > 0.

It proves A is non-singular matrix. As, A is non-singular; thus, inverse of A is feasible.

The optimal price set by the s-FDs for executing task portion τj are p = [p1, p2, · · · , pn].
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Upon solving p = A−1Λ, we can obtain optimal price as:

p?j =
λ− θ∑k 6=j rikpk

κ(rij)
. (5.29)

This ends the proof for the optimal price of secondary FD. �

5.4.3 Near Nash Equilibrium (NE) between s-FDs:

Let us assume a game having n s-FDs. The number of strategies or price taken by the

s-FDs (p1, p2, · · · , pj, · · · , pn) achieving NE if ∀j ∈ n:

U(p∗j , p
∗
−j) ≥ U(pj, p−j). (5.30)

This chapter propose a near-optimal price estimation algorithm (Algorithm 5.2) for

determining the best response of s-FD (p∗j , ∀j ∈ n) in polynomial time. Algorithm 5.2

iteratively estimates the value of pj by maximizing the utility of the s-FD and halts in

polynomial time with near optimal solution.

Definition 5.4 (ε-NE): A set of strategies or price taken by the s-FDs

(p1, p2, · · · , pj, · · · , pn) achieving ε-NE if ∀j ∈ n

U(p∗j , p
∗
−j) ≥ U(pj, p−j)− ε. (5.31)

In case of ε-NE, the s-FDs have marginal incentive to deviate from NE. However,

s-FDs do not increase their utility by more than ε. Algorithm 5.2 facilitates the s-FDs

to plays its best response strategy (best price) by iterating until ε-NE is achieved. The

iterative steps in Algorithm 5.2 always results in an improvement or consistent utility

as earlier. The utility function of the s-FDs eventually converges to a fixed point, when

the increment in its value is less than ε. Theorem 5.3 proves the existence of ε-NE in

Algorithm 5.2, which converges in polynomial time. The complexity of message passing,
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i.e., the required messages need to be communicated among the participants to reach

the near-Nash Equilibrium (or ε-Nash Equilibrium) is O(nlogn/ε2) [116].

Algorithm 5.2: Iterative algorithm for ε-NE solution.
Input: k, rij , ch, n, τ, pj , C, precision threshold ε;
Output: Pricing strategies of s-FDs pj ;

1 t← 0 /*Initialization of variable*/
2 Calculate τi from Equation 5.21.

/*Iterative loop to obtain near optimal solution*/
3 do
4 t← t+ 1.
5 Update τi ← τi

t−1.
6 /*Calculate pj from Equation 5.29*/

7 pj [t+ 1] =
λ−θ∑k 6=j rikpk[t]

κ(rij)
.

8 while (|U(pt+1
j )− U(ptj)| > ε);

9 return pj .

Theorem 5.3 Algorithm 5.2 achieves near NE (ε-NE) using O(N/ε) iterations, ε > 0.

Proof: According to the termination condition of Algorithm 5.2 in step 8, i.e., (|U(pt+1
j )−

U(ptj)| > ε), the s-FDs change their strategies (pj) if the change in utility is more than ε.

This indicates that FDs increase their utility by atleast ε in each iteration. Therefore,

the upper bound of the utility can be obtained in absence of competition. This implies

that the utility of FDs would never reaches upper bound U?(·). Hence, Algorithm 5.2

must run at most (U?(·)/ε) times. The maximum run of Algorithm 5.2 in worst case

is maxU?(·)/ε. Thus, it proves time-complexity of Algorithm 5.2 as O(N/ε) and hence

we reach to the end of proof. �

Example 1 We consider 5 connected FDs out of which one is the p-FD and other are

s-FDs. Initially, all s-FDs set their price randomly and afterwards in each iteration,

according to the strategies of other FDs, they re-calculate their price to maximize the

utility of all FDs. Figure 5.3(a) and Figure 5.3(b) illustrates that the s-FDs (F2 · · ·F5)

iteratively update their service price and utilities. Algorithm 5.2 converges to a stable

value after 12 iterations for 4 s-FDs that confirms its convergence and stability.
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Figure 5.3: Iterations for convergence of Algorithm 5.2 with 5 FDs, p-FD (F1) and s-FDs (F2 · · ·F5).

5.5 Prototype setup and performance evaluation

This section covers the description of the hardware and software used in the prototype

setup for experimental evaluations. We also describe different parameters’ impacts on

the accuracy, delay, and system cost.

• Prototype specification: We used the resources of the lab for creating a prototype

setup. A smartphone (Honor 7A smartphone: 13 megapixels camera with Wi-Fi 802.11

b/g/n), router (Cisco Linksys router: WRT54G supports IEEE 8203, 802.3 u/g/b), Per-

sonal Computer (Intel i7 processor and 8 GB memory), and Dell server (Intel Xenon

processor and 192 GB memory) work as the leaf, Edge, Fog, and Cloud devices, re-

spectively. Initially, this chapter considered 10 FDs in the system. Most of the other

networking parameters used during the experiment are similar as given in [117, 118].

The smartphone is used for capturing the image of different buildings in the institute.

The captured image is forwarded wirelessly to the PC in the lab using a router installed

near the image acquisition point. Further, we use Dell server of the institute as Cloud.

Figure 5.4 illustrates the prototype setup of TSF.

We have created a script file running on p-FD and calculates τi portion of the task.

The p-FD also determines the portion τj to be executed on s-FDs using the same script.

We preserve log files for estimating delay on every FD. The start log is triggered when a

device starts computing received data and stops as the computation completes. We use
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Figure 5.4: Prototype components: (1) PCs organization in the lab, (2) prototype deployment area,
(3) smartphone, (4) router, (5) PC in lab, and (6) DELL server as Cloud.

a deep learning model (AlexNet [119]) trained on the images of different monuments

and architectures in our locality. The training of the deep learning model is performed

on the Cloud (server). The pretrained model on the Cloud is deployed on all the FDs

interconnected with each other. We repeat each experiment 500 times to reach the

confidence level of 95%; thus, error bars are not presented in results.

• Schemes for experimental analysis: We considered three schemes, namely only

p-FD, only Cloud (CL), and proposed TSF as shown in Figure 5.5. In p-FD and CL

schemes, the entire processings run on the primary FD and Cloud, respectively. In TSF

scheme, the fraction of the process running at p-FD, s-FDs, and Cloud, is determined

by Algorithm 5.1. The τi and τc denote the fraction of the task processes at p-FD and

Cloud, respectively. We calculate the fraction of the task process at each s-FD and take

the average, denoted by τj.

• Overview of results: Algorithm 5.1 shows that fraction of task depends upon

different parameters, including data size, task deadline, number of FDs, and game

parameters. In following section, we describe different parameters impacts on accuracy,

delay, and system cost. The cost of the system is sum of the resources consume during

processing of the task. Let a device i consume ei power per unit time and run a

fraction of the task for ti time duration, where 1 ≤ i ≤ k and k is the total devices

running for task processing. The system cost is therefore
∑k

i=1 eiti [117, 118]. The

considered performance metrics are Precision(P), Recall(R), and F1-score, where P =
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True Positive
True Positive + False Positive

, R = True Positive
True Positive + False Negative

, and F1 = (2 × P × R)
(P+R)

.

p−FD scheme CL scheme TSF scheme

Cloud

Secondary Fog Devices (s−FDs)

Primary Fog Device (p−FD)

Leaf Devices

τc = 0

τj = 0

τi = 1

τc = 1

τj = 0

τi = 0

τc

τi

τj

Figure 5.5: Illustration of p-FD, CL, and TSF schemes.

5.5.1 Impact of data size

We first study the impact of data size on system cost and execution delay using con-

sidered schemes. The data size range varies from 20− 120 Mb, with the task execution

deadline of 10 min. Figure 5.6(a) and Figure 5.6(b) demonstrated the CL scheme incurs

less delay and more cost in comparison with the p-FD scheme. The CL scheme required

42% higher energy and 55% less delay in contrast with p-FD when averaged over the

data size range (20− 120Mb). It is due to the colossal processing speed and significant

energy requirement at the Cloud to that of p-FD. Since the Cloud is assumed to have

enormous processing capability; therefore, the increase in data size does not contribute

to the delay in task execution.

Figure 5.6(c) depicted the most suitable value of (τi, τj, τc) computed from Algo-

rithm 5.1. We can observe that the low data size results in shifting of processing

towards the p-FD (τi = 0.76, τj = 0.24, τc = 0). However, the increase in data size

tends the processing towards Cloud (τi = 0.20, τj = 0.29, τc = 0.51). Figure 5.6(d)

demonstrated the results obtained while using TSF. We obtained τc < τj < τi. It indi-

cates the task fraction of Cloud is low, indicating lower system cost. Further, beyond

the data size of 60Mb, the proposed TSF scheme performs task offloading to the Cloud

for meeting the deadline requirement. We observed that the p-FD scheme tends to miss
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the task deadline for large size data. On the other hand, the CL scheme always satisfies

the task deadline, requiring significant system cost in contrast with TSF. Moreover,

TSF always satisfies the deadline requirement and incurs low execution cost.
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Figure 5.6: Impact of data size on delay and system cost using different schemes.

5.5.2 Impact of secondary Fog devices

Next, we discuss the impact of s-FDs count on delay, system cost, and utility of the FDs.

As the number of s-FDs increases, a substantial portion of the task can be offloaded

and executed in parallel. More number of s-FDs also reduced the execution at the

Cloud and load on each FD, as shown in Figure 5.7(a). It also shown that more s-FDs

reduces the utility of the FDs because each FD needs to solve a small fraction of task.

The offloading and the higher parallel processing have reduced the delay of the task, as

shown in Figure 5.7(b).
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Figure 5.7: Impact of s-FDs count on delay, system cost, and FDs utilities.

5.5.3 Impact of deadline

This experiment demonstrates the impact of the deadline on the performance of the TSF

system for a specific task. The task processing at p-FD within the given deadline needs

high-order data compression. To facilitate data compression, we have incorporated the

data aggregation technique. However, the compression results in accuracy compromise.

Table 5.1 illustrated the Mean and Standard Deviation (SD) of different schemes using

various performance metrics over 150 disjoint runs. Here, the accuracy achieved in both

CL and TSF schemes is around 100%. Thus, the representation of SD for CL and TSF

schemes is obsoleted from Table 5.1. Further, the Compression Ratio (CR) is defined

as the ratio of compressed data size for a task to the original data size. It is interesting

to observe that the Scheme p-FD can meet the deadline constraints but lag in achieving

accuracy as CL and TSF. In addition, the TSF scheme achieved similar accuracy as CL

and simultaneously reduces the execution cost and time.

5.5.4 Impact of game parameters

Further, this section discusses the impact of various game parameters on utility and

Rate of Convergence (RoC). First, we illustrated the impact of the task portion on the

game performance, computed at p-FD (τi). We considered three scenarios where the

number of s-FDs are three, five, and eight. Figure 5.8 shown the impact of τi, pj, ch, and

C on the average utility of p-FD and s-FDs. The results illustrated average utility of p-
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Table 5.1: Accuracy metrics for p-FD, CL, and proposed schemes.

p-FD scheme CL scheme TSF scheme
Mean SD Mean Mean

20Mb

P 0.92 0.001 0.98 0.98
R 0.85 0.002 0.99 0.97
F1 0.88 0.002 0.99 0.98
CR 19.5% 0.002 0% 0%

60Mb

P 0.83 0.004 0.98 0.98
R 0.88 0.003 0.99 0.99
F1 0.85 0.002 0.98 0.97
CR 27.3% 0.002 0% 0%

120Mb

P 0.74 0.004 0.98 0.98
R 0.77 0.003 0.98 0.97
F1 0.75 0.002 0.99 0.98
CR 38.7% 0.003 0% 0%

FD and s-FDs when we consider scenarios of three, five, and eight s-FDs. Figure 5.8(a)

shown that the average utility of p-FD linearly increases with the increase in τi because

least cost is paid to the s-FDs and the p-FD preserves maximum profit. The average

utility of the p-FD decreases as the price to be paid for fractional task execution is

high, as shown in Figure 5.8(b). Average utility of p-FD and s-FDs decrease with the

increase in the price constants ch and C. Rate of convergence of Algorithm 5.2 with

game parameters τi, pj, ch, and C is also illustrated for different number of s-FDs.

Figure 5.8(a) demonstrated the rate of convergence increases with the increase in τi.

Other three parameters have a reverse impact on the convergence rate, as demonstrated

in Figure 5.8(b), Figure 5.8(c), and Figure 5.8(d). The price constant ch incurs on the

p-FD and s-FDs while executing the fraction of the task on these devices. Therefore,

if the price constant ch increases, the utilities of p-FD and s-FDs decrease. ch can be

inferred as the number of CPU cycles, processing energy, and execution time.

5.5.5 Comparison with existing work

This section compares TSF with existing approaches including [18], [43], and [120]. To

make the comparison fair, we use our prototype setup to evaluate and compare the pro-
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Figure 5.8: Impact of change in τi, pj , ch, and C on the utilities of the p-FD and s-FDs .

posed work with existing offloading schemes. Authors in [18] proposed a communication

scheme that enabled data processing in a distributed manner on the connected vehi-

cle. Liu et al. in [43] investigated a cost minimization model for scheduling multi-level

task using Fog computing architecture. In [120], authors aim at maximizing the users

quality of experience by determining optimal task offloading decision among different

FDs or Cloud. We perform the comparison using delay and cost ratio with respect

to [120]. We considered the scheme [120] because it incurs maximum delay and system

cost. The delay ratio is estimated as delay ratio = delay in considered approach
delay in [119]

and system

cost ratio is formulated as system cost ratio = cost incur in considered approach
system cost of [119]

. Figure 5.9(a)

illustrates the delay of the system in completing a task for the proposed work and the

existing work. Least delay is observed for the proposed system as the task is computed

in parallel on the connected FDs. Cost of computing the task is also minimum as least

amount of data is offloaded and computed at the Cloud, as shown in Figure 5.9(b).
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Figure 5.9: Illustration of comparison with existing work: EW1 [18] and EW2 [43] on task offloading
in Fog computing.

5.6 Conclusion

This chapter proposed a transportation system incorporating Fog computing for pas-

senger assistance. Unlike the existing work, TSF considered offloading portions of the

task to the neighboring FDs for its parallel execution within a time constraint. We

first presented neighboring FDs selection criteria to identify the best suitable FDs for

offloading the task. A competitive game is then formulated in which the primary FD

decides the fractions of task it offloads to the secondary FDs. We further proposed a

Knapsack based algorithm to modify the offloading decision as per current resources

availability. TSF is validated by setting up a prototype and performing various ex-

periments to study the impact of task execution deadline, data size, and various game

parameters. We find the following conclusions from this work: offloading task to several

of Fog devices are suitable only when data size is huge; processing the data at Cloud is

required when Fog devices are not sufficient to process it within given time constraints;

the system must be able to handle unequal processing power of FDs, and reputation of

the devices provide confidence for successful completion of a given task.


