
Chapter 2

Preliminaries and related work

This chapter presents the preliminaries about the various techniques used in this the-

sis. We also describe state-of-the-art work covering the strategies to capture different

challenges encountered while extending the capabilities of smartphone sensors for ap-

plication in smart transport.

2.1 Preliminaries

This section covers the overview of Fog computing followed by the different learning

techniques, zero-shot, knowledge distillation, and federated learning, used in this thesis.

2.1.1 Overview of Fog computing

Task processing on the Cloud undergoes substantial communication delay and requires

continuous long-range communication networks (like 4G or 5G). Such networks consume

the colossal power of smartphones. Fog computing mitigates the shortcomings of Cloud

computing and provides the mechanism of task execution near the edge of the network.

Fog computing introduces an intermediate processing layer (Fog layer) between Cloud

and the end-users at the network edge [14,57]. The Fog layer distributes the tasks and

reduces the execution delay.



14 2.1. Preliminaries

Fog computing architecture comprises leaf devices and Edge, Fog, and Cloud layers,

as shown in Figure 2.1. Processing capacity, storage, data transmission delay, and

execution cost increase from Edge to Cloud layers. The bottom layer consists of the

leaf devices (i.e., actuators and sensors) for collecting the data from the environment

and forwarding it to the higher layers for processing. Leaf devices are connected with

Edge devices using the wireless interface. Edge layer consists of Edge devices that

receive data from the leaf devices present in their proximity. Edge devices can store,

route, and forward the collected data to the Fog layer. Fog layer holds Fog devices

to process the received data from the Edge layer and communicate the data in the

same layer and to the upper layer. Fog devices provide storage, computation, and

communication capabilities. Fog devices are connected to each other and to the Cloud

via high-speed links. Cloud layer is the topmost layer of the network with high-end

machines. Theoretically, we assume that devices in this layer have unlimited storage

and processing capability.

Cloud
layer

Fog
layer Fog

devices

Edge
devices

Actuators
and sensors

+ Storage

+ Data transmisison delay

+ Execution cost

+Processing capacity

In
cr

ea
si

n
g

 u
p

w
ar

d
s

layer
Edge

Leaf
devices

Figure 2.1: An illustration of Fog computing architecture with the hierarchical arrangement of Edge,
Fog, and Cloud layers.



2.1. Preliminaries 15

2.1.2 Overview of learning techniques

This section presents an overview of different learning techniques used in this thesis.

2.1.2.1 Zero-shot learning

Zero-Shot Learning (ZSL) is a concept that extends the capability of a traditional

classifier to identify an instance of unseen class. Let x and y denote an input space

and target space (class labels), respectively. The traditional classifier maps the input

space with target space as f(x,y) : x → y. By using the function f(·), the classifier

can only identify those instances which belong to one of class labels in y. It means a

test instance x /∈ x will be recognized correctly only if it belongs to a class label y ∈ y.

ZSL extends the recognition capability by incorporating the semantic information of the

seen classes. In ZSL, the target space first transforms into an attribute space (denoted

by A). Later, the classifier learns a mapping between the input (feature) space and

attribute space as f ′(x,A) : x→ A. Such a mapping helps the classifier to identify an

unseen class.

2.1.2.2 Knowledge distillation

Knowledge Distillation (KD) technique improves the performance of the lightweight

model using the generalization ability of the large-size model [58,59]. KD uses keywords

teacher and student for large-size and lightweight models, respectively. KD trains a

student (lightweight model) under the guidance of a teacher (large-size model), such

that the student can mimic a similar output pattern as the teacher. The trained student

requires lower memory and task execution delay than the teacher with minimal or

negligible performance compromise. Most of the existing KD approaches utilized the

knowledge limited to the pre-trained teacher model and did not consider the knowledge

from the training process of the teacher model. Different from the existing work, Zhao

et al. in [60] employed one teacher trained from scratch forces the student to approach



16 2.2. Related work on task offloading in Fog computing

the optimal path toward the final logits and another pre-trained teacher to focus on

a critical region that is useful towards the given task. The authors in [61] proposed

a framework where a large-size model supervised the whole training process of the

lightweight model. In addition, the lightweight model shared parameters with a large-

size model to provide low-level representation directly from the teacher.

2.1.2.3 Federated learning

Federated Learning (FL) is an emerging paradigm that facilitates collaborative learn-

ing among multiple participant devices without compromising data privacy [20–22]. It

allows participant devices to train a shared model in a decentralized manner, keeping

private training data confined to the local devices. The traditional distributed training

framework requires consensus after each local iteration, either using server or peers

communications. However, the participants in FL perform multiple local updates be-

fore aggregation at the server in each communication round. Hence, FL also minimizes

frequent consensus among the distributed participants. The central server initiates the

FL operation and broadcasts a randomly initialized model to all the participants. Each

participant trains the received model using its local dataset and sends the Weight Pa-

rameter Matrices (WPM) of the model to the server. Afterwards, the server aggregates

the WPM received from multiple participants and sends back the aggregated WPM.

This process generates robust and generalized models for each participant. FL proves

to be a key enabler technique to preserve data privacy and minimize communication

delay via local training and global aggregation [22,62].

2.2 Related work on task offloading in Fog computing

This section summarizes the prior studies on task partitioning and offloading in Fog

computing to handle resource constraints of the Fog devices (smartphones). We high-

light different methods that considered task offloading, devices heterogeneity, and load



2.2. Related work on task offloading in Fog computing 17

balancing in Fog computing. Table 2.1 presents the comparative summary of the exist-

ing work in Fog computing.

a) Task offloading in Fog computing: The authors in [15] formulated a computational

offloading game for modeling the trade-off between limited resources of the Fog devices

and resource requirement of the multiple users. Despite using Fog layer, the authors

in [16] tried to minimize the transmission delay on Cloud using task scheduling. A

different perspective of vehicular Fog computing has covered in [17], where the authors

modeled various task arrival patterns on the Fog devices to study their implication on

the computation cost of the system. The vehicular Fog computing architecture suf-

fers from resource scarcity of on-board resources for processing highly automated jobs.

Therefore, the authors in [18] proposed a communication scheme that has enabled data

processing in a distributed manner on connected vehicles.

b) Heterogeneity of Fog devices: Zhou et al. in [42] introduced the concept of task of-

floading from the base station to the vehicular Fog devices for minimizing network delay.

They considered the heterogeneity of resources on different Fog devices. The Fog de-

vices would not participate in resource sharing unless a significant motivation or benefit

is provided. The authors in [47] considered the problem of maximizing long-term re-

ward in heterogeneous Fog devices. The authors used transmission delay, computation

delay, resource availability, and types of vehicles while offloading the load. Further, the

authors in [43] investigated a cost minimization model for scheduling multi-level tasks

using Fog computing architecture. The cost minimization incorporated the monetary

benefits to the devices to encourage resource sharing. Nguyen et al. in [14] proposed a

mechanism for utilizing data compression prior to data transmission from the end-user

to the heterogeneous Fog devices.

c) Load balancing in Fog computing: Authors in [44] addressed the load balancing

problem, where data is transferred from vehicles to the nearby Edge devices. The main

objective is to minimize processing delay for on-vehicle computation. Farooq et al.



18 2.3. Related work on seen and unseen classes in dataset

in [45] addressed the varying response rate of Fog devices for Cloud service providers.

The authors used an optimal pricing policy to enhance the quality of service and ensure

load balancing. The authors in [46] proposed the concept of partial task offloading in

device-to-device computation. They exploited the social relationship among Fog de-

vices while offloading the sub-tasks.

Table 2.1: An illustration of the existing work on task partitioning and offloading in Fog computing.

Work Year
Emphasized on offloading issues Interaction

amongTransmission
delay

Computation
delay

Resource
availability

Device
heterogeneity

System
cost

Mansouri et al. [15] 2018 7 3 3 7 3
End-users and

Fog devices

Tlili et al. [16] 2018 3 3 7 7 7
End-users and

Cloud

Li et al. [17] 2019 7 7 7 7 3
End-users and

Fog devices
Wang et al. [18] 2019 7 3 3 7 7 Fog devices

Hou et al. [19] 2019 7 3 7 7 7 Fog devices

Zhou et al. [42] 2019 3 7 7 3 3
Base station and

Fog devices
Wu et al. [47] 2019 3 3 3 3 7 Fog devices

Liu et al. [43] 2019 3 7 7 3 3
End-users and

Fog devices

Nguyen et al. [14] 2019 3 3 3 3 7
End-users and

Fog devices

Zhang et al. [44] 2019 3 3 7 7 7
Edge devices and

Fog devices

Farooq et al. [45] 2021 7 7 3 7 3
Fog devices
and Cloud

Fan et al. [46] 2020 7 7 3 7 3
Edge devices and

Fog devices

2.3 Related work on seen and unseen classes in dataset

The smartphones based sensing and execution provide unprecedented opportunities in

different application domains. Especially, smartphones based supervised classification

methods have gained significant success in modern research and development, influ-

encing various domains like image, speech, and text processing [63]. However, the

supervised classification suffers from certain restrictions, including massive training in-

stances and classifying the instances belonging to classes covered by the training data.



2.3. Related work on seen and unseen classes in dataset 19

The supervised learning technique cannot deal with unseen classes (unavailable in train-

ing) during testing. As in a practical scenario, there are several situations in which the

classes are not available during training but may appear in the testing instances. This

section covers the existing literature that handled seen and unseen classes in the train-

ing dataset. Table 2.2 presents a summary of the properties that have been covered by

the existing work to handle seen and unseen class labels.

Recently, deep learning models have drawn significant attention of the research com-

munity due to their automatic feature extraction capabilities from a large amount of

raw data [2]. Though the deep learning models have shown entirely accurate results in

image-based locomotion activity recognition [64], their applications suffer from various

image-related issues such as low light effect, orientation, etc. In this work, we focus on

sensors based on locomotion mode (activity) recognition. Fang et al. in [26] developed

a deep learning framework to identify five locomotion modes using three smartphone

sensors, including accelerometer, gyroscope, and magnetometer. The work in [28] pro-

posed a CNN model for locomotion modes recognition by using a fast Fourier transform

spectrogram of accelerometer and gyroscope data. Similarly, the authors in [65] devel-

oped a CNN based model that uses only the accelerometer sensor to recognize seven

different transportation modes. Qin et al. in [5] adopted a combination of CNN and

LSTM to identify eight locomotion modes such as bike, car, bus, metro, train, still,

walk, and run. They also considered peak and segment based hand-crafted semantic

features to improve the recognition accuracy. Further, the authors in [66] proposed

a machine learning-based recognition approach (called Nuactive) that can identify an

unseen activity by using semantic information of the seen activities.

Authors in [67] presented a ZSL technique that models a relationship between fea-

tures, attributes, and classes, which resembles a linear network with two layers. The

authors conducted experiments on the image datasets and claimed to apply zero-shot

operation for unseen classes. Kodirov et al. [68], developed a novel solution for ZSL



20 2.3. Related work on seen and unseen classes in dataset

that uses semantic auto-encoder. They used the encoder-decoder technique to project

visual feature vectors into semantic space. The authors emphasized that the learned

projection from seen classes can easily be generalized to the new unseen classes. Next,

in [69] authors suggested that the primary key for the successful implementation of ZSL

is the selection of the right embedding space. They used visual space as embedding

space despite semantic or intermediate space. Authors in [70] proposed a strategy to

learn a robust projection against a large domain gap between seen and unseen classes.

In [71], the authors proposed a mechanism of mapping input sensors values to the corre-

sponding word2vec representation for recognizing human activities including bathing,

cooking, eating, reading, etc. The authors used deep learning model to extract the

features from the sensory values. Finally, Demirel et al. [72] proposed a ZSL method

that ensured an accurate knowledge transfer between classes and word-vector to label

embedding model. The core idea was to determine the projection between vector space

and word-vectors such that more related classes are closer.

Table 2.2: Summary of existing literature on mechanisms of handling seen and unseen classes.

Work Year
Unseen class

(ZSL)

Feature Attribute matrix
Attribute

FusionStatistical Deep Automated
Human

annotated
Qin et al. [5] 2019 7 3 3 7 7 7

Fang et al. [73] 2016 7 3 7 7 7 7

Park et al. [74] 2018 7 3 7 7 7 7

Bartlet et al. [75] 2018 7 3 7 7 7 7

Jahangiri et al. [29] 2017 7 3 7 7 7 7

Lu et al. [30] 2017 7 3 7 7 7 7

Fang et al. [26] 2017 7 3 7 7 7 7

Zhu et al. [27] 2019 7 3 3 7 7 7

Ito et al. [28] 2018 7 3 3 7 7 7

Cheng et al. [9] 2013 3 3 7 7 3 7

Liang et al. [65] 2017 7 3 3 7 7 7

Cheng et al. [66] 2013 3 3 7 7 3 7

Qiao et al. [76] 2016 3 7 3 3 7 7

Gjoreski et al. [77] 2018 7 3 7 7 7 7

Kodirov et al. [68] 2017 3 7 7 3 7 7

Guan et al. [70] 2021 3 7 3 3 7 7



2.4. Related work on noisy labels in dataset 21

2.4 Related work on noisy labels in dataset

The noisy labels in the training dataset also deteriorate the performance of the built

classifier for recognition. In this section, we discuss existing work that incorporates dif-

ferent mechanisms to handle noisy labels in the dataset. Table 2.3 presents an overview

of the properties covered by the existing approaches and illustrates differences in the

following terms:

1. Whether the deep learning based (automated) features are used or not?

2. Noisy labels handling mechanisms, including loss function modification to capture

the noisy labels, low-rank estimate to filter out instances with noisy labels, and

ensemble classifier to improve performance while training on noisy labels.

3. Noise concentration information, i.e., information about the concentration of

noisy labels are needed or not?

Authors in [36] presented theoretically grounded loss functions that are robust

against the noise in the training data. The loss functions are the more generalized

form of categorical cross-entropy and mean absolute error losses. They claimed that

the proposed loss functions could be applied to any deep neural network for providing

robustness against the noisy labels. To facilitate robustness against noisy labels in lo-

comotion mode recognition, the authors in [31] proposed a deep learning-based stacked

denoising autoencoder technique. The authors utilized the sensory values of different

sensors on the smartphone to collect locomotion modes data. The authors in [38] de-

veloped an iterative learning framework for recognizing human locomotion activities

in the presence of noisy labels. Similar to [31], the authors collected sensory data of

locomotion activities using wearable sensors. Next, the authors in [78] simultaneously

addressed the noise and class imbalance problems in the dataset. They selected differ-

ent under-sampling schemes to implement the proposed technique using the k-nearest

neighbour based noise filters. Locomotion mode recognition with higher performance

was the primary goal of the authors in [6]. They proposed a one-dimensional model



22 2.4. Related work on noisy labels in dataset

for locomotion mode recognition using the convolutional neural network and the gated

recurrent unit. In addition, to recognize locomotion modes using sensory values of

the Inertial Measurement Unit (IMU) sensor, the authors in [79] proposed a Gaussian

mixture model. The model had efficiently classified different terrains of walking.

Further, the authors in [32] proposed a deep learning-based approach with two clas-

sifiers that are trained simultaneously to handle noisy labels. They claimed to reduce

the number of updates during the model training. Similarly, the authors in [33] used

a set of trusted data with clean labels to mitigate the negative effect of noisy labels in

the training data. They built a classifier with limited data (correctly annotated) at the

initial state, followed by model training using noisy data. Tanaka et al. in [34] proposed

a mechanism for handling noisy labels in the training dataset. The authors proposed

a deep learning-based joint optimization framework that simultaneously optimized the

loss and predicted labels to handle noisy labels in the training dataset. They claimed to

correct noisy labels during training by alternatively updating the network parameters.

Apart from the previous approach, the authors in [39] trained the recognition model

without using information about the wrongly annotated labels in the dataset. The

authors employed a ConvLSTM model for recognizing human locomotion activities.

Similarly, the authors in [37] addressed the problem of training deep learning models

with corrupted labels in the training instances. They combined artificial and human

intelligence into one learning framework.

The noisy labels in the dataset are induced due to poor annotation mechanisms;

thus, Cruciani et al. in [40] proposed an automated annotation mechanism to reduce

noisy labels in the dataset. The mechanism facilitated the recognition of various loco-

motion activities such as cycling, walking, running, etc., using sensory data. Later, the

noisy labels in the training data can also be handled by updating network parameters.

This concept was employed by the authors in [35] to handle noisy labels in the training

data. They proposed a framework to simultaneously update the network parameters



2.5. Related work on federated learning with heterogeneous participants 23

and estimate class labels. Finally, the noisy labels in the training data can be captured

by using two different networks for predicting class labels [41]. The authors in [41] tried

to reduce the diversity of two networks considered during training.

Table 2.3: A comparative summary of the existing work for handling noisy labels in the dataset.

Work Year
Deep

learning
features

Noise handling Noise
concentration
information

Loss function
modification

Low rank
estimate

Ensemble
classifier

Zhang et al. [36] 2018 3 3 7 7 3

Gu et al. [31] 2018 3 3 7 7 3

Davila et al. [38] 2017 7 7 3 7 7

Kang et al. [78] 2017 7 7 7 7 3

Zhu et al. [6] 2020 3 7 7 7 7

Shin et al. [79] 2021 3 7 7 7 7

Malach et al. [32] 2017 3 7 7 3 3

Hendrycks et al. [33] 2018 3 3 3 7 3

Tanka et al. [34] 2018 3 3 7 7 3

Know et al. [39] 2019 7 7 3 7 7

Cruciani et al. [40] 2018 7 3 7 7 7

Yi et al. [35] 2019 3 3 7 7 3

Wei et al. [41] 2020 3 3 7 3 7

Ghiassi et al. [37] 2017 3 7 3 7 3

2.5 Related work on federated learning with heterogeneous

participants

This section presents the existing work on FL, which considered the availability of

resources at the participant devices and required resources for communicating the data

to the central server. We also present the work using KD for resizing the models

in FL. Table 2.4 illustrates the comparative summary of existing work on FL with

heterogeneous participant devices.

a) Considered resources of participant devices in FL: FL incorporates a large number of

participant devices with unequal resources. Unequal resources deteriorate the perfor-

mance and increase the convergence time while running the same model on all partici-

pant devices and simultaneously updating the WPM for global aggregation [48,80–82].



24 2.5. Related work on federated learning with heterogeneous participants

Authors in [48] proposed a system to adaptively select participants for global aggrega-

tion of the WPM. The system selected the participants that generated the WPM at the

same time. The stragglers’ participants are discarded from the global aggregation. To

match up with the slow computational speed of stragglers, the authors in [80] proposed

the mechanism of reducing CPU frequency of the faster participants in the federation.

Further, to mitigate the resource scarcity of slower processing participants, the au-

thors in [81] proposed a resource optimization algorithm. They assigned participants

to different sub-network depending upon their resource availability.

b) Required communication resources in FL: The large number of participants in FL

have unequal communication resources, which creates unequal delay while transferring

the WPM from participant to central server [21, 52, 83–85]. The authors in [21] recog-

nized the issue of limited and dynamic communication resources on participants in FL.

They proposed a mechanism to control the number of global aggregations at the server

and reduced the learning loss to minimize the communication budget. A technique

for dynamically increasing the instances of batch size to reduce communication rounds

between participants and server in FL was discussed in [83]. Further, the authors

in [54] proposed a communication-efficient approach for FL, which performed training

and aggregation in a disjoint manner. To include the stragglers in FL, the authors

in [85] proposed the concept of hierarchical aggregation, where clusters are formed to

incorporate participants with different specifications of communication links.

c) FL with KD: Authors in [51] utilized KD in FL for transforming different size mod-

els of participants into equal size. They used ensemble distillation for model fusion at

the central server. A global classifier is built on the central server through training on

the existing dataset. The objective of the approach in [86] was to generate large-size

and lightweight models for central server and participants, respectively. The central

server after aggregation, transfers large-size to lightweight deep learning model using

KD. Authors in [51] utilized KD in FL for transforming different size models of partic-



2.5. Related work on federated learning with heterogeneous participants 25

ipants into equal size. The work considered unlabeled local dataset. The participant

devices in [52] train a large-size model, converts to the lightweight model using KD

and communicate to the server. The devices convert received trained lightweight model

from central server to large-size model using reverse-KD. The proposed work helped to

reduce communication overhead.

Table 2.4: A comparative summary of existing literature on FL with heterogeneous participants.

Work Year
Considered resources KD in FL

On participant device Network
Bandwidth

Simple
KD

Reverse
KD

Early
haltingProcessing Memory

Chai et al. [48] 2020 3 7 3 7 7 7

Zhan et al. [80] 2020 3 7 7 7 7 7

Yu et al. [81] 2021 3 3 7 7 7 7

Wang et al. [21] 2019 7 7 3 7 7 7

Yu et al. [83] 2019 7 7 3 7 7 7

Zhou et al. [54] 2022 7 7 3 7 7 7

Wang et al. [85] 2021 3 3 3 7 7 7

Lin et al. [51] 2022 3 3 3 3 7 7

He et al. [86] 2020 3 3 7 7 3 7

Wu et al. [52] 2021 7 7 3 3 3 7

Zhu et al. [53] 2021 7 7 3 3 7 7


