
Chapter 4

A locomotion mode recognition

approach with noisy labels

The previous chapter presented a deep learning-based model capable of recognizing

both seen and unseen locomotion modes. The incorporation of zero-shot learning using

the fusion of available and hand-crafted semantic metrics has enhanced the robustness

of the built classifier against the unseen class labels. This chapter considers the problem

of noisy labels in the dataset that adversely affect the performance of the model.

4.1 Introduction and major contributions

Locomotion activity recognition has been a field of great research interest that helps to

understand the movement patterns of human [24,25]. Most of the recent studies [25] use

sensory data for recognizing locomotion activities due to easier availability of sensors

with smartphone and wearable devices. Information about the locomotion activities

(or modes) helps to estimate routine transportation expenditure, travel time, traffic

congestion, and journey planning. Prior work employed two widely used techniques,

i.e., machine learning [38, 40, 97] and deep learning [39, 98, 99] for locomotion activity

recognition using sensory data. The main objective of locomotion mode recognition is
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to build a classifier that can predict a transportation mode.

Deep learning techniques have shown impressive performance on the labeled dataset

because of their automatic feature extraction capabilities from the raw data [13, 31,

32]. However, these techniques require a large amount of training data with correctly

annotated labels. Acquiring such annotated dataset is expensive and time-consuming.

The data analysts, therefore, employ different annotation techniques such as labeling

through crowdsourcing, web-based queries, and so on [12]. However, these annotation

techniques may introduce noisy labels in the dataset as the labeling is carried out by

non-expert volunteers. If noisy labels are present in the dataset then the classifier learns

a wrong mapping which results in performance diminution [13]. Figure 4.1 illustrates

an example of locomotion mode recognition. A deep learning-based classifier is built

by learning a mapping between raw sensory data and their annotated labels with some

wrong labels of car and auto-rickshaw as bike and bus (in red color), respectively.
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Figure 4.1: An example of locomotion mode recognition with noisy labels using the deep learning-
based classifier. The wrong labels of the car as bike and auto rickshaw as bus (in red color) indicate
noisy labels in training data.

• Motivation of this work: The existing approaches [31–37] require prior informa-

tion about the concentration of noisy labels in the dataset. The prior information

helps in the easier handling of noisy labels by setting parameters accordingly. However,

the approaches [31–41] do not provide any mechanism to determine the concentration.

Thus, it generates the requirement for a noisy handling approach that can work with-



4.1. Introduction and major contributions 59

out prior information and determine noisy labels concentration after training. The

information about noisy labels helps in improving the annotation mechanism for the

upcoming training processes. Additionally, some of the prior studies [33, 39, 40] can

handle a low concentration. Therefore, in the real-world scenario for recognizing loco-

motion modes, where the chance of noisy labels are high, we need a mechanism that

can achieve adequate performance on a higher concentration.

In this chapter, we address the problem: how to recognize a locomotion mode us-

ing deep learning models in the presence of noisy labels without prior information of

noise concentration? To solve the problem, this work proposes a deep learning-based

approach called Locomotion mode Recognition with Noisy Labels (LRNL). The ap-

proach builds an ensemble model by developing three different models (build separately)

i.e., conventional, noise adaptive, and noise corrective.

•Major contributions To the best of our knowledge, this is the first work to address

the recognition of locomotion modes with noisy labels using an ensemble model. The

contributions are:

• This work proposes an approach, namely LRNL, that builds an ensemble model

using deep learning models to recognize a locomotion mode in the presence of noisy

labels. It does not require any prior information about noisy labels concentration.

• Next, we propose three different models, i.e., conventional, noise adaptive, and

noise corrective, which work as input components of the ensemble model. The

conventional model extracts feature using deep learning and provide robustness

against the low concentration of noisy labels. The noise adaptive model introduces

a new loss function incorporating two dynamic variables whose values are adjusted

to handle a moderate concentration. Later, the noise corrective model uses the

low-rank estimate of the noisy labels matrix during training to provide robustness

against high noise concentration.

• Further, in the absence of prior information about noisy labels, we select an
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appropriate noise handling model by associating weights to each model using

the ensembling technique. These weights adjust their values for prioritizing one

model over others, provided the summation of the weights is unity. In addition,

the fractional weights also help in figuring out the concentration of noisy labels.

• Finally, we conduct various experiments to evaluate the performance of the LRNL

approach using collected LMR dataset along with existing datasets [55, 56].

The rest of chapter is organized as follows. Next section describes the preliminaries.

Section 4.3 proposes an approach for locomotion mode recognition with noisy labels.

Later, Section 4.4 presents the experimental evaluation of the LRNL approach. Finally,

the chapter is concluded in Section 4.5.

4.2 Preliminaries

Let D = {Xtr,Y} represents training data of locomotion modes, where Xtr ∈ RN×M

holds N labeled instances and each of which consists of M data points, and Y ∈ RN×k

is one-hot encoded label matrix for k class labels in the dataset. Each element of matrix

Y is either 0 or 1. The value of an element Y(ij) is 1 if ith instance belongs to jth class

label (∀j ∈ {1, 2, . . . k}) and 0 otherwise. An instance of Xtr is a vector of length M ,

denoted by xtr. Similarly, an instance of Y, denoted by y, is a vector of length k.

Let Xte denotes a matrix of testing data, and Yte is a prediction matrix obtained by

ensemble model. As the class labels may be noisy in the training dataset D, we also

use Y′ for representing a noisy label matrix. In deep learning models, it is crucial to

determine correct mapping between training data and true labels, i.e., H: Xtr → Y.

The mapping H can be obtained from various intermediate transformations (denoted

by o) at different layers of the deep neural networks. For example, if there are l layers in

the neural network, then H can be estimated as H = H1(Xtr)oH2(Xtr)o . . . oHl(Xtr).

Definition 4.1 (True label probability) For a given noisy label vector y′i of ith

training instance (y′i ∈ Y′,∀1 ≤ i ≤ N) against true label vector yi ∈ Y, the probability
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of true label φi of ith instance can be given as [100]:

φi =





1 if yi = y′i,

(k − 2)/(k − 1) otherwise.
(4.1)

Initially, we set the probability of true label φi = 1 (∀i ∈ 1 ≤ i ≤ N). Next, the

loss Li for each instance i is estimated to obtain mean loss L̄, where, L̄ = 1/N
∑N

i=1 Li.

Further, if L̄ is low and the variance of loss against all the instances, i.e., Variance

(L1,L2, · · · ,LN) ≈ 0 then the training dataset is free from noisy labels. Thus, we can

use φi = 1, where, ∀i ∈ 1 ≤ i ≤ N . However, if the variance is high then the dataset

possess noisy labels. So, we set φi = (k − 2)/(k − 1) for instance i, where, Li > L̄.

The training on noisy labels degrades the performance due to the coercive memo-

rizing capacity of neural networks [32, 101]. Thus, it is required to either suppress the

concentration of noise or estimate true labels from training data. The noise suppression

can be achieved by improving the loss functions of model [34] given information about

noise concentration. We can also use matrix completion [102] to obtain a true label ma-

trix (Y
′′
) from the noisy label matrix (Y

′
). The true label matrix (Y′′) obtained from

noisy label matrix (Y
′
) has a lower rank in contrast matrix (Y) in noise-free scenario,

i.e., rank(Y′′) < rank(Y). This work computes a low-rank estimate of Y′ to obtain

true labels matrix Y′′.

4.3 LRNL approach

This section proposes an LRNL approach using deep learning models. The main ob-

jective of LRNL is to recognize locomotion modes in the presence of noisy labels with

minimal accuracy compromise. In the LRNL approach, we first develop three deep

learning-based models for handling different concentrations of noisy labels. Later, the

approach builds an ensemble model by combining these models in a proper ratio. Fi-
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nally, the ensemble model is used to recognize a locomotion mode for a given testing

instance. Figure 4.2 illustrates the block diagram of the LRNL approach.
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Figure 4.2: Block diagram of LRNL approach with its components.

4.3.1 Conventional model

First, this work constructs a conventional model using deep neural networks. The

model extracts spatial and temporal features from raw sensory data using Convolution

Neural Network (CNN) and Long Short Term Memory (LSTM), respectively. Spatial

features refer to the relation among different sensory instances. The temporal features

are defined as the time-dependent relation between data points in an instance. The

conventional model extracts these features parallelly and then combines them to form

an intermediate output. Later, the intermediate output is passed through the same

configuration of CNN and LSTM to calculate the final features.

We use existing deep learning-based models (CNN and LSTM) for feature extrac-

tion in the conventional model. However, the constructed conventional model has a

lightweight architecture that can run on a resource-constrained device like a smart-

phone. Due to the ability of CNN to mine hidden information in data and the ability of

LSTM to process information in time series, we propose the conventional model based
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on CNN and LSTM. The CNN part extracts features within each sensor modality, and

the LSTM part extracts temporal dependencies. The conventional model also acts as

a baseline for proposed noise adaptive and noise corrective models. These models train

conventional model after performing matrix manipulations for handling noisy labels.

The proposed architecture possesses resemblance with the presented architecture

in [103, 104], where, parallelly extracted features from CNN or Recurrent Neural Net-

work (RNN) are either input to a CNN or RNN (e.g., LSTM) to obtain final features for

predicting labels. It indicates further refinement of the intermediate features is benefi-

cial. We can use the sequential operations involving CNN and LSTM, but it increases

the training time. So, we utilize the architectural configuration in the first stage to

exploit the inherent parallelism. The proposed model is able to combine spatial and

temporal features and ignores the correlations among them if stopped at the interme-

diate stage. In locomotion mode recognition, cross-features correlation into the deep

learning framework can recognize more general patterns and improve performance.

Let S represents a set of sensors (accelerometer, gyroscope, magnetometer, etc.)

used for data collection. Each sensor sj ∈ S has qj axes, for 3−axis accelerometer

sensor qj = 3. The dimension of the CNN input is N ×M × Q, where, Q =
∑S

j=1 qj.

The input passes through 5 convolution layers and each of which contains 64 filters. The

shorthand representation of CNN is: C(64)−C(64)−C(64)−C(64)−C(64)−FC(64).

C(64) denotes a convolution layer with 64 filters and FC(64) denotes a fully connected

layer with 64 neurons. Each C(64) performs 64×N×M×Q element-wise multiplications

and 64×N ×M additions to generate an output of size 64×N ×M . Finally, FC layer

performs non-linear transformation.

In LSTM, the input instances of dataset D are reshaped in size M × Q and pass

through two sequential layers of LSTM units. The output of the sequential layers

is supplied as input to the FC layer. The shorthand representation of LSTM is:

LSTM(64) − LSTM(64) − FC(64), where, LSTM(64) and FC(64) denote LSTM
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unit and fully connected layer with 64 neurons, respectively. The neurons in the LSTM

unit are called memory cells consisting of input, output, and forget gates. Figure 4.3

illustrates an overview of the conventional model, where D is supplied as two parallel

inputs to CNN and LSTM.

The features extracted from CNN and LSTM are of same size, i.e., N × 64. The

conventional model combines these features at the concatenation layer, and the com-

bined features are passed through FC(64) to obtain an intermediate feature matrix of

size N×64. The intermediate feature is passed through a similar configuration of CNN

and LSTM to get a feature matrix X. Later, the model built a classifier Π1.
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Figure 4.3: Overview of conventional model using CNN and LSTM.

4.3.2 Noise adaptive model

This section presents a noise adaptive model to alleviate the noisy labels by adopting

a dynamic learning technique. The noise adaptive model formulates a loss called Noise

Adaptive Loss (NAL). The conventional model is not robust towards noisy labels due

to the coercive memorizing capacity of the deep learning models [105]. Loss function

captures discrepancy between the true label matrix Y and predicted matrix Ytr. The

value of discrepancy (loss) determines the update in the weight matrix W and bias

vector b during backpropagation. The default loss functions used in various models are

inefficient to handle the noisy labels. In addition, there exist some methods, e.g., [36],
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which modified the default loss function for handling noise, but their application is

limited to image datasets.

Let xij ∈ X, wij ∈WT , and bj ∈ b represent an element of feature matrix, weight

matrix, and bias vector for jth class of ith training instance, respectively, for 1 ≤ i ≤ N

and 1 ≤ j ≤ k. We estimate an element zij as: zij = wijxij + bj. Later, zi = {zij|1 ≤

j ≤ k} passes to a softmax function to compute predicted class label probability ρij.

The predicted probability vector for ith instance is a set of probabilities {ρi1, . . . , ρik},

against each class label k and a class label with highest probability value is said to be the

predicted class label. The loss functions in the deep learning models consider only the

class label with the highest predicted probability during training. This consideration

is valid only when class labels are noise-free. The probabilities of other class labels

(except highest) are nearly zero (or negligible) but can provide significant information

in the case of noisy labels. Therefore, the noise adaptive model considers all k-class

predicted probabilities by assigning the proper weight to each of them. These weights

are estimated using the variables α and β. The NAL considers the following two terms:

1. Loss term to conquer true predictions:

La = − 1

N × k
N∑

i=1

k∑

j=1

[αβ(φi log ρij)] , (4.2)

where, φi can be obtained using Equation 4.1.

2. Loss term to conquer false predictions:

Lb = − 1

N × k
N∑

i=1

k∑

j=1

[(1− α)ρij log φi + (1− β)(1− φi) log(1− ρij)]. (4.3)

The loss term Lb (given in Equation 4.3) conquers false predictions. In other words,

the loss term helps in assigning some weight to the wrongly predicted class labels. This

weight assignment helps in modifying the simple cross-entropy loss using two dynamic
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variables α and β, as given in Equation 4.4. This modified loss function increases the

value of the loss when noise is present in the training data. Further, after sufficient

epochs for training, the built classifier can recognize locomotion modes with higher

accuracy. Combining Equations 4.2 and 4.3, we can obtain the noise adaptive loss as:

LNAL =− 1

N × k
N∑

i=1

k∑

j=1

[αβ(φi log ρij)

+ (1− α)ρij log φi + (1− β)(1− φi) log(1− ρij)]. (4.4)

Equation 4.4 holds two terms, i.e., φi log ρij and ρij log φi. The term φi log ρij is

the definition of cross-entropy loss that captures the difference between two probability

distributions (i.e., actual class probability and predicted class probability) for instance

i. In other words, if we consider actual class labels distribution A and an approximation

of actual class label distribution B, then the cross-entropy of B from A is the number of

additional bits to represent an event using B instead of A. Similarly, the term ρij log φi

captures the difference between predicted class probability and actual class probability

for given data instance i. It also defines the number of additional bits to represent

an event using A instead of B. While estimating φi log ρij we are having both A and

B, thus, we can easily calculate ρij log φi. The term ρij log φi also capture significant

information while estimating loss in case of noisy labels in the training data. Further,

NAL assigns dynamic weights α and β to loss term to conquer true predictions and

loss term to conquer false predictions to specify their contributions. Additionally, if α

is assigned to true class prediction then for false prediction (1−α) is assigned to make

the sum of losses to unity.

We initialize the dynamic variables in NAL as α = 1 and β = 1. This initial-

ization converts NAL into cross-entropy loss. During the training, α and β decrease

asynchronously if training data possess noisy labels. We estimate LNAL for all possible
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α and β in each training epoch. Later, the minimum LNAL and corresponding α and

β are selected after each epoch. It is continued for maximum iterations to obtain a

trained model with minimum LNAL and optimal α and β. Algorithm 4.1 illustrates all

the steps for estimating the dynamic variables α and β.

Algorithm 4.1: Estimation of dynamic variables α and β.

Input: Xtr, noisy label matrix Y′ and weight matrix W;
Output: Optimal value of parameters α and β;

1 Initialize max iter = 200, α = β = 1, r = 1× e−2.
2 for i← 1 to N do
3 for j ← 1 to k do
4 Calculate ρij, append ρij in ρρρi.

5 Calculate φi.

6 Calculate LNAL at α = β = 1.
7 while epoch ≤ max iter do
8 α′ = α, β′ = β.
9 α1 = α− r, β1 = β − r.

10 α2 = α, β2 = β − r.
11 α3 = α− r, β3 = β.

12 for i← 1 to 3 do
13 LNALi

= checker(αi, βi,LNAL).

14 i← argmin([LNAL1 ,LNAL2 ,LNAL3 ]).
15 α = αi+1, β = βi+1.
16 if (α′ == α and β′ == β) or (LNALi

== 0) then
17 break.

18 LNAL = LNALi
, epoch = epoch+ 1.

19 return α, β.
Function checker(α, β,LNAL)

begin
L = LNAL.
Calculate LNAL at α and β.
if LNAL ≤ L return LNAL.
else return L.

end

4.3.3 Noise corrective model

This section presents a noise corrective model to handle a high order concentration of

noisy labels in training data. The noise corrective model estimates the true label matrix
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Y from given feature matrix X and noisy label matrix Y′. The model handles noisy

labels by adopting a concept discussed in [102]. Let T be a projection matrix of size

M × k on feature matrix X and W denotes a sparse matrix of size N × k that captures

information about the noisy labels. Let T∗ and W∗ be the optimal value of T and W,

respectively. Now, the projection matrix T can be estimated using the two terms:

1. Loss term:
N∑

i=1

k∑

j=1

L((XT(Y′)T )ij + W)ij,Yij). (4.5)

2. Regularization term to avoid overfitting:

λT ||T||∗ + λW ||W||∗, (4.6)

where, λT and λW are trade-off parameters, and || · ||∗ is the trace norm of matrix.

The value of parameter λT = k−
1
2 and λW = k−

1
2 , λT > 0 and λW > 0.

The projection matrix T can obtain by minimizing the summation of loss and reg-

ularization terms. Noisy label matrix Y′ can be mathematically given as follows:

Y′ = XT + W. (4.7)

By aggregating Equations 4.5, 4.6, and 4.7, we define an optimization problem

resembling rank minimization [106].

min
T,W

rank(T) + λT ||T||2F + λW ||W||2F ,

s.t. Y′ = XT + W, XT ∈ {0, 1}N×k, (4.8)

where, || · ||F is Frobenius norm that captures the distribution of noisy labels in Y′.

The matrices T∗ and W∗ can be obtained by solving the optimization problem

in Equation 4.8. The solution to the optimization problem is difficult due to non-
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continuous nature of rank function. We therefore replace the rank function with trace

norm (i.e., rank(T) ≈ ||T||∗), to convert Equation 4.8 into a convex optimization

problem. Let E,F,G, and H are the matrices of size a × b, a × c, c × b, and a × b,

respectively. From [107], an equation of form E = FG + H is said to have unique

solution G∗ with F† (pseudo-inverse of F), if and only if a condition F 6= 0 holds.

Thus, the obtained solution is of form: G∗ = F†(E−H).

As the feature matrix can not be zero (i.e., X 6= 0), Equation 4.8 should have a

unique solution. In this work, we adopted a widely used technique called Alternating

Direction Method of Multipliers (ADMM) [108] for solving the optimization problem

(given in Equation 4.8). ADMM introduces an auxiliary matrix A in the optimization

problem to ensure a close form solution. Now, the optimization problem is:

min
T,W,A

||T||∗ + λT ||T||2F + λW ||W||2F ,

s.t. Y′ = A + W, XT = A, A ∈ [0, 1]N×k. (4.9)

Augmented Lagrangian form of Equation 4.9 with multipliers, L1 and L2, is:

L = ||T ||∗ + λT ||T||2F + λW ||W||2F + tr(LT1 (Y′ −A−W))

+ tr(LT2 (XT−A)) +
µ

2
(||Y′ −A−W||2F + ||XT−A||2F ), (4.10)

where, µ(> 0) is a penalty coefficient and tr(·) is trace of a given matrix. Further, we

estimate the value of T,W, and A as follows:

Estimating T: To estimate T, we set T as a variable with fixed values of W and A.

Next, the projection matrix T is obtained by solving the following problem:

min
T
LT = ||T||∗ + λT ||T||2F + tr(LT2 (XT−A)) +

µ

2
||XT−A||2F . (4.11)

For any matrix B, Frobenius norm is defined as ||B||2F = tr(BT .B) and nuclear norm
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is defined as ||B||∗ = tr(
√

BTB). By using these properties, Equation 4.11 is given as:

LT = tr(
√

TTT) + λT tr(T
T .T) + tr(LT2 (XT−A))− µ

2
tr(AT (XT)). (4.12)

Equation 4.12 can be solved by taking derivative w.r.t. T and equating to zero as:

√
TTT(TT + T) + λT (TT + T) + L2X− µ(ATX) = 0.

=⇒ T =
1

2

(√
λ2T + 2(µAT − L2X)− λT

)
. (4.13)

Estimating W: It can be obtained by setting fixed values of T and A with W as a

variable. To obtain sparse matrix W, the minimization problem is:

min
W
LW = λW ||W||2F + tr(LT1 (Y′ −A−W)) +

µ

2
tr((Y′ −A−W)T (Y′ −A−W)).

(4.14)

Upon solving Equation 4.14, we get sparse matrix W as:

W =
LT1 − µ(A−Y′)

2(λW + µ
2
)

. (4.15)

Estimating A: Similar to the estimation of T and W, here, we set A as a variable with

the fixed value of T and W. Thus, the auxiliary matrix A can be obtained by solving

Equation 4.10 with respect A, as given below:
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min
A
LA = tr(LT1 (Y′ −A−W)) + tr(LT2 (XT−A))

+
µ

2
(||Y′ −A−W||2F + ||XT−T||2F ). (4.16)

By differentiating Equation 4.16 with respect to A, we get:

A =
LT1 + LT2 + µ((Y′)T + (XT)T −WT ))

2µ
. (4.17)

Using estimated matrices T, W, and A from Equations 4.13, 4.15, and 4.17, re-

spectively, we can solve the optimization problem in Equation 4.10. Algorithm 4.2

summarizes the steps involved in estimation of true class labels from given matrices X

and Y′. Noise corrective model that takes sensory data Xtr and noisy label matrix Y′

as input and then builds a classifier (Π3).

Algorithm 4.2: Estimation of true class labels.

Input: Feature matrix X and noisy label matrix Y′;
Output: True label matrix Y;

1 Initialize T,W, and A with zero matrix 0.
2 µ = 10−6, µmax = 106, and ε = 1× e−7.
3 while iter ≤ max iteration do
4 Calculate Titer, Witer, and Aiter (Equations 4.13, 4.15, and 4.17).
5 if (||Y′ −A−W|| < ε and ||XT−A|| < ε) then
6 T = Titer, W = Witer, A = Aiter.
7 L1 : = L1 + µ(Y′ −A−W).
8 L2 : = L2 + µ(XT−A).

9 iter = iter + 1.

10 Compute Y = XT (i.e.,Y′ −W).
11 return Y
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4.3.4 Ensemble model

The section presents an ensemble model that combines three classifiers (Π1,Π2, and Π3)

discussed in previous sections. It is impractical to determine whether the class label

against a sensory instance is noisy or not? Therefore, selecting an appropriate model

for noise handling is also tedious. Ensemble model ensures to predict the best possible

outcome by iteratively verifying the prediction probabilities for all the three classifiers.

The classifiers Π1,Π2, and Π3 generate prediction matrices Y1
te,Y

2
te, and Y3

te against

the same input Xte. The ensemble model multiplies a fraction weight (λi) with each

prediction matrix Yi
te to calculate a matrix Yte where,

∑3
i=1 λi = 1. The optimal value

of the fraction weights are estimated using differential evolution technique [109, 110].

The differential evolution solves following problem:

minL(λ1Y
1
te, λ2Y

2
te, λ3Y

3
te),

s.t., λ1 + λ2 + λ3 = 1, (4.18)

where, L(·) is a loss function that captures the discrepancy between true and predicted

labels. Initially, the differential evolution technique sets the value of fractional weights

to 1
3

(or 0.3333), which generates a prediction matrix Yte as Yte =
∑3

i=1 λiY
i
te =

1
3

(Y1
te + Y2

te + Y3
te), where, λ∗1, λ

∗
2 and λ∗3 are the optimal fractional weights and λ∗1 +

λ∗2 + λ∗3 = 1. The fractional weights assigned to the predictions of each model helps

in selecting the preferable class label. For example, let Model 1 achieves an accuracy

of 92.5%. However, it may lag in predicting class labels of some instances. These

instances may be correctly predicted by a Model 2 achieving an accuracy of 86%.

However, determining which instance is correctly predicted by which model is tedious;

therefore, the ensemble techniques is beneficial.

Algorithm 4.3 illustrates all the steps involve in the locomotion mode recognition

with noisy labels. Further, the optimal value of the weight parameters and individual
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parameters associated with each model helps in predicting the correct class label even

when we do not know the noise concentration.

Algorithm 4.3: LRNL approach.

Input: Training data Xtr with noisy labels Y′;
Output: Prediction matrix Yte against testing data Xte;

1 for i← 1 to 3 do
2 Xi ← feature extractors(Xtr).
3 Xi ← feature extractors(Xi).
4 if i = 1 then
5 Compute Yi

tr using softmax with Xi and Y′.

6 if i = 2 then
7 Estimating loss by LNAL using Equation 4.4.
8 Compute Yi

tr using softmax with Xi and Y′.

9 else
10 Estimate true label matrix Y using Algorithm 4.2.
11 Compute Yi

tr using softmax with Xi and Y.

12 Build a classifier Πi, Yi
te ← Πi(Xte).

13 λ∗1, λ
∗
2, λ
∗
3 ← differential evolution(Y1

te,Y
2
te,Y

3
te).

14 return Y∗te.
Function feature extractors(Xtr)

begin
Pass Xtr through a sequence of 5 convolution layers.
Pass Xtr through a sequence of 2 LSTM layers.
Pass the output of 2nd LSTM layer through FC layer.
Pass concatenated output through FC layer to get X.
return X.
end

Time complexity of LRNL approach: Algorithm 4.3 takes O(Nk+q) time for N

input instances and q iterations. As {k, c} � N , the time complexity of Algorithm 4.1

becomes O(N). Similarly, the complexity of Algorithm 4.2 is O(1) as it depends on

the iterations. Next, the time complexity of feature extractor() function depends on the

computations involved in CNN and LSTM models. The CNN model takes O
(∑l

i=1 ci−1·

s2i ·ui ·v2i
)

per time step of the input sequence [93], where, l is the number of convolution

layers, c is the number of input channels, u is number of filters, s is the size of a filter,

and v is the size of output feature vector, at ith convolution layer. Further, complexity of
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LSTM model per time step can be given as O(W ) [94], where, W is the number of weight

parameters that are learned during training. Time complexity of feature extractor() can

be given as O((cs2uv2 + W )M) = O(WM). Next, the time complexity of differential

evolution() function is O(NLRmax) [109], where, L is the number of variables taken for

optimization and Rmax is the maximum number of iterations. Now, the time complexity

of LRNL approach can be given as O(N +WM +NLRmax).

4.4 Experimental evaluation of LRNL approach

This section first discusses the data collection setup to collect the Locomotion Mode

Recognition (LMR) dataset. It next covers the evaluation of the LRNL approach on

the LMR dataset with Sussex-Huawei Locomotion (SHL) [55] and Transportation Mode

Detection (TMD) [56] datasets.

4.4.1 Data collection

In this work, sensory data of six locomotion modes including bicycle (a1), auto-rickshaw

(a2), bike (a3), car (a4), bus (a5), and train (a6) were collected using the sensors of

the smartphone, as discussed in Chapter 3.

4.4.2 Existing dataset

This work also evaluates LRNL approach on two existing datasets: SHL [55] and

TMD [56]. The sampling rate during SHL data collection was 100 Hz. The dataset

consists the data of eight locomotion modes (k = 8) including still (b1), walk (b2), run

(b3), bike (b4), car (b5), bus (b6), train (b7), and subway (b8). The dataset contains

2294, 2195, 688, 2093, 2480, 2089, 2513, and 1958 instances of classes b1, b2, b3, b4,

b5, b6, b7, and b8, respectively, detailed in Chapter 3. We first preprocess the dataset

to reduce the length of instances from 6000 to 300 samples (M = 300) by taking a

mean value of non-overlapping windows of size 20.
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Next, TMD dataset was collected for detecting the locomotion modes including still

(c1), walk (c2), car (c3), bus (c4), and train (c5). The classes c1, c2, c3, c4, and c5 hold

967, 930, 891, 744, and 193 instances, respectively. In the provided dataset, the sensory

data is recorded at 20 Hz (20 data samples per second) by using different smartphone

sensors. We use the data of accelerometer, magnetometer, gyroscope, and orientation

sensors. The length of each instance (M) is 1200, which is reduced to 240 by taking a

mean value of non-overlapping windows of size 5.

4.4.3 Parameter settings during implementation

This section discusses the settings of various parameters used in implementing the

LRNL approach. We have implemented the ensemble model in Python language using

the functional API of Keras. For extracting the features from raw sensory data, we

have used CNN and LSTM models, as discussed in Section 4.3.1. This work considers

the random distribution of noisy labels in the training dataset as obtaining the uniform

distribution for different classes is stringent in the real-world scenario. Next, to perform

the random selection of training and testing sub-datasets, we have incorporated the

function sklearn.model selection.train test split().

Further, we compared proposed conventional model with two widely adopted feature

extraction models, i.e., DeepFusion [104], Deepsense [103]. The experimental results

indicate that the proposed conventional model achieved higher accuracy and F1-score

within the given time frame than DeepFusion and Deepsense while consuming limited

computational resources. The < parameters (for single instance), FLOPs (for single in-

stance), training-time (in minutes) > of DeepFusion, Deepsense, proposed conventional

model on LMR dataset is given as follows: DeepFusion < 5.4×108, 8.5×1011, 92±2 >,

Deepsense < 3.1×107, 7.6×1010, 73±2 >, and proposed conventional < 1.9×107, 4.3×

1010, 67 ± 2 >. It indicates that the proposed conventional model requires fewer pa-

rameters and FLOPs in contrast with DeepFusion and Deepsense. The computational
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complexity of a model directly depends upon the required FLOPs [111].

4.4.4 Experimental results

This work carried out several experiments to answer following questions:

• What is the appropriate number of epochs to achieve stabilized performance?

(Section 4.4.4.1)

• What is the impact of noise on fractional weights in the ensemble model? (Sec-

tion 4.4.4.2)

• What is the impact of different noise concentration? (Section 4.4.4.3)

• What is the class-wise accuracy on different datasets? (Section 4.4.4.4)

• How do different models of LRNL approach perform on accuracy? (Section 4.4.4.5)

4.4.4.1 Number of epochs for evaluation

At first, this work carried out experiments on three datasets, namely LMR, SHL, and

TMD, to identify a suitable number of epochs for evaluating the LRNL approach. In

the experiments, the performance of LRNL is reported on the training data during the

construction of the classifier. Figure 4.4 illustrates the training accuracy results on

LMR, SHL, and TMD datasets using a different number of epochs and noise concen-

trations. We observe a rapid increment in the accuracy up to 40 epochs and a marginal

increment afterwards. It is also observed that the ensemble model achieved maximum

accuracy on 50 epochs. The accuracy difference between datasets with 0% and 30%

noisy labels is around 6%, as shown Figure 4.4(a) and Figure 4.4(b).

4.4.4.2 Impact of noise on fractional weights

This work also conducted an experiment to find the impact of noise concentrations on

fractional weights: λ1 (conventional model), λ2 (noise adaptive model), and λ3 (noise

corrective model) at 50 epochs. The experiments are conducted on all three datasets at
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(a) Noise free dataset (0% noise). (b) Dataset with 10% noise.
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(c) Dataset with 20% noise. (d) Dataset with 30% noise.

Figure 4.4: Performance results on LMR, SHL, and TMD datasets during training with different
noise concentrations (i.e., 0%, 10%, 20%, and 30%).

0%, 10%, 20% and 30% noise concentrations. The optimal value of the fraction weights

are estimated using the differential evolution technique at different concentrations of

noisy labels. Figure 4.5 illustrates the impact of noise concentrations on fractional

weights (λ1, λ2 and λ3) using LMR, SHL, and TMD datasets. Figure 4.5(a) shows

that the value of λ1, λ2, and λ3 are nearly equal which indicates that all three models

perform well on noise free data. Figure 4.5(b), Figure 4.5(c), and Figure 4.5(d) illustrate

that with increment in noise concentration the contribution of conventional model (λ1)

decreases whereas it increases for noise corrective model (λ3). If λ1 ≈ λ2 ≈ λ3 then

concentration of noisy labels is low, if λ1 < λ2 ≈ λ3 then concentration of noisy labels

is medium, and if λ1 < λ2 < λ3 then the concentration of noisy labels is high.

4.4.4.3 Performance of LRNL approach

Next, the LRNL approach is evaluated at varying noise concentrations from 0% to 40%

at 50 epochs. Table 4.1 illustrates the performance results using accuracy and F1-score.
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(a) Noise free dataset (0% noise). (b) Dataset with 10% noise.
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Figure 4.5: Value of fractional weights on LMR, SHL, and TMD datasets during training with
different noise concentrations (i.e., 0%, 10%, 20%, and 30%).

We use the micro-average F1-score, where, the contributions of classes are determined

via their available instances. The reported results illustrate that the LRNL approach

can handle noise up to 30% with a marginal compromise of accuracy (from 3% to 5%)

for all the datasets. When the noise concentration reaches 40%, the accuracy drops

suddenly by more than 18%. The sudden drop in the accuracy indicates that the data

of certain classes have nearly all their labels incorrect at 40% noise concentration.

Table 4.1: Performance results of LRNL approach on LMR, SHL, and TMD datasets at different
noise concentrations.

Dataset Metric
Concentration of noisy labels

0% 10% 20% 30% 40% 50%

LMR
Accuracy 94.21 92.23 90.55 89.76 72.25 63.17
F1-score 94.12 92.41 90.96 89.17 72.42 62.73

SHL
Acc 92.53 91.56 90.19 88.13 71.32 61.44
F1-score 92.61 91.73 90.85 88.22 71.79 60.73

TMD
Acc 91.24 88.07 87.57 86.19 69.42 59.41
F1-score 91.61 88.23 87.74 86.60 69.64 59.07
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4.4.4.4 Class-wise accuracy

This work also evaluates the class-wise accuracy of the LRNL approach using LMR

and SHL datasets, and the obtained results at 50 epochs are illustrated in Figure 4.6.

Figure 4.6(a) and Figure 4.6(b) illustrate that LRNL approach achieves maximum class-

wise accuracy for a5 class at 0% noise and a4 class (car) at 30% noise concentration.

It is due to the availability of better identifiable patterns in the sensory measurements

of class a4. We observe that the accuracy of a5 class (bus) is highly affected with the

increase in the noise concentration (i.e., from 95.30 to 84.90). It is due to the presence

of a large number of noisy labels for a5 at 30% noise. Similar results are observed for

the SHL dataset, as illustrated in Figure 4.6(c) and Figure 4.6(d).
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(a) LMR dataset with 0% noise. (b) LMR dataset with 30% noise.
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Figure 4.6: Class-wise accuracy of LRNL approach on LMR and SHL datasets with different noise
concentrations.
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4.4.4.5 Performance analysis of different models in LRNL approach

Table 4.2 illustrates the accuracy of all models with different noise concentrations using

LMR, SHL, and TMD datasets. The noise corrective model shows a marginal decrement

in the accuracy, whereas the conventional model shows a substantial decrement due to

the absence of a noise handling mechanism. The noise adaptive model can handle

moderate noise up to 20%, indicating a minimal accuracy drop, up to 20% of noise

concentration. Table 4.2 also illustrates that the concatenation of three models provides

better accuracy.

Moreover, at lower concentrations, the contributions of models are approximately

the same. Thus, for all instances, the performance of models are comparable and deter-

ministic. Thus, the addition of the conventional model at lower concentrations results

in marginal improvement. Further, at higher concentrations of noise levels, the uncer-

tainty in the prediction of conventional model is high, which results in its performance

deterioration. However, for some instances, performance of the conventional model

outperforms NA and NC.

Table 4.2: Performance (in %) of conventional (Conv), noise adaptive (NA), and noise corrective (NC)
models on different datasets with variable noise concentrations. Acc=Accuracy and F1= F1-score.

Dataset Models
Concentration of noisy labels
10% 20% 30%

Acc F1 Acc F1 Acc F1

LMR

Conv 82.37 82.86 77.93 78.34 72.95 73.31
NA 86.92 87.14 83.13 83.47 77.91 78.22
NC 90.19 89.29 88.71 88.92 86.95 87.17

NA+NC 91.53 91.83 89.22 89.71 88.05 88.48
LRNL 92.23 92.41 90.55 90.96 89.76 90.17

SHL

Conv 80.18 80.67 77.30 77.74 71.10 71.67
NA 85.57 85.92 80.65 81.12 76.81 77.41
NC 88.39 88.74 86.48 86.82 85.70 86.21

NA+NC 90.89 90.34 89.42 89.87 87.19 87.41
LRNL 91.56 91.73 90.19 90.85 88.13 88.22

TMD

Conv 78.67 79.22 75.93 75.81 69.27 69.22
NA 83.23 83.71 79.78 80.37 73.11 73.67
NC 86.38 86.69 84.26 84.72 82.10 82.44

NA+NC 87.41 87.76 85.82 86.23 84.35 84.73
LRNL 88.07 88.23 87.57 87.74 86.19 86.60
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4.4.4.6 Random versus uniform distribution of noisy labels

In the random distribution, the noisy labels in the training dataset are randomly dis-

persed means we cannot figure out the percentage of noisy labels for a particular class.

Further, the uniform distribution of the noisy labels signifies that an equal proportion

of noisy labels disperse in the training dataset for all class labels. Figure 4.7 shows that

the confusion matrices for the LMR dataset with random and uniform distribution of

noisy labels at 30% noise concentration. It is interesting to observe that the uniform

distribution of noisy labels improves the prediction accuracy marginally, i.e., 1.2%.

• Adding Noisy labels: In the random distribution of noisy labels, we use “pan-

das.DataFrame. sample(frac=0.x)” to randomly pick x% training data instances (S)

with its labels. Next, flip the class labels of selected S with the label other than the

true class labels. It generates a set of data instances S ′ with all its labels are noisy.

Finally, we replace all the class labels corresponding to the data instances of S in train-

ing dataset with the class labels of S ′. Similarly, in the uniform distributions of noisy

labels, we pick x% training data instances of all the class labels in S and perform the

noisy labels insertion uniformly.
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Figure 4.7: Impact of noisy labels distribution on class-wise accuracy with 30% noise concentration.
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4.4.4.7 Impact of window size

Finally, we perform an experiment to study the impact of window size on the accuracy

of the LRNL approach on LMR and SHL datasets. From the results, we observed the

highest accuracy is achieved at window size 20, as shown in Table 4.3. It is because at

window size 20, most distinguishable characteristics are obtained to learn a mapping

between features and labels. However, if the window size is more than 20, the features

overlap, and if the window size is less than 20, there are only a few distinguishable

features for training. Similarly, while performing the experimental evaluation on the

TMD dataset having sample length 1200, we select a window size of 5. It indicates that

the window size is specific and changes with the datasets.

Table 4.3: Accuracy (in %) variations of the proposed approach on collected LMR and SHL datasets
with different window sizes.

Window
size

LMR dataset SHL dataset
Noise concentration Noise concentration
0% 20% 30% 0% 20% 30%

5 73.45 69.23 63.27 68.63 60.98 59.23
10 83.20 75.47 69.49 79.42 71.96 63.38
15 89.23 84.29 78.66 86.23 80.33 72.97
20 94.21 90.55 89.76 92.53 90.19 88.13
25 92.39 88.75 86.45 90.17 86.32 84.85
30 90.45 86.23 85.29 89.22 85.73 84.21
35 90.2 85.17 84.79 89.03 84.34 83.91
40 89.7 84.86 84.21 88.25 83.78 82.71

4.4.5 Comparison with existing approaches

This section compares LRNL approach with existing approaches, including DenseNetX

and GRU (DNG) [6], Locomotion Mode recognition based on Gaussian Mixture Model

(LMGMM) [79], Locomotion Activity Recognition (LAR) [31], Automatic Annotation

for human Activity Recognition (AAAR) [40], PENCIL [35], and CopyNet [37].
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4.4.5.1 Performance comparison using accuracy

Table 4.4 illustrates the performance comparison of the LRNL approach with the exist-

ing approaches at different noise concentrations. Following observations can be made

from the result:

• LRNL approach outperforms the existing approaches on all the datasets in all the

settings of noisy labels concentrations. This is due to the fact that the LRNL

approach incorporates the noise corrective model, which helps in handling high

order noisy labels with minimal accuracy compromise.

• The accuracy of the noise adaptive model is nearly similar to LAR and PENCIL

for LMR and SHL datasets when the concentration of noisy labels is 0%. It is

because of the stack encoder in the LAR approach, which performs well on noise-

free data. However, the LAR approach suffers from performance compromise on

the high concentration of noise.

• The accuracy of the existing approaches falls rapidly as the concentration of noisy

labels increase and reach the minimum at 30% noisy labels. On the contrary, the

proposed LRNL approach can maintain accuracy around 88% for all the datasets

even at 30% noisy labels.

• At 0% noisy label concentration, DNG slightly exceeds LRNL. However, the com-

plexity of DNG architecture is more than LRNL. Additionally, with increasing

noisy label concentration, performance of the LRNL approach exceeds DNG.

4.5 Conclusion

This chapter proposed a deep learning-based LRNL approach for recognizing the loco-

motion modes using sensory data with noisy labels. Unlike existing approaches, LRNL

approach built an ensemble model to enhance the recognition capability of the clas-

sifier, without having any prior information about the concentration of noisy labels.
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Table 4.4: Accuracy (in %) comparison of LRNL approach with existing approaches using different
datasets.

Datasets
Approaches
or Models

Noise Concentration
0% 10% 20% 30%

LMR

LAR [31] 88.20 81.35 80.13 57.73
AAAR [40] 86.49 79.37 77.10 69.17

PENCIL [35] 90.49 83.07 80.97 74.22
CopyNet [37] 85.21 79.27 76.53 67.39
LMGMM [79] 88.25 82.21 80.65 63.81

DNG [6] 94.73 87.42 74.23 54.39
Conventional 84.37 82.37 77.93 72.95

Noise adaptive 88.10 86.92 83.13 77.91
Noise corrective 92.50 90.19 88.17 86.95

LRNL 94.21 92.23 90.55 89.76

SHL

LAR [31] 87.10 80.53 77.53 59.67
AAAR [40] 85.17 76.67 73.10 63.13

PENCIL [35] 89.29 82.57 78.29 72.87
CopyNet [37] 84.29 75.83 73.23 62.81
LMGMM [79] 87.41 81.17 78.25 59.44

DNG [6] 93.07 84.44 72.28 52.57
Conventional 83.20 80.18 77.30 71.10

Noise adaptive 88.40 85.57 80.65 76.81
Noise corrective 91.20 88.39 86.48 85.70

LRNL 92.53 91.56 90.19 88.13

The ensemble model incorporates three models, i.e., conventional, noise adaptive, and

noise corrective, for handling different concentration of noisy labels. The noise adaptive

model proposed a noise adaptive loss function that reduces the discrepancy between

true labels and predicted labels using dynamic variables. Next, the noise corrective

model used a low rank estimate of true labels for handling noisy labels. We also carried

out several experiments to validate the effectiveness of the proposed approach using

a collected and two existing datasets. The experimental results showed that LRNL

approach achieved an accuracy of around 93% even datasets have 10% noisy labels.


