CERTIFICATE

It is certified that the work contained in the thesis titled "Extending the Capabilities of Smartphone Sensors for Applications in Smart Transport" by Rahul Mishra has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all requirements of Comprehensive Examination, Candidacy, and SOTA for the award of Ph.D. Degree.

Supervisor

Dr. Hari Prabhat Gupta
Assistant Professor,
Department of Computer Science and Engineering,
Indian Institute of Technology (BHU) Varanasi,
Uttar Pradesh, INDIA 221005.

DECLARATION BY THE CANDIDATE

I, Rahul Mishra, certify that the work embodied in this Ph.D. thesis is my own bonafide work carried out by me under the supervision of Dr. Hari Prabhat Gupta from July 2017 to February 2022 at Department of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc. reported in journals, books, magazines, reports, dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date: 09 02 2022

Place: Varanasi

Rahul Mishno (Rahul Mishra)

CERTIFICATE BY THE SUPERVISOR

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

1. 18 24

(Dr. Hari Prabhat Gupta) Assistant Professor, Dept. of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi

Signature of Head of Department

आत्ताय

Professor & Head सगणक विज्ञान एवं अभियांत्रिकी विभाग Department of Computer Sc. & Engg भारतीय प्रौद्योगिकी संस्थान Indian Institute of Technology (वनारस हिन्दू यूनिवर्सिटी) (Banaras Hindu University) गराणसी–२२१००५ / Varanasi-221005

वभागाध्यक्ष

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Extending the Capabilities of Smartphone Sensors for Applications in Smart Transport

Name of the Student: Rahul Mishra

Copyright Transfer

The undersigned hereby assigns to the Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the *Doctor of Philosophy*.

Date: 07/02/2022

Place: Varanasi

(Rahul Mishra)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

Dedicated to my parents, Mrs. Malti Mishra and

Mr. Radhe Shyam Mishra

ACKNOWLEDGEMENT

First and foremost, I would like to thank my supervisor, Dr. Hari Prabhat Gupta, for his invaluable support and assistance. I feel immense pleasure in expressing my profound sense of gratitude and sincere regard for his constant feedback and expertise during all these years. I am eternally grateful to have had the opportunity to work on my thesis under his supervision. This thesis is the outcome of his insights, expertise, and especially his boundless vision throughout the process.

My gratitude extends to the other members of my Doctoral committee, Dr. Bhaskar Biwas, Department of Computer Science and Engineering, and Dr. Shyam Kamal, Department of Electrical Engineering, for their advice and constant feedback on the progress of my research work. Special thanks to Dr. Tanima Dutta for her invaluable assistance and help as a guide and mother. I would also like to express my deep gratitude to Prof. Sanjay Kumar Singh, Head of Department of Computer Science and Engineering, and faculty members for their endorsement to this work.

I also owe an outstanding debt to my colleagues, Dr. Surbhi Saraswat, Dr. Randheer Bagi, Dr. Preti Kumari, Ramakant Kumar, Aishwariya Soni, and Nitika Nigam, for helping me think through some of the issues in the work. I don't have words to thank my friend, colleague, brother, and mentor, Dr. Ashish Gupta, for his brilliant support and helping me to overcome the challenges I have faced in the development of this work.

I express my heartfelt gratitude to my parents Mrs. Malti Mishra and Mr. Radhe Shayam Mishra, my brother Mr. Sunil Kumar Mishra, my sister-in-law Mrs. Renu Mishra, and my sister Mrs. Preeti Mishra, for their immense support and encouragement. My best friend, Diksha Singh, also deserves a great thanks for her motivation and emotional support on various fronts. I am also thankful to my nephew, Parth, for cheering me up in difficult moments.

Finally, with limitless humility, I would like to praise and thank the "Baba Kashi Vishwanath Ji". The almighty, the Merciful compassionate who bestowed me with all the favorable circumstances to achieve the desired goal of life.

(Rahul Mishra)

Contents

\mathbf{Li}	st of	Figures	XV
Li	st of	Tables xx	viii
Li	st of	Symbols	xx
Li	st of	Abbreviations x	xii
Pı	refac	e xx	xiv
1	Intr	roduction	1
	1.1	Motivation of the research work	5
	1.2	Contributions and organization of the thesis	7
2	\mathbf{Pre}	liminaries and related work	13
	2.1	Preliminaries	13
		2.1.1 Overview of Fog computing	13
		2.1.2 Overview of learning techniques	15
	2.2	Related work on task offloading in Fog computing	16
2.3 Related work on seen and unseen classes in dataset		Related work on seen and unseen classes in dataset	18
	2.4	Related work on noisy labels in dataset	21
	2.5	Related work on federated learning with heterogeneous participants $\ .$.	23
3	An	unseen locomotion mode identification model using multiple semant	ic
	mat	trices	27
	3.1	Introduction	27
		3.1.1 Motivation of this work	29
		3.1.2 Major contributions	30
3.2 Preliminary			31
		3.2.1 Problem statement and overview of solution	31

3.3 DeepZero model		DeepZ	Zero model		
		3.3.1	Construction of attribute matrix		
		3.3.2	Feature extraction		
		3.3.3	Classifier construction		
		3.3.4	Prediction of class label		
	3.4	Featur	e extraction using deep learning		
		3.4.1	Convolution layer		
		3.4.2	LSTM unit		
	3.5	Evalua	ation of DeepZero model		
		3.5.1	Data collection		
		3.5.2	SHL dataset		
		3.5.3	Parameter settings during implementation		
		3.5.4	Experimental results		
		3.5.5	Comparison with existing approaches		
	3.6	Conclu	usion \ldots \ldots \ldots \ldots \ldots 5^4		
4 A locomotion mode recognition approach with noisy labels					
	4.1	5			
4.2Preliminaries.4.3LRNL approach.					
		approach			
		4.3.1	Conventional model		
		4.3.2	Noise adaptive model $\ldots \ldots 64$		
		4.3.3	Noise corrective model		
		4.3.4	Ensemble model		
	4.4	Exper	imental evaluation of LRNL approach $\ldots \ldots \ldots \ldots \ldots \ldots 7^2$		
		4.4.1	Data collection $\ldots \ldots 7^2$		
		4.4.2	Existing dataset $\ldots \ldots 7^2$		
		4.4.3	Parameter settings during implementation		
		4.4.4	Experimental results		
		4.4.5	Comparison with existing approaches		
	4.5	Conclu	usion		
_					
5	0		neory-based passenger assistance system using Fog		
		puting	-		
	5.1		uction		
	5.2		ninary and network topology		
		5.2.1	Network Topology		

		5.2.2	Transmission and computation delays	89
		5.2.3	Reputation model	91
	5.3	TSF s	ystem \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	92
		5.3.1	Phase 1: Selection of secondary Fog devices	92
		5.3.2	Phase II: Task offloading	93
	5.4	Comp	etitive game model for task offloading	95
		5.4.1	Utility of primary Fog device	95
		5.4.2	Utility of secondary Fog device	98
		5.4.3	Near Nash Equilibrium (NE) between s-FDs:	103
	5.5	Protot	type setup and performance evaluation	105
		5.5.1	Impact of data size	107
		5.5.2	Impact of secondary Fog devices	108
		5.5.3	Impact of deadline \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	109
		5.5.4	Impact of game parameters	109
		5.5.5	Comparison with existing work	110
	5.6	Conclu	$usion \ldots \ldots$	112
6	۸ ۲.	Janata		1
U			ed learning technique with heterogeneous devices and networ	кінд 113
	6.1			113 113
	6.2			115
	0.2	6.2.1	1	117
		6.2.1		110
		6.2.2 6.2.3		119
		6.2.3		122
	6.3			120 129
	0.5	6.3.1	vorld study	129
		6.3.2	Tarticipants devices and central server in real-world study Task of study: Locomotion Mode Recognition	130
		6.3.2		130
	6.4		mance Evaluation	130
	0.4	6.4.1		131
		6.4.1		131
		0.4.2	Baseline techniques	
		612	Implementation details	
		6.4.3 6.4.4	Implementation details	132
		6.4.4	Validation metrics	132 133
	6.5	6.4.4 6.4.5	Validation metrics	132

7 Conclusion and future work	143
References	147
List of publications	159

List of Figures

An illustration of smartphones applications in smart transport 2		
Example scenarios: (a) seen and unseen locomotion modes and (b) locomotic	on	
modes with noisy labels	3	
An illustration of Fog computing architecture with the hierarchical arrangem	ent	
of Edge, Fog, and Cloud layers	14	
An example of locomotion mode recognition using a deep learning based		
classifier and zero-shot learning	28	
Overview of DeepZero model.	32	
An example of human-annotated semantic matrix	34	
Construction of attribute matrix by fusing three semantic matrices	36	
Prediction of class label of a testing instance in DeepZero model	42	
Feature extraction framework using CNN and LSTM	44	
User interface of developed application for data collection. \ldots \ldots	47	
Performance results on LMR and SHL datasets during training. \ldots	49	
Performance of the proposed approach for seen classes	50	
Performance of the proposed approach for unseen classes where features		
are extracted from combination of CNN-LSTM, LSTM, and CNN models.	51	
Accuracy results of DeepZero with multiple unseen classes	52	
Impact of attribute matrix on performance for LMR dataset	52	
Comparison of DeepZero model with existing approaches	54	
Comparison of accuracy results for DeepZero model with its three versions		
and Nuactive using LMR and SHL datasets	55	
An example of locomotion mode recognition with noisy labels \ldots .	58	
Block diagram of LRNL approach with its components	62	
Overview of conventional model using CNN and LSTM	64	
Performance results on LMR, SHL, and TMD datasets during training	77	
	Example scenarios: (a) seen and unseen locomotion modes and (b) locomotion modes with noisy labels.	

4.5	Value of fractional weights on LMR, SHL, and TMD datasets \ldots .	78
4.6	Class-wise accuracy of LRNL approach on LMR and SHL datasets with	
	different noise concentrations.	79
4.7	Impact of noisy labels distribution on class-wise accuracy	81
5.1	An example of transportation system using Fog computing	87
5.2	Network topology for the TSF system	91
5.3	Iterations for convergence of algorithm with 5 FDs	105
5.4	Prototype components: (1) PCs organization, (2) deployment area, (3)	
	smartphone, (4) router, (5) PC in lab, and (6) DELL server \ldots	106
5.5	Illustration of p-FD, CL, and TSF schemes.	107
5.6	Impact of data size on delay and system cost using different schemes	108
5.7	Impact of s-FDs count on delay, system cost, and FDs utilities	109
5.8	Impact of change in game parameters	111
5.9	Illustration of comparison with existing work	112
6.1	A scenario of FL with heterogeneous resources	114
6.2	Illustration of the framework for FFL technique	118
6.3	Early halting of the training of the generic model	122
6.4	Participants devices and central server in real-world study \ldots	130
6.5	Illustration of devices and networking resources	135
6.6	Illustration of the requirement of resources for resizing and training	136
6.7	Illustration of the accuracy, $\mathrm{F}_1\text{-}\mathrm{score},$ and leave-one-out test $\hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \hfill \hfill \hfill \ldots \hfill \hfil$	138
6.8	Impact of ratio of time threshold with global iteration time interval	141

List of Tables

2.1	An illustration of the existing work on task partitioning and offloading	
	in Fog computing	18
2.2	Summary of existing literature on mechanisms of handling seen and	
	unseen classes	20
2.3	A comparative summary of the existing work for handling noisy labels	
	in the dataset. \ldots	23
2.4	A comparative summary of existing literature on FL with heterogeneous	
	participants	25
3.1	Characteristics used in human-annotated semantic matrix	49
4.1	Performance results of LRNL approach on LMR, SHL, and TMD datasets	
	at different noise concentrations.	78
4.2	Performance of conventional, noise adaptive, and noise corrective models	80
4.3	Accuracy variations of LRNL on collected LMR and SHL datasets	82
4.4	Accuracy comparison of LRNL approach with existing approaches $\ . \ .$	84
5.1	Accuracy metrics for p-FD, CL, and proposed schemes	110
6.1	Impact of early halting on participants of ${\bf T_7}$ category. $\hfill \ldots \hfill \ldots \$	139
6.2	Fractional contributions of different loss functions on participants $\ . \ .$	139
6.3	Impact of early halting on participants of $\mathbf{T_3}$ category.	140

List of Symbols

Symbol	Description
${\cal D}$	Dataset with labeled instances
\mathcal{A}	Attribute matrix
\mathbf{x}_i	i^{th} instance of \mathcal{D}
\mathcal{Z}	Semantic matrix
\mathcal{L}_{term}	Loss term
\mathcal{R}_{term}	Regularization term
Y	One-hot encoded true label matrix
\mathbf{Y}'	One-hot encoded noisy label matrix
\mathbf{Y}_{te}	One-hot encoded prediction matrix
П	Built classifier
δ	Distance threshold
\mathbf{T}	Low rank representation of ${\bf Y}$
\mathcal{L}_a	Loss term to conquer true label prediction
\mathcal{L}_b	Loss term to conquer false label prediction
\mathcal{L}_{NAL}	Noise adaptive loss
ϕ_i	Probability of true label for i^{th} instance in \mathcal{D}
E	Epochs for model training
е	e^{th} epoch, $1 \le e \le E$
b	Bias vector
В	Bandwidth
r	Reputation
η	Learning rate
$U(\cdot)$	Utility function
F_i	i^{th} Fog device $\in \mathcal{N}$
p_i	Price receive by Fog device F_i
\mathcal{N}	Set of Fog devices
\mathcal{P}	Set of participants

Symbol	Description
ϱ_i	i^{th} participant, $\varrho_i \in \mathcal{P}$
\mathcal{S}_{ij}	Signal to interface noise ratio between Fog devices F_i and F_j
$ au_i$	Portion of task executed at Fog device F_i
\mathcal{L}_{DL}	Distillation loss
\mathcal{L}_{AL}	Attention loss
\mathcal{L}_{CE}	Cross-entropy loss
R	Number of global iterations
$W^{[t]}$	Weight parameter matrix at iteration $t, 1 \le t \le R$
h	Halting epoch, $1 \le h \le E$
M_o	Generic model
M_i	Model at participant $\varrho_i, \ \varrho_i \in \mathcal{P}$

Abbreviations

Abbreviation	Description
CE	Cross Entropy
CNN	Convolutional Neural Network
CR	Compression Ratio
DL	Distillation Loss
DNN	Deep Neural Networks
ED	Edge Device
FD	Fog Device
FFL	Fast Federated Learning
FL	Federated Learning
GPS	Global Positioning System
GRU	Gated Recurrent Unit
IMU	Inertial Measurement Unit
KD	Knowledge Distillation
LMR	Locomotion Mode Recognition
LRNL	Locomotion Mode Recognition with Noisy Labels
LSTM	Long Short Term Memory
NAL	Noise Adaptive Loss
NE	Nash Equilibrium
RoC	Rate of Convergence
RSU	Road Side Unit
SHL	Sussex-Huawei Locomotion
TMD	Transportation Mode Detection
TSF	Transportation System using Fog computing
WPM	Weight Parameter Matrices
ZSL	Zero-Shot Learning

Preface

The expeditious evolution of computing devices has transformed room-size machines into pocket-friendly mobile devices. This transformation leads to the development of low-cost, low-powered, and compact devices, like smartphones, smartwatches, smart bands, smart glasses, etc. These compact and battery-powered devices are powerful and can execute most of the tasks a user performs on a computer. Specifically, smartphones are widely adopted and the preferable choice for a significant number of users. Besides the computational capacity of simultaneously processing multiple tasks, smartphones possess richer sensing capabilities. Smartphones have various onboard sensors, including accelerometer, gyroscope, GPS, touch sensor, fingerprint sensor, heart rate sensor, etc. These onboard sensors facilitate unprecedented opportunities to perform various sensing and monitoring activities, which enriches the quality of life. A smartphone user is no longer assumed to be static and can conveniently move outside, *i.e.*, walk, run or may use different transportation modes like bus, train, car, bike, bicycle, etc. This movement of users generates a huge amount of sensory data on smartphones, which can be exploited for various sensing and monitoring applications in smart transport. Transportation mode detection is one of the potential applications in smart transport, which helps in estimating travel time, journey planning, route selection, etc.

In this thesis, we investigate the different challenges encountered while extending the capabilities of smartphone sensors for applications in smart transport. We consider two tasks in this work: a) transportation modes detection using smartphone sensors and b) processing smart transport tasks on the smartphone. While considering the task of transportation modes detection, we identify two challenges, *i.e.*, unseen classes and noisy labels in the dataset. A class is said to be unseen if there exist no training instances of the class in the dataset; however, such instances may appear during testing. These challenges deteriorate the performance and increase the training time. We develop approaches to tackle unseen classes and noisy labels in the dataset. Further, the task processing on the smartphone also incurs challenges of resources inadequacy and execution delay. We also present the approaches to reduce the model's size running

on the smartphone and task partitioning into multiple sub-tasks.

First, we propose a deep learning model, which incorporates the concept of zero-shot learning to detect both seen and unseen transportation modes using sensory values of smartphone sensors. The model builds a classifier by learning a mapping between the extracted features and semantic information of the class labels. Next, we present a deep learning-based approach to detect a transportation mode using deep learning models in the presence of noisy labels. Further, we propose a transport system that incorporates Fog computing to partition and execute the task fractions on multiple interconnected Fog devices (or smartphones). The system uses the competitive game approach and Knapsack algorithm to partition the task among Fog devices, ensuring minimal delay and cost of execution. Finally, we design an approach to train the model on participant devices using the local dataset with heterogeneous resources. We consider the scenarios where devices have sufficient, colossal, and insufficient resources to train the model. The approach uses knowledge distillation, known as student-teacher learning, to train resized generic models for insufficient and colossal resource devices. To speed up the training of the model at each participant device, the approach halts the teacher training after a certain halting epoch. We derive an expression to find the halting epoch for the given accuracy.