
Chapter 3

An unseen locomotion mode

identification model using multiple

semantic matrices

This chapter presents a deep learning-based model that can recognize both seen and

unseen locomotion modes using data instances from inertial sensors. We adopt the

concept of zero-shot learning to improve the capability of the traditional classifier by

using multiple semantic metrics.

3.1 Introduction

Identification of human locomotion activities has been a prominent area of research for

many years. Literature indicates several significant contributions towards building a

pertinent identification approach, for identifying locomotion activities using the sen-

sory data of smartphone or wearable [1, 2]. Recent smartphones consist of variety of

sensors (e.g., accelerometer, gyroscope, magnetometer, etc.), which are able to capture

a crucial information about basic and complex human locomotion activities [87]. As

the smartphone has become an integral part of our daily routine, these activities can be

28 3.1. Introduction

recognized by using the sensory data (obtained when user is performing the activity).

Activity recognition has several potential applications such as user authentication [24],

locomotion or transportation mode recognition [5, 73], detecting vehicle-riding activi-

ties [74], and so on [75].

Information about the locomotion mode helps in travel time estimation, traffic man-

agement, journey planning, and so on [5]. In locomotion mode recognition, the main

objective of a classifier is to identify a transportation mode (e.g., bicycle, bike, car,

etc.) by using the smartphone sensors. Such a classifier first learns a mapping be-

tween instances (i.e., sensory data) and class labels (or locomotion modes) by using the

training dataset. Later, the classifier predicts a class label of a new instance. Most of

the prior studies either employed machine learning models [29, 30, 88] or deep network

models [26–28] to learn the mapping from the training dataset.

Deep Learning

based Classifier

Locomotion modes

Seen

Unseen

Locomotion modes

Train

Bicycle

Sensory data

Zero−Shot Learning
Bike Car

Smartphone

Bus

Figure 3.1: An example of locomotion mode recognition using a deep learning based classifier and
zero-shot learning.

A traditional classifier can recognize only seen classes (locomotion modes) that

are given with training instances. In other words, such a classifier is incapable to

identify an unseen class that appears first time during testing. Such unseen class

or locomotion mode can be identified by using the semantic information of the seen

classes [9, 10]. Zero-Shot Learning (ZSL) [11] is a concept that extends the capability

of the traditional classifier for identifying the unseen classes. Figure 3.1 illustrates an

3.1. Introduction 29

example of locomotion mode recognition using deep learning based classifier and ZSL,

where the smartphone provides sensory data which is used to identify modes.

3.1.1 Motivation of this work

Previous studies have following major limitations which motivated this work:

• The existing recognition approaches [5, 26–28] can identify only seen locomotion

modes by extracting the deep features from the training instances. As it is imprac-

tical to acquire prior knowledge (i.e., labeled data) about every type of locomotion

mode, the recognition approach should identify a new locomotion mode without

any corresponding training instance. It indicates that the approaches [5, 26–28]

can not be employed for identifying an unseen locomotion mode.

• In prior studies [29,30], the authors employed machine learning based recognition

models for identifying the locomotion modes, which heavily rely on the knowledge

of domain related features. Such dependency can be obviated by utilizing the

automatic feature extraction capabilities of deep network models.

• The existing work [10, 66] construct a semantic matrix by using word2vec [89],

GLoVe [90] and human-annotated characteristics to identify unseen images or

text. The semantic matrix captures meaningful information from seen classes,

which is later utilized for recognizing the unseen classes. Fusion of multiple se-

mantic matrices can enrich this information remarkably.

In this chapter, we address the problem: how to identify a locomotion mode (seen

or unseen) using semantic information and deep learning features of labeled training

instances? To solve this problem, this work proposes, DeepZero, a sensors based Deep

learning model by incorporating the concept of Zero-shot learning for identifying unseen

locomotion modes. It first extracts features from training data using a sequential com-

bination of CNN and LSTM. Later, the model builds a classifier by learning a mapping

between extracted features and semantic information.

30 3.1. Introduction

3.1.2 Major contributions

To best of our knowledge, this is the first work to address the identification of un-

seen locomotion modes using deep learning models. This work makes following major

contributions:

• We propose a recognition model DeepZero to recognize the locomotion modes

using labeled training dataset. DeepZero model is capable enough to identify an

unseen locomotion mode by incorporating the concept of ZSL.

• DeepZero model develops a feature extraction framework to extract the features

automatically from the given dataset and uses them during construction of the

classifier. The framework consists of a sequential combination of CNN and LSTM,

to capture spatial as well as temporal dependencies among the sensory data points

of the instances and thus provides information rich features.

• Next, this work constructs a novel attribute matrix by using multiple semantic

matrices including human-annotated, one-hot encoding, and word2vec for identi-

fying unseen locomotion mode. DeepZero model builds a classifier by learning a

mapping between the extracted features and the attribute matrix. This work con-

siders various characteristics of locomotion modes to obtain the human-annotated

semantic matrix.

• Finally, we develop an android application to collect a Locomotion Mode Recog-

nition (LMR) dataset using acceleration, gyroscope, and magnetometer sensors.

This work conducts various experiments to evaluate DeepZero model using LMR

dataset along with an existing Sussex-Huawei Locomotion (SHL) dataset [77].

The rest of chapter is structured as follows. Next section describes the terminologies

and notations used in this chapter. Section 3.3 proposes DeepZero model for locomotion

mode identification. In Section 3.4, we discuss a feature extraction framework. Next,

Section 3.5 presents the experimental evaluation of DeepZero. Finally, Section 3.6

concludes the chapter.

3.2. Preliminary 31

3.2 Preliminary

In an application of locomotion mode recognition, dataset D contains sensory measure-

ments of n different types of sensors. An ith instance of D is denoted by xi, where

1 ≤ i ≤ N . Each instance xi belongs to one of k class labels that are denoted

as L1, L2, · · · , Lk. Let Dj denotes a dataset that contains data of jth sensor, where

1 ≤ j ≤ n. An instance of Dj is a series of m-dimensional measurements. The length

of the instances in D is denoted by M . As D contains labeled instances corresponding

to various locomotion modes, we refer locomotion modes as class labels.

Definition 3.1 (Unseen class) A class is said to be unseen if there exists no training

instances of the class in the dataset.

Definition 3.2 (Attribute matrix) It contains semantic information of all possible

classes of the dataset D. The semantic information is obtained in terms of attributes

(i.e., most identifiable features). The attribute matrix is denoted by A ∈ Rk×a, where a

is the number of attributes.

3.2.1 Problem statement and overview of solution

Locomotion mode recognition using smartphone sensors has several user-centric ap-

plications including travel time estimation, journey planning, etc., as discussed in the

introduction. As it is impractical to have information about all types of locomotion

modes, the recognition approach should be able to identify a new locomotion mode

even if no corresponding training instances are given. This work therefore addresses

problem of identifying an unseen locomotion mode.

Overview of the solution: DeepZero model constructs an attribute matrix A from

a given set of class labels of the dataset D. The model also obtains a feature matrix

F ∈ RN×a corresponding to the N instances of D, using a combination of CNN and

32 3.3. DeepZero model

LSTM. Later, a classifier ΠΠΠ is constructed by learning a mapping between F and A.

Finally, the classifier ΠΠΠ is used to predict a locomotion mode for a given test instance.

3.3 DeepZero model

In this section, we propose a deep learning based recognition model (DeepZero) for

identifying a locomotion mode using sensory data. The objective of DeepZero model

is to recognize a locomotion mode even when training data does not have any corre-

sponding instances. DeepZero employs ZSL to identify an unseen locomotion mode by

using the semantic information of seen classes. The model consists of following ma-

jor components: 1) construction of attribute matrix, 2) feature extraction, 3) classifier

construction, and 4) prediction of class label. Figure 3.2 illustrates a block diagram

of DeepZero model, where the training dataset consists of labeled instances of sensory

data for different locomotion modes. The new instance is an unlabeled testing instance

that belongs to either seen or unseen locomotion mode. Algorithm 3.1 illustrates all

the steps of DeepZero model for locomotion mode recognition.

Construction of
attribute matrix

Feature extraction

(Seen or unseen)

Class label

Classifier
construction

labels
Class

data
Training

Testing instance
(Class label: ?)

Dataset Classifier

Figure 3.2: Overview of DeepZero model.

3.3. DeepZero model 33

3.3.1 Construction of attribute matrix

This work initially constructs an attribute matrix to capture the semantic information

of the classes. DeepZero model uses this matrix for identifying the unseen locomotion

modes. The attribute matrix is obtained from the fusion of three semantic matrices:

3.3.1.1 One-hot encoding matrix

It is a diagonal matrix of size k × k, where k is the number of classes in dataset

D. The matrix contains binary representation of the classes in such a way that only

diagonal entries are 1. For example, for three classes (bike, car, and bus) in D then

their corresponding binary representation can be given as 100, 010, and 001. In this

work, one-hot encoding matrix is denoted by Zk.

3.3.1.2 Word2vec matrix

It is a matrix of size k×v, where v is the number of most similar words corresponding to

a word (class label). Such similar words can be obtained by using word embeddings [89]

along with a vector of probabilities for those obtained words. We utilize the probabilities

of 300 words (i.e., v = 300) corresponding to each of k class labels in the dataset D,

which gives a word2vec matrix of size k× 300. The word2vec matrix is denoted by Zv.

3.3.1.3 Human-annotated semantic matrix

Understanding the importance of domain knowledge in recognition model, we create

a human-annotated semantic matrix based on common characteristics of locomotion

modes. For the matrix, we have considered all the relevant characteristics that can be

visually observed by humans. Following steps illustrate the procedure for creating this

semantic matrix.

(a) Characteristics identification: First of all, we find some common characteristics of

the class labels that can provide sufficient information for their unique identification.

34 3.3. DeepZero model

This work considers following characteristics of the locomotion modes: speed, capacity,

power, fuel, pathway, and wheel count. The characteristics such as capacity, wheel

count, pathway, and fuel can be easily determined. Moreover, the characteristics such

as speed and power are obtained by taking the experts opinion. Further, to build a

classifier for identifying unseen classes, it is prerequisite to have a semantic matrix

with sufficient information about domain. We therefore develop a human-annotated

attribute matrix that can provide desirable distinguishable information to the classifier.

(b) Integer value representation: This step creates a matrix of size k × c, where c is

the number of characteristics taken into consideration for each of the k class labels.

Figure 3.3 illustrates an example of such matrix for four locomotion modes including

bike, car, bus, and train. To illustrate the matrix conveniently, we considered only four

characteristics including speed, capacity, power, and fuel, as shown in Figure 3.3. The

values in the matrix (given on the left side of Figure 3.3) are taken from the practical

knowledge of different locomotion modes for the considered characteristics. In order to

represent each characteristic using an integer value, the values in power characteristic

are shown after multiplying the horse power (hp) with 100. For the same reason, the

values in fuel characteristic indicated as follows: 0 for petrol, 1 for diesel, 2 for electric

energy, and 3 for human energy.

Car

Bus

Train

Bike

700000

500

24000100

120

110

80

1464

45

4

2 0

17000 0

1

2

(11 bits)
Capacity

(7 bits)
SpeedCapacity

(Seats)

10110111000

00000101101

00000000100

00000000010

1101110

1010000

1111000

1100100

00

00

10

01

(2 bits)(20 bits)
Power FuelSpeed

(km/hr)
Power

(hpx100)
Fuel

. . .

. . .

. . .

. . .

Figure 3.3: An example of human-annotated semantic matrix.

(c) Binary representation: Next, the integer values of the matrix are converted into

binary. The converted binary matrix is shown on right side of Figure 3.3. Each char-

acteristic is represented by a fixed number of bits, which is equal to the number of

bits required to represent the maximum value in the column. We call this matrix as

3.3. DeepZero model 35

human-annotated semantic matrix which is denoted by Zh ∈ k × h, where h denotes the

number of bits in a row obtained after binary conversion. If we directly use non-binary

values of human-annotated matrix then the multiplication operations require higher

temporary storage and computations [91]. Further, normalization is another way to

handle non-binary values of matrix but it results in floating values which demands for

higher computational resources.

3.3.1.4 Fusion of semantic matrices

After obtaining the semantic matrices Zk,Zv, and Zh, this work performs fusion of these

matrices to construct the attribute matrix. As the matrices are of different dimensions,

we first pass each of them through a separate Fully Connected (FC) layer consisting

equal number of neurons, as shown in Figure 3.4. The FC layers result the matrices

of equal dimension. Next, the resultant matrices are passed through a Rectified Linear

Unit (ReLU) function to eliminate the negative values. In the fusion, we perform an

element-wise sum of resultant matrices to get a single semantic matrix that incorporates

the different semantic spaces. Finally, the obtained semantic matrix is passed through

an activation function and the resultant matrix is called as attribute matrix. This

work uses Tanh activation function to add non-linearity in the matrix, which helps the

classifier to learn better mapping [92].

Let fi(·) denotes a ReLU function that takes a resultant matrix at FC layer as input,

where i ∈ {k, v, h}. It is mathematically expressed as:

fi(WiZi + bi), (3.1)

where, Wi and bi denote the weight matrix and bias vector for Zi, respectively. The

weight matrix and bias vector are estimated during mapping. Now, the fusion of the

36 3.3. DeepZero model

2 3 k1 1 2 3 v 1 2 3 h

Human annotated matrix

Element−wise addition

word2vec matrixOne−hot encoded matrix

Tanh

ReLUReLU ReLU

Fully Connected Fully Connected Fully Connected

0

0

0

1 0

0 1 0

0 0 0

1 0

1

0

0

0.36 0.26 0.21

0.160.30

0.27

0.41

0.03

0.01

0.06

0.02

0.14

0.190.23

0.33

0.35

1 0

0 1 0

1

0

0

10

1

11

1

1 1

...
...

...
... · · ·

· · ·

· · ·

· · ·

· · ·
· · ·

L1

L2

L3

Lk

...
...

...
...

... · · ·

· · ·
· · ·
· · ·
· · ·

· · ·

L1

L2

L3
...
Lk

· · ·
· · ·

· · ·

· · ·

...
...

... · · ·

· · ·
L1

L2

L3
...
Lk

⊕ :⊕ :⊕ :

· · ·· · · · · ·

⊕

A

Zk Zv Zh

Figure 3.4: Construction of attribute matrix by fusing three semantic matrices.

three semantic matrices can be given as:

FFF =fk(WkZk + bk)⊕ fv(WvZv + bv)⊕ fh(WhZh + bh), (3.2)

where, symbol ⊕ denotes an element-wise sum. After fusion, we apply Tanh activation

function (denoted by g(·)) on the output matrix FFF to get the attribute matrix as:

A = g(FFF). (3.3)

The attribute matrix A ∈ Rk×a, where a denotes the number of attributes repre-

senting a class label (locomotion mode).

3.3.2 Feature extraction

We extract two types of features: hand-crafted and deep. The hand-crafted features

include minimum, maximum, autocorrelation (four lags), below mean, and above mean

results in total 8 features. In order to extract deep features, this work uses CNN and

3.3. DeepZero model 37

LSTM. Later, both hand-crafted and deep features are combined and output of this

layer is used as features in DeepZero model. Let F ∈ RN×a denotes a feature matrix

obtained for the given dataset D, where N is the total number of instances in D and

a is the number of features extracted against a single instance. The details of feature

extraction is presented in Section 3.4.

3.3.3 Classifier construction

In this section, DeepZero model builds a classifier by using the obtained feature matrix

(F) and attribute matrix (A). As the features are extracted using the data and the

attributes are obtained using only the class labels, the classifier needs to learn a mapping

between them by minimizing the loss.

3.3.3.1 Objective function

This work first defines loss and regularization terms to formulate the objective function

of the classifier, denoted by ΠΠΠ. Let Fi denotes a feature vector (i.e., ith row of F)

which is obtained corresponding to an instance xi ∈ D. Let Ti denotes an attribute

vector obtained as Ti = Al, where l is an index corresponding to class label of xi and

1 ≤ l ≤ k. We define a loss term using vector l2-norm as:

Lterm =
1

N

N∑

i=1

||Fi − Ti||22 =
1

N

N∑

i=1

||Fi − gi(FFF)||22, (3.4)

where, function gi(·) returns an attribute vector (from A) corresponding to the class

label of xi. By converting vector norm into matrix Frobenius norm (denoted by || · ||F)

and substituting FFF from Equation 3.2, Equation 3.4 can be written as:

Lterm =
∥∥∥F − g

(
fk(WkZk + bk)⊕ fv(WvZv + bv)⊕ fh(WhZh + bh)

)∥∥∥
2

F
. (3.5)

As the attribute matrix is obtained from three different matrices by passing them

38 3.3. DeepZero model

through a separate FC layer, this work adds a separate regularization term to each

of the FC layers. By the regularization, DeepZero model prevents overfitting of the

classifier to make it resilient enough for unseen class prediction. This work formulates

the regularization term as:

Rterm = λ1

(||Wk||2F
2

+
||bk||22

2

)
+ λ2

(||Wv||2F
2

+
||bv||22

2

)
+ λ3

(||Wh||2F
2

+
||bh||22

2

)
,

(3.6)

where, λ1, λ2, and λ3 are regularization parameters for the respective FC layers. The

objective function of the classifier ΠΠΠ can be expressed as:

min
Wk,Wv ,Wh

(Lterm +Rterm). (3.7)

By solving Equation 3.7, DeepZero model learns the weight matrices (Wk,Wv,Wh)

and corresponding bias vectors (bk,bv,bh). We consider the values in bias vectors as

constant in order to simplify the optimization problem.

3.3.3.2 Optimization

The optimization problem expressed in Equation 3.7 is convex for Wk,Wv, and Wh

individually but not convex for all of them together. We therefore solve for one weight

matrix by fixing two others (as constant). This solution of optimization is motivated

from a work in [76]. From Equation 3.7, let LLL = Lterm +Rterm. Using Equations 3.5

and 3.6, we get:

LLL =
∥∥∥F − g

(
fk(WkZk + bk)⊕ fv(WvZv + bv)⊕ fh(WhZh + bh)

)∥∥∥
2

F

+
λ

2

[
||Wk||2F + ||bk||22 + ||Wv||2F + ||bv||22 + ||Wh||2F + ||bh||22

]
, (3.8)

3.3. DeepZero model 39

where, λ = λ1 = λ2 = λ3. As the main objective of the classifier is to obtain weight

matrices, the bias vector terms can be omitted from Equation 3.8, which gives:

LLL =
∥∥∥F − g

(
fk(WkZk)⊕ fv(WvZv)⊕ fh(WhZh)

)∥∥∥
2

F

+
λ

2

[
||Wk||2F + ||Wv||2F + ||Wh||2F

]
. (3.9)

This work first optimizes Equation 3.9 for Wk by fixing Wv and Wh. For optimization,

we take first order derivative of LLL with respect to Wk and equate it to zero. As

the function g(·) does not influence the learning of weights, it can be omitted from

Equation 3.9 while computing its derivative for simplicity. The derivative is as follows:

dLLL
dWk

= 2
{
F − β

}{
− d

dWk

β
}

+ λWk,

where, β = fk(WkZk) ⊕ fv(WvZv) ⊕ fh(WhZh). As fi(·) is ReLU function for i ∈

{k, v, h}, we get:

dβ

dWk

=





0, WkZk < 0.

WkZk, WkZk > 0.
(3.10)

Considering the case of WkZk > 0 for fi(·) and substituting dβ
dWk

, Equation 3.10 can

be written as:

2(F −WkZk −WvZv −WhZh)(−WkZk) + λWk = 0.

Wk =
2Zk(F −WvZv −WhZh)− λ

4Z2
k

. (3.11)

For case WkZk > 0 , Equation 3.10 can be written as:

dLLL
dWk

= 2
{
F − β

}{
−WkZk

}
+ λWk. (3.12)

40 3.3. DeepZero model

Estimating the second-order derivative,

d2LLL
d2Wk

= 2
{
− dβ

dWk

}{
−WkZk

}
+ 2
{
F − β

}{
− d

dWk

WkZk
}

+ λ
d

dWk

Wk,

= 2
{

WkZk
}2

+ 2Zk
{
β −F

}
+ λ. (3.13)

Next, to prove the convexity of the optimization problem in Equation 3.8, d2LLL
d2Wk

> 0.

For simplifying the representation, Equation 3.13 is rearranged as follows:

d2LLL
d2Wk

= 2
{

WkZk
}2

+ λ
︸ ︷︷ ︸

T1

+ 2Zk
{
β −F

}

︸ ︷︷ ︸
T2

. (3.14)

In Equation 3.14, T1 is always greater than zero, as it is a summation of a square

term ({WkZk}2) and regularization parameter λ. The value assigned to λ is always

greater than zero. β lies in the range between 0 and ∞. There are two possible cases

in order to show T1 + T2 > 0, which are as follows:

1. {β ≥ 1}: In this case, the value of T1 + T2 > 0 only if {β − F} > 0. Here,

the feature matrix F contains only floating point numbers less than 1, as it is

obtained by applying a Tanh function in the deep leaning models. Now, since

β ≥ 1 and F < 1, we get {β −F} > 0.

2. {0 < β < 1}: In this case, as the value of β is less than 1, there may be a

chance that T2 < 0. However, T1 is having a sufficiently high positive value

as it incorporates a square term and summation with regularization λ. It means

that T1 can adjust the negative value of T2 while preserving the positivity of

T1 + T2. Additionally, as the value of β decreases the weight Wk also decreases,

which in turn will increase the regularization λ. It also helps to hold T1+T2 > 0.

We can now conclude that the second order-derivative is non-negative, which is

3.3. DeepZero model 41

required to prove the convexity. Similarly, the classifier ΠΠΠ can obtain Wv by fixing Wk

and Wh, and Wh by fixing Wk and Wv.

3.3.3.3 Distance threshold computation

To identify an unseen class, the classifier ΠΠΠ needs to learn a distance threshold that can

separate an unseen class from the seen classes. For each training instance, ΠΠΠ first obtains

an attribute vector by using the feature matrix (F) and weight matrices (Wk,Wv, and

Wh). Later, this attribute vector is compared with known attribute vector of each class

label in A (constructed previously). Finally, the class label of nearest attribute vector

is assign to that training instance. Let T denotes a matrix of size N × a where a row

Ti corresponds to an attribute vector, obtained by ΠΠΠ, for xi ∈ D. This work computes

a separate distance threshold for each class label Ll, where 1 ≤ l ≤ k. Let δl denotes a

distance threshold for Ll, which is calculated as:

δl = max
1≤i≤Nl

{ a∑

j=1

|Ti,j − Tj ′|
}
, (3.15)

where, Nl is the number of instances with class label Ll in D and T ′ is a median

attribute vector for Ll.

3.3.4 Prediction of class label

DeepZero model first extracts features from the given testing instance, using the trained

deep learning models. Later, the classifier ΠΠΠ uses these features to predict an attribute

vector. Finally, it predicts a class label by using computed distance thresholds.

Figure 3.5 illustrates the process of prediction of a class label for a testing instance

xt /∈ D, using the built classifier ΠΠΠ. The extracted feature vector for xt is denoted

by F t. In the figure, At is an attribute vector and δ is a set of computed distance

thresholds for the seen class labels as δ = {δ1, δ2, · · · , δk}. The classifier compares the

42 3.4. Feature extraction using deep learning

1

If

No

If
1

2

vector

Obtain attribute

(using

Feature extraction
No

Yes Yes

Testing instance

If

No

2

Yes

Unseen class label

Seen class

d← append(δl − ‖At −Al‖)

Ft At

Π)

xt

Al

A
l = l + 1

‖At −Al‖ < δl
l

(Ll = argmax d)

(l ≤ k)

len(d) > 0

Figure 3.5: Prediction of class label of a testing instance in DeepZero model.

testing attribute vector At with the attribute vectors of seen classes in A. For a class

label Ll, if ‖At−Al‖ < δl holds, value (δl−‖At−Al‖) is appended into a distance list

d. Next, after estimating distance from k classes, if length of d is null then an unseen

class label is assigned to xt. However, if d is not empty then the class having highest

value of δl − ‖At −Al‖ is the seen class Ll for xt.

The time complexity of Algorithm 3.1 mainly depends on CNN and LSTM models.

The CNN model takes O
(∑l

i=1 pi−1 ·s2i ·fi ·o2i
)

per time step of the input sequence [93],

where l is the number of convolution layers, p is the number of input channels, f is

number of filters, s is filter size, and o is the size of output feature, at ith convolution

layer. Next, the time complexity of LSTM model is O(W) [94], where W is the number

of weight parameters. As DeepZero uses sequential combination of CNN and LSTM,

total time complexity can be given as O
(
(ps2fo2 +W)M

)
= O(WM), where M is the

length of the instance and {p, s, f, o} � W .

3.4 Feature extraction using deep learning

DeepZero model extracts features from the given dataset D using a sequential combina-

tion of two deep learning models, i.e., CNN and LSTM. The model first computes deep

features and then combines them with hand-crafted features to obtain a feature matrix

(denoted by F). CNN model initially extracts the spatial features from the sensory

data instances. These extracted features act as input to the LSTM model. Since we

3.4. Feature extraction using deep learning 43

Algorithm 3.1: DeepZero model

Input: A labeled dataset D with N instances. Each instance consists of data
from n sensors. A test instance xt /∈ D;

Output: An attribute matrix (A), a feature matrix (F), distance thresholds δ,
and predicted label for xt;

1 Build a one-hot encoding matrix Zk.
2 Build a word2vec matrix Zv.
3 Build a human-annotated semantic matrix Zh.
4 Compute FFF from Zk,Zv, and Zh using Equation 3.2.
5 Obtain A ← g(FFF), as shown in Equation 3.3.

/* Obtain feature matrix (F) using training dataset D */
6 for each sensor j ← 1 to n do
7 Pass Dj through a sequence of 5 convolution layers.
8 Flatten the output of last convolution layer.
9 Pass the flattened output through a FC layer.

10 Concatenate the n outputs of FC layers and reshape.
11 Obtain deep features using LSTM model.
12 F ← merge deep and hand-crafted features.
13 Find min

Wk,Wv ,Wh

(Lterm +Rterm), as given in Equation 3.7.

14 Obtain Wk,Wv, and Wh using Equation 3.11.
15 Compute thresholds δ = {δ1, δ2, · · · , δk} using Equation 3.15.
16 Extract features F t and obtain attribute vector At.
17 for each class l← 1 to k do
18 if ‖At −Al‖ < δl then
19 Assign class label Ll to xt.
20 break.

21 if xt is not recognized then
22 Assign an unseen or new class label to xt.

are using sensory data sequences; thus, the LSTM model can easily fetch temporal fea-

tures. Additionally, the memory cell of LSTM can store previous time step information

to learn the temporal dependencies. Furthermore, the LSTM does not require fine-

tuning the multiple parameters and work well over a broad range of parameters, such

as learning rate, input gate biases and output gate biases. Thus, the DeepZero model

uses both spatial and temporal features, which improves the recognition performance.

For a given locomotion dataset D, DeepZero model first splits D into the smaller

datasets Dj which consists of the data of jth sensor only, where 1 ≤ j ≤ n. Each dataset

44 3.4. Feature extraction using deep learning

F
la

tt
e
n

F
la

tt
e
n

F
la

tt
e
n

C
o
n

c
a
te

n
a
ti

o
n

D
e
e
p

fe
a
tu

re
s

FC
FC

FC

Convolution Neural Network (CNN)

Dataset

Convolution layer Long Short Term Memory (LSTM) LSTM unit

1

Layer 2Layer 1

2

1

2

64 64

1

2

3

64

1

2

3

64

fe
a
tu

re
s

H
a
n

d
−
c
ra

ft
e
d

D1

D2

Dn

F

D

Figure 3.6: Feature extraction framework using CNN and LSTM.

Dj is first passed through a sequence of five convolution layers followed by a flatten layer.

The vectors of features (for Dj) are concatenated and passed through FC layer to get a

fixed number of features. Later, these features are given as input to a sequence of two

LSTM units that provide a vector of features called as deep features. Finally, the deep

features are combined with hand-crafted features and are passed through a FC layer

to obtain a desired number of features corresponding to each instance xi of D, where

1 ≤ i ≤ N . A feature matrix of size N × a is obtained, where a denotes the number of

features obtained for each xi. The features are generated instance wise during training

and the weights are updated after each instance. It also indicates that CNN and LSTM

layers do not generate features among different instances. Figure 3.6 shows the feature

extraction framework for dataset D using CNN and LSTM.

Let us consider an example scenario for the feature extraction process with a single

input instance. The dataset D consists of 100 data points of two sensors, i.e., 3-axis

accelerometer and 3-axis gyroscope. The instance is first partitioned into two parts (D1

for accelerometer and D2 for gyroscope) to get sensor-wise data. Next, data of each

of three axes is channelized to make an input of shape 1 × 3 × 100, which is given to

the first convolution layers. As we used 64 3-channel 1 × 1 filters in the convolution

layer, it produces an output of 1 × 64, which is further given as input to the next

convolution layer. After five convolution operations on five different layers, an output

of dimension 1 × 64 is obtained for each sensor. The convolutional output passed

through a separate fully connected layer, and the outputs are concatenated to generate

3.4. Feature extraction using deep learning 45

an output of dimension 128× 1. Further, this output (128× 1) is supplied as input to

a fully connected layer of 64 neurons that produce input for 2-LSTM layers (64 cells

each). Finally, we obtain the output of size 1× 64 as features against single input.

3.4.1 Convolution layer

The dataset Dj contains total N instances with length of sensory measurements M ,

where each instance is a m-dimensional (e.g., m = 3 for gyroscope data with x, y, and

z axis). The dataset is therefore first channelized and then given to the convolution

layer where m-channel filter of size 1× 1 is applied on each instance of the channelized

data with one stride. As a result, a feature matrix of size N ×m is obtained. In this

work, the convolution layer uses 64 filters which results 64 matrices of size N × 64.

3.4.2 LSTM unit

LSTM unit comprises of four main components: a cell and three gates (input, forget,

and output). At any time t, the LSTM unit takes three inputs: 1) current input vector,

denoted by xt, 2) output (or hidden) state at time t − 1, denoted by ht−1, and 3) cell

state at t−1, denoted by ct−1. LetWk and Uk denote a weight matrix for a component

k for xt and ht−1, respectively, where k = {c, i, f, o} and c for cell, i for input gate, f

for forget gate, and o for output gate are mathematically represented as:

• Input gate: In the input gate, the current input xt and hidden state ht−1 are

passed through a sigmoid and a Tanh function (denoted by g(·)).

ut = σ(Wixt + Uiht−1)⊗ g(Wcxt + Ucht−1), (3.16)

where, symbol ⊗ denotes an element-wise product.

• Forget gate It decides what information of xt and ht−1 should be kept or forgot

46 3.5. Evaluation of DeepZero model

using sigmoid function (σ(·)).

ft = σ(Wfxt + Ufht−1). (3.17)

• Cell It updates the cell state by using previous cell state ct−1, ft, and ut as follows:

ct = ft ⊗ ct−1 + ut. (3.18)

• Output gate It operates on input vector xt, hidden state ht−1, and updated cell

state ct, to decide the next hidden state.

ht = σ(Woxt + Uoht−1)⊗ g(ct). (3.19)

3.5 Evaluation of DeepZero model

In this section, we first discuss the setup to collect a Locomotion Mode Recognition

(LMR) dataset and then evaluate DeepZero model on this dataset along with a publicly

available Sussex-Huawei Locomotion (SHL) dataset [77]. We carried out experiments

to answer the following questions:

• What is the minimum number of epochs, where the performance of DeepZero

model stabilizes? (Section 3.5.4.1)

• What is class-wise performance of DeepZero model on seen classes? (Section 3.5.4.2)

• How does the performance influence with one unseen class? (Section 3.5.4.3)

• What is the accuracy with varying number of unseen classes? (Section 3.5.4.4)

• How does the attribute matrix impact on the performance? (Section 3.5.4.5)

3.5.1 Data collection

In this work, we developed an android application to collect the sensory data for six

locomotion modes (k = 6) including bicycle (a1), bike (a2), car (a3), auto rickshaw

3.5. Evaluation of DeepZero model 47

(a4), bus (a5), and train (a6). The application uses three sensors (n = 3): accelerom-

eter, gyroscope, and magnetometer. The sampling rate of each of the sensors is set to

100 Hz. For each locomotion mode, the data is collected from 10 participants (5 males

and 5 females). The application provides a menu to the participant for selecting the

locomotion mode, as shown in Figure 3.7. Once a mode is selected, the application

records measurements for 60 seconds. As each participant has provided 200 instances

of each locomotion mode, the dataset contains total 12000 instances.

Figure 3.7: User interface of developed application for data collection.

Preprocessing: As the mode selection needs user interaction with the application,

some unwanted sensory measurements are recorded in the first 10 seconds which is

the time elapsed in putting the smartphone back to the pocket. This work, therefore,

removed the measurements of first 10 seconds from all the instances. Now, each instance

in the dataset contains sensory measurement for 50 seconds, i.e., 50× 100 = 5000 data

points. Further, the instances are reduced to 250 data points by taking a mean value of

non-overlapping windows of size 20. At this point, the dataset contains 12000 labeled

instances where each instance consists of 250 data points (M = 250). We call the

preprocessed dataset as LMR.

48 3.5. Evaluation of DeepZero model

3.5.2 SHL dataset

The SHL dataset was given in locomotion activity recognition challenge 2018 [55]. It

contains two sub-datasets: training with 16310 instances and testing with 5698 in-

stances. The dataset consists the data of eight locomotion modes (k = 8) including

bike (b1), car (b2), bus (b3), subway (b4), train (b5), still (b6), walk (b7), and run

(b8). We use the data of the following five sensors (n = 5): linear acceleration, ac-

celerometer, orientation, gyroscope, and magnetometer. As each instance consists of

6000 samples, we first preprocess the dataset to reduce the length of instances to 300

samples (M = 300) by taking a mean value of window size 20.

3.5.3 Parameter settings during implementation

We have implemented DeepZero model in Python language using functional API of

Keras. The feature extraction model is a lightweight model, where values of different

sensors are input to different CNN layers. It achieves significant accuracy in less time

and preserves system energy. We come up with this feature extraction model after a

rigorous experimental analysis, where we compared it with two widely adopted feature

extraction techniques, i.e., Bidirectional LTSM [95] and Time-gated LSTM [96]. Fur-

ther, values of different characteristics, used for obtaining human-annotated matrix, are

given in Table 3.1.

3.5.4 Experimental results

In this section, several experiments are carried out to evaluate DeepZero model on LMR

and SHL datasets and the obtained results are discussed in detail.

3.5.4.1 Number of epochs for evaluation

In this experiment, the performance of DeepZero model is reported on the training

data during construction of classifier. Figure 3.8 illustrates the accuracy and F1-score

3.5. Evaluation of DeepZero model 49

Table 3.1: Characteristics used in human-annotated semantic matrix.

Locomotion
mode

Characteristics
Speed

(km/hr)
Capacity
(Seats)

Power
(hp ×100)

Fuel Pathway
Wheel
count

Bicycle 15 1 70 3 0 2
Bike 80 2 500 0 0 2

Auto
rickshaw

30 4 700 0 0 3

Car 120 4 17000 0 0 4
Bus 100 45 24000 1 0 6

Subway 105 360 303600 2 1 24
Train 110 1464 700000 2 1 56
Still 0 0 0 3 0 0
Walk 5 0 37 3 0 0
Run 12 0 67 3 0 0

results on LMR and SHL datasets using different number of epochs. Figure 3.8, we

observe a rapid increment in the accuracy up to 25 epochs and a marginal increment

afterwards. It is also observed that the model achieved maximum accuracy (≈ 99%)

using 50 epochs for both datasets. Similar observations can be made for F1-score. This

work therefore performs all the subsequent experiments with 50 epochs.

75

80

85

90

95

100

5 10 15 20 25 30 35 40 45 50

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

F 1
-s

co
re

(%
)

Epoch

Accuracy on LMR

Accuracy on SHL

F1-score on LMR

F1-score on SHL

Figure 3.8: Performance results on LMR and SHL datasets during training.

3.5.4.2 Class-wise performance on seen classes

This work evaluates performance of the model for seen classes by considering all loco-

motion modes during training. Figure 3.9(a) and Figure 3.9(b) illustrate that DeepZero

50 3.5. Evaluation of DeepZero model

model achieves maximum accuracy and F1-score on a1 (bicycle) class as it provides bet-

ter identifiable patterns in the sensory measurements. For SHL dataset, the instances

of b6 (still) class are recognized with an accuracy of 99.3% and F1-score of 93.2%, as

shown in Figure 3.9(c) and Figure 3.9(d). Figure 3.9(a) and Figure 3.9(b) also illustrate

accuracy and F1-score on LMR dataset, respectively, where features are extracted using

CNN-LSTM, LSTM, and CNN models. From the results, we observe that the features

extracted from CNN-LSTM outperforms LSTM with ≈ 3% and CNN with ≈ 5% for

all the classes.

75

80

85

90

95

100

a1 a2 a3 a4 a5 a6 Avg.

P
er

fo
rm

an
ce

(%
)

Seen class

CNN+LSTM
LSTM
CNN

70

75

80

85

90

95

a1 a2 a3 a4 a5 a6 Avg.

P
er

fo
rm

an
ce

(%
)

Seen class

CNN+LSTM
LSTM
CNN

(a) Accuracy on LMR. (b) F1-score on LMR

75

80

85

90

95

100

b1 b2 b3 b4 b5 b6 b7 b8 Avg.

P
er

fo
rm

an
ce

(%
)

Seen class

CNN+LSTM
LSTM
CNN

70

75

80

85

90

95

b1 b2 b3 b4 b5 b6 b7 b8 Avg.

P
er

fo
rm

an
ce

(%
)

Seen class

CNN+LSTM
LSTM
CNN

(c) Accuracy on SHL. (d) F1-score on SHL.

Figure 3.9: Performance of the proposed approach for seen classes where features are extracted from
combination of CNN-LSTM, LSTM, and CNN models.

3.5.4.3 Performance of DeepZero with one unseen class

Next, DeepZero model is evaluated by keeping one class as unseen. Figure 3.10(a)

shows the results for LMR dataset where the classifier is trained on five classes (one

class unseen) and tested on all the six classes. The classifier obtained an average

accuracy of 83.7%, which indicates that DeepZero model is able to capture significant

3.5. Evaluation of DeepZero model 51

amount of identifiable information. Further, in Figure 3.10(b) the F1-score is greater

than 70% for all the classes. Similarly, Figure 3.10(c) and Figure 3.10(d) shows the

performance of the classifier for SHL dataset.

65

70

75

80

85

90

a1 a2 a3 a4 a5 a6 Avg.

P
er

fo
rm

an
ce

(%
)

Unseen class

CNN+LSTM
LSTM

CNN

55

60

65

70

75

80

85

a1 a2 a3 a4 a5 a6 Avg.

P
er

fo
rm

an
ce

(%
)

Unseen class

CNN+LSTM
LSTM

CNN

(a) Accuracy on LMR. (b) F1-score on LMR

65

70

75

80

85

90

95

b1 b2 b3 b4 b5 b6 b7 b8 Avg.

P
er

fo
rm

an
ce

(%
)

Unseen class

CNN+LSTM
LSTM
CNN

55

60

65

70

75

80

85

b1 b2 b3 b4 b5 b6 b7 b8 Avg.

P
er

fo
rm

an
ce

(%
)

Unseen class

CNN+LSTM
LSTM
CNN

(c) Accuracy on SHL. (d) F1-score on SHL.

Figure 3.10: Performance of the proposed approach for unseen classes where features are extracted
from combination of CNN-LSTM, LSTM, and CNN models.

3.5.4.4 Accuracy results with multiple unseen classes

Figure 3.11 illustrates the accuracy results where the classifier is trained and tested

on different combinations of seen and unseen classes. As LMR dataset consists of six

classes, at most four of them can be unseen as shown in Figure 3.11. The result shows

that the classifier is able to achieve an accuracy of 36.4% even with the four unseen

classes. Similarly, at most six of the eight classes can be unseen for SHL dataset and

the result is shown in Figure 3.11. It is interesting to observe that the classifier achieve

the accuracy of 35.2% when six out of eight classes are unseen. The main reason for

such a drop in accuracy is directly depend on the number of seen classes in the dataset.

52 3.5. Evaluation of DeepZero model

20
30
40
50
60
70
80
90

1 2 3 4 5 6

A
cc

ur
ac

y
(%

)

Number of unseen classes

LMR SHL

Figure 3.11: Accuracy results of DeepZero with multiple unseen classes.

3.5.4.5 Impact of attribute matrix on the performance

This work considers two variants of DeepZero model to evaluate the impact of attribute

matrix. These two variants of model are: V1 and V2. V1 is same as DeepZero model while

V2 is different as it does not use attribute matrix during recognition. Figure 3.12 shows

the performance comparison between V1 and V2 models on LMR dataset using accuracy

and F1-score, respectively. The result shown a substantial drop in the accuracy from

V1 to V2 model, which clearly indicates the efficacy of fusion based attribute matrix in

the locomotion mode recognition. We also observe similar drop in F1-score values, as

shown in Figure 3.12.

75

80

85

90

95

100

a1 a2 a3 a4 a5 a6

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

F 1
-s

co
re

(%
)

Class labels

Accuracy on V1

Accuracy on V2

F1-score on V1

F1-score on V2

Figure 3.12: Impact of attribute matrix on performance for LMR dataset.

3.5. Evaluation of DeepZero model 53

3.5.5 Comparison with existing approaches

We compare DeepZero model with the existing approaches including Learning Trans-

portation Mode (LTM) [26], Human Activity Recognition with FFT (HARF) [28],

TEDLSTM [27], and Nuactiv [66]. First three approaches use deep learning models

for motion based activity recognition but can not identify the unseen classes. On the

other hand, Nuactiv can identify the unseen classes and uses machine learning during

identification. As there exists no prior work for the unseen locomotion mode identifi-

cation using deep learning, we first compare DeepZero model with LTM, HARF, and

TEDLSTM approaches by considering all the classes during training and testing. Later,

the model is also compared with Nuactiv approach for unseen classes.

3.5.5.1 Performance comparison on seen classes

Figure 3.13 illustrates the performance comparison of DeepZero model with the existing

approaches using accuracy and F1-score.

• DeepZero model outperforms all existing approaches for both LMR and SHL

datasets on accuracy and F1-score. Though DeepZero model shows small perfor-

mance gain of (1.6 ± 1)% compared to HARF approach but able to identify the

unseen classes as well.

• As all the existing approaches employed deep learning models for recognition,

they are able to obtain more than 85% of average accuracy and 75% of F1-score.

• The existing approach HARF provided more accurate results compared to LTM

and TEDLSTM, which indicates that it extracts better identifiable features.

3.5.5.2 Performance comparison on unseen classes

Next, this work compares the performance of DeepZero model with Nuactiv. Fig-

ure 3.14(a) and Figure 3.14(b) show the obtained accuracy results for LMR and SHL

datasets, respectively. The accuracy shown in the results is a median accuracy obtained

54 3.6. Conclusion

80

85

90

95

100

a1 a2 a3 a4 a5 a6

A
cc

ur
ac

y
(%

)

Class labels

LTM
HARF

TEDLSTM
DeepZero

70

75

80

85

90

95

a1 a2 a3 a4 a5 a6

F 1
-s

co
re

(%
)

Class labels

LTM
HARF

TEDLSTM
DeepZero

(a) Accuracy on LMR. (b) F1-score on LMR

80

85

90

95

100

b1 b2 b3 b4 b5 b6 b7 b8

2.6%

A
cc

ur
ac

y
(%

)

Class labels

LTM
HARF

TEDLSTM
DeepZero

70

75

80

85

90

95

100

b1 b2 b3 b4 b5 b6 b7 b8

F 1
-s

co
re

(%
)

Class labels

LTM
HARF

TEDLSTM
DeepZero

(c) Accuracy on SHL. (d) F1-score on SHL.

Figure 3.13: Comparison of DeepZero model with existing approaches using LMR and SHL datasets.

for all combinations of unseen classes. DeepZero model gains maximum accuracy 12%

to that of Nuactiv when number of unseen classes is three, as shown in Figure 3.14(a).

Similar observations can be made about Figure 3.14(b). To illustrate the impact of dif-

ferent semantic matrices individually, we perform the experiments using three versions

of DeepZero: V1, V2, and V3. The version V1 denotes DeepZero model with human-

annotated matrix only. Similarly, V2 and V3 represent the model with word2vec and

one-hot encoding, respectively.

3.6 Conclusion

This chapter proposed DeepZero model to identify a locomotion mode using smartphone

sensors. Unlike existing approaches, DeepZero model utilized the concept of ZSL to

build a classifier that has the capability to identify an unseen locomotion mode for

which no training instances are given. The model constructed an attribute matrix by

3.6. Conclusion 55

30

40

50

60

70

80

1 2 3 4

A
cc

ur
ac

y
(%

)

Number of unseen clases

DeepZero
V1
V2

V3
Nuactiv

20

30

40

50

60

70

80

1 2 3 4 5 6

A
cc

ur
ac

y
(%

)

Number of unseen clases

DeepZero
V1
V2

V3
Nuactiv

(a) LMR dataset. (b) SHL dataset.

Figure 3.14: Comparison of accuracy results for DeepZero model with its three versions V1, V2, V3,
and Nuactive using LMR and SHL datasets.

fusing three semantic matrices. The attribute matrix is constructed by using only the

class labels of datasets. A deep learning based feature extraction framework is also

developed to extract the features from the dataset. The attribute and features are

used during the construction of the classifier. This work carried several experiments to

evaluate the performance of DeepZero model using two locomotion mode datasets. The

experimental results shown that the model provided an accuracy of more than 94% for

seen classes and more than 80% on one unseen class.

