
Chapter 6

Deep Transfer Learning for

Activities of Daily Living

Recognition

Activities of Daily Living Recognition (ADLR) are essential to healthcare assistive tech-

nologies in smart homes. Deep learning models have considerably improved the state-of-

the-art performance for several problems, including ADLR. Unfortunately, training such

deep learning models with impressive performance requires a large amount of labeled

data for supervised learning. However, it is costly and time-consuming to manually label

sufficient training data, especially for ADLR when the inhabitant is elderly or disabled.

This situation motivates us to build an effective ADLR system through deep transfer

learning that can leverage rich labeled data from a different smart home. This chapter

presents a transfer network for activities of daily life recognition (TNADLR) through

unsupervised domain adaptation between heterogeneous smart homes (i.e., homes with

different sensor deployment and spatial layouts. The proposed network utilizes Maxi-

mum Mean Discrepancy (MMD) to minimize the difference in distributions. There are

various distinctive techniques based on deep transfer learning and MMD, such as Deep
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Adaptation Networks (DAN) [119], Deep Domain Confusion (DDC) [120], etc. Unlike

earlier work, in this thesis, we use deep transfer learning that utilizes MMD to minimize

the divergence of the two distributions and adopt focal loss and center loss to enhance

the transfer models’ quality for ADLR in smart homes. We show the effectiveness of our

network by experimenting with real-world CASAS smart home datasets. The results

show that the proposed TNADLR outperforms other methods with significant margins.

6.1 Introduction

Transfer learning is a crucial research area and has been considerably studied for many

years. It aims to utilize labeled data from the source domain to improve performance

on a target domain in which labeled data for training are challenging to obtain. In

this way, leveraging knowledge from the labeled source data can significantly reduce

time-consuming and costly data labeling efforts. [121]. Traditional supervised machine

learning methods assume that the test and training data are drawn from identical prob-

ability distributions. But, it is usually suitable to relax this assumption and allow the

test data to be drawn from a distinct probability distribution. In such cases, traditional

machine learning methods normally fail to classify the test data correctly [91].

One exciting domain for transfer learning is ADL recognition in the smart home.

ADL recognition (ADLR) aims to correctly classify the ADL performed by the inhab-

itant by using some sensor readings. ADLR is crucial to various applications, such as

automated security surveillance, home automation, and health monitoring. Using sen-

sor data of a particular resident in a specific home, a model can be trained to recognize

the ADL. However, suppose this model is then used for a different resident, in another

home, or with different ADL labels. In that case, the recognition accuracy of the model

will typically drop considerably unless the model is adapted to the new settings. As

research in the transfer learning area has progressed, researchers have started exploring

transfer learning to effectively reuse the existing knowledge that has previously been
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generated to reduce the effort needed to initialize new ADLR systems. If deep learning

is to be applied to ADLR in practice, many emerging users will be required to be faced.

It is impossible to train a model for each user by gathering extensive labeled data. Also,

it is particularly challenging when data needs to be gathered from the elderly and dis-

abled for ADLR. Transfer learning techniques have been utilized to tackle these types

of situations specifically. Such techniques attempt to apply the knowledge learned from

a previous task to a new but related task.

In this chapter, we address the problem: how to utilize the existing labeled

data collected in a smart home to recognize ADL in a new smart home

with no labeled data? To address this problem, we propose a Transfer Network

to perform knowledge transfer for ADL Recognition (TNADLR) using unsupervised

heterogeneous transfer learning, as shown in Figure 6.1. To minimize the divergence

of the two distributions, the proposed approach utilizes Maximum Mean Discrepancy

(MMD). Furthermore, we adopt focal loss [103] and center loss [104] to boost the ADL

recognition performance. Focal loss handles the class imbalance problem, and center

loss enhances the deeply learned features’ discriminative power. In our problem setting,

we have labeled sensor readings gathered in one home (source domain). With these

data’s help, we aim to obtain a classification model to classify the sensor readings in

another home (target domain) having no labeled data. The source and target domains

share the same label space Y and have different spatial layouts and sensor deployment.

We evaluate the accuracy of the proposed TNADLR by using two CASAS datasets

which show that TNADLR can achieve high accuracy when performing ADL knowledge

transfer.

6.1.1 Major contributions

The major contributions of this chapter are as follows:

• We propose a domain invariant representation learning approach to recognize
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ADL in smart homes and utilize MMD to reduce domain discrepancy for domain

adaptation.

• We employ the focal loss and center loss functions to minimize the intra-class

features variances and maximize the inter-class features differences further for

training a more discriminative ADL recognition model.

• To verify the accuracy of the proposed TNADLR, we conduct experiments on

real-life datasets collected in the CASAS smart home testbeds [31].

The rest of the chapter is organized as follows: Section 6.2 states the assumptions

and presents an overview of TNADLR. The proposed TNADLR is presented in Sec-

tion 6.3. Section 6.4 presents the experimental results followed by the conclusions in

Section 6.5.

6.2 Preliminary and overview of TNADLR system

This section describes the definitions used in this work. The architecture of the proposed

TNADLR is shown in Figure 6.1.

6.2.1 Preliminary

The TNADLR considers a scenario where an inhabitant stays alone in a smart apart-

ment. The smart apartment equipped with motion sensors on the ceiling to detect mo-

tion and magnetic sensors on doors and cabinets to detect door openings and closings.

The motion sensors are further classified into infrared motion sensors and wide-area in-

frared motion sensors based on the sensing range of the sensors. The sensors are binary

sensors that generate the events only when the inhabitant performs some ADL inside

the sensing range of the sensors. A transfer-learning based ADLR system could reuse

the rich labeled data of another smart home (source) to achieve ADL recognition in this

setting (target). Such data reuse could save a lot of effort and time otherwise required

in acquiring annotated data for the target home. In our considered scenario, the target
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home has a different layout, a different resident, and different sensor locations than the

source home. Next, we introduce some definitions that are used in this chapter. These

definitions have been provided by [91, 122].

Definition 6.1 (Domain) A domain D can be represented by D = {X , P (X)}, which

consists of two components: a feature space X and a marginal probability distribution

P (X), where X = {x1, · · · , xn} ∈ X . If two domains are different, then they may have

different feature spaces or different marginal probability distributions.

Definition 6.2 (Task) A task T can be represented by T = {Y , fT (.)} for some given

domain D. It consists of two components: label space Y and target prediction function

fT (.), which is not observed but can be learned from the training data, which consist of

pairs {xi, yi}, where xi ∈ X and yi ∈ Y. The function fT (.) can be used to predict the

corresponding label, fT (x), of a new instance x. From a probabilistic viewpoint, fT (x)

can be written as P (y|x).

Definition 6.3 (Transfer Learning) Given a source domain Ds and learning task

Ts , a target domain Dt and learning task Tt , transfer learning aims to help improve

the learning of the target predictive function fT (.) in Dt using the knowledge in Ds and

Ts, where Ds �= Dt and/or Ts �= Tt. In addition, in the most case, the size of Ds is

much larger than the size of Dt, 0 ≤ Nt � Ns.

Definition 6.4 (Deep Transfer Learning) Given a transfer learning task defined

by �Ds, Ts, Dt, Tt, fT (.)�. It is a deep transfer learning task where fT (.) is a non-linear

function that reflected a deep neural network.

6.2.2 Problem definition

In an unsupervised heterogeneous transfer learning problem, we have a labeled dataset

Ds = {xs, ys} from the source domain and an unlabeled dataset Dt = {xt} from the

target domain for which we aim to learn its associated ADL labels yt, i.e. recognize
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the inhabitant’s ADL of target domain based on the environmental sensor readings.

It is assumed that the two domains share the same label space Y but follow different

marginal data distributions, i.e. P (xs) �= P (xt). The objective of the proposed method

is to learn a classification model that can recognize class labels of the target home’s

sensor readings.

6.3 Transfer Network for Activities of Daily Living

Recognition

This section presents Transfer Network for Activities of Daily Living Recognition

(TNADLR). We apply Procedure 6.7 to train the proposed TNADLR. The architecture

of the TNADLR is shown in Figure 6.1, which consists of the following phases.
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Figure 6.1: Architecture of the TNADLR, where m and n are number of nodes in a
FC layer, and nodes in a LSTM unit, respectively.

6.3.1 Generating sliding windows from event stream

Let a user performs a set of n different types of activities which are denoted as {a1, a2, · · · , an}.

The sensor network (in the source home or target home) generates an event stream

whenever a user performs the activities. Each event ei of the event stream is repre-

sented by a tuple <day of week, timesin, timecos, sensorID, sensor value>, instead of
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using raw streaming sensor events to gain a better experimental result. Feature day

of week represents the day of the week at ei event occurred. This feature captures

the weekly rhythm, allowing the model to learn the activities that frequently happen

on a particular day of the week. However, day of week and sensorID features are the

categorical data that contain label values rather than numeric values. The system uses

One-Hot Encoding as given in Definition 5.3 to convert these features into a categorical

form. Feature time of day represents the time within the day (since midnight) of the

event ei and contributes significantly in the recognizing activities as the behavior of

people follows a daily rhythm, i.e. activities are correlated with its timestamp. To

preserve the cyclical nature of time as defined in Definition 5.2, the system uses Equa-

tion 5.2 and creates two features for the time attribute of the event ei, deriving a sine

transform (timesin) and cosine transform (timecos) of the time. Such features will retain

the fact that hour 24 is closer to hour 0 than to hour 21. We represent the values of

binary state motion and magnetic sensors: ON/OPEN and OFF/CLOSE as 1 and 0,

respectively. For k different sensors, the dimension of each event representation is 7 (for

day of week) +2 (for time of day) +k (for sensorID) +1 (for sensor value) = k + 10.

Next, we use the sliding window strategy to divide them into the fixed-size event

count-based window. The number of events in a window is known as the length of

the window, which is denoted by l. We empirically derive the length l by observing

the effect of the different values of l on the system’s performance. We mark sliding

windows with the label of yi of the last sensor event. Each label yi depicts an activity

class ai ∈ A. In our problem settings, the target home inhabitant is elderly or disabled;

therefore, collecting large amounts of labeled data is not easy; thus, we assume that

only unlabeled data is available at the target home. There is only one labeled source

domain available using which we need to recognize the inhabitant’s ADL of the target

home. Also, the sensor deployment and the layout of the source and the target homes

are different. We use a manual mapping approach [88–90] to map sensors of source and
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target homes to get a common feature space.

6.3.2 Features extraction

Next, TNADLR uses two LSTM layers and one fully-connected (fc) layer for feature

extraction from sliding windows. The sensor events are time series data. To deal with

them, we use LSTM recurrent neural network. The input of LSTM is a sequence of

sensor events I = {e1, · · · , et, · · · , el}, where et ∈ Rm at each timestamp. We can utilize

the LSTM network to learn the sequence of motion states ht ∈ Rm to recognize ADL.

The LSTM units in the system are updated as

it = σ(Mxiet +Mhiht−1 + bi), (6.1)

ft = σ(Mxfet +Mhfht−1 + bf), (6.2)

ot = σ(Mxoet +Mhoht−1 + bo), (6.3)

gt = tanh(Mxget +Mhght−1 + bg), (6.4)

ct = ft � ct−1 + it � gt, (6.5)

ht = ot � tanh(ct), (6.6)

where it, ft, ot, gt, and ct are input gate, forget gate, output gate, input modulation

gate, and memory cell, respectively. All gates and memory cells are of the same size

as the hidden vector ht. {Mxi,Mhi,Mxf,Mhf,Mxo,Mho,Mxg,Mhg} ∈ R2m are weighted

matrices. bi, bf, bo, and bg are the biases of LSTM unit. σ is the logistic sigmoid

function where σ(x) = 1/(1+ e−x). The operation � denotes the element-wise product

with the gate value. The update of each LSTM unit can be summarized as

ht = LSTM(ht−1, et,ωL), (6.7)
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where LSTM(.) is a combination of Eqs. 6.1-6.6 and ωL denotes all the parameters in

the LSTM network.

6.3.3 Classification

The last fully-connected layer is acting as the classifier. The challenge of unsuper-

vised domain adaptation mainly lies in the fact that two domains have different data

distributions. We adopt Maximum Mean Discrepancy (MMD) [123] to measure the

difference between the given source and target domain data distributions. To improve

the recognition performance of the proposed TNADLR, we use focal loss and center

loss, along with the MMD loss, as the supervisory signals.

6.3.3.1 MMD loss

To reduce the discrepancy between source and target domains, we add an adaptation

layer. We chose the MMD for the adaptation layer to reduce the discrepancy between

domains. MMD is a well known distance metric and distance between two distributions

p and q is defined as d2(p, q) = Ep[φ(zs)]−Eq[φ(zt)]2HK
, where E[.] denotes the mean of

the embedded samples and HK denotes the reproducing kernel Hilbert space (RKHS)

induced by feature map φ(.). Thus, the MMD distance between source and target

domain is

MMD(Ds, Dt) = �E[xs]− E[xt]�2HK
. (6.8)

The respective source and target features can be obtained when the source and

target data are passed through the feature extractor. The MMD loss, denoted by

LMMDL, of the current batch can be calculated using these features.

6.3.3.2 Focal loss

We applied Focal Loss (FL) [103] to address the class imbalance problem. Focal loss

is a variant of standard cross-entropy loss, and it adds a modulating factor to the
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cross-entropy loss to reduce the loss for well-classified examples and focus on difficult

ones. We denote focal loss by LFL. Let the input sample x with class label y ∈ C and

predicted output from the classifier for all classes are z ∈ {z1, z2, ..., zC}. The focal loss

of the sample x can be written as [103]

LFL = −
C�

i=1

(1− σ(zxi ))
γ log(σ(zxi )) (6.9)

We use an α balanced variant of focal loss:

LFL = −α
C�

i=1

(1− σ(zxi ))
γ log(σ(zxi )) (6.10)

where γ is the focusing parameter and σ is the Softmax function. The classifier can be

trained with the labeled data of source and we can get the FL.

6.3.3.3 Center loss

The Center Loss (CL) [104], denoted by LCL, enhances the discriminative power of

the deeply learned features. The CL simultaneously learns a center for deep features of

each class and penalizes the distances between the deep features and their corresponding

class centers. The CL function can be written as [104]

LCL =
1

2

N�

i=1

�x̂i − cyi�22 (6.11)

where N , x̂i, yi, and cyi are the size of mini-batch, ith deep feature, class label of x̂i, and

class center of deep features of yi, respectively. The CL can be calculated with source

features.

• Loss function of TNADLR: The loss function of the proposed TNADLR is defined
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by combining the MMD loss LMMDL, focal loss LFL and center loss LCL as:

L = LFL + λLCL + βLMMDL (6.12)

where hyperparameters λ and β balances the three-loss terms. We apply Procedure 6.7

to train the proposed TNADLR. We use mini-batch Stochastic Gradient Descent (SGD)

strategy to train the TNNAR. The output of Procedure 6.7 is the trained network

parameters, denoted by Θ, where the network consists of least error. The learning rate

of the network at iteration τ is denoted as µτ . ck denotes the kth class center defined

by the averaging over the features in the kth class. cτk denotes the kth estimated class

center at the τth iteration and hyperparameter α control the learning rate of the centers.

Procedure 6.7: Training procedure of TNADLR
Input: Training Data [xs, xt] Label [ys],

Hyperparameters α, λ, β, µτ ;
Output: Trained network parameter Θ ;

1 while not converge do
2 τ = τ + 1;
3 Compute total loss L using Equation 6.12;
4 Compute backpropagation error for i as ∂L

∂x̂τ
i
;

5 Update parameters:
6 cτ+1

k =cτk − αΔcτk;
7 Θτ+1=Θτ − µτ ∂L

∂Θτ= Θτ − µτ
�

i
∂L
∂x̂τ

i

∂x̂τ
i

∂Θτ ;

8 return Θ;

6.4 Experiments and Results

This section presents experimental results for evaluating the performance of the pro-

posed TNADLR and compares our results with other approaches.
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6.4.1 Datasets

We used publicly available two real datasets obtained from the CASAS at Washington

State University [31, 41, 44], which are denoted by D1 and D2. We pick one dataset

as the source and another as the target dataset. Each dataset includes the sensor

events generated by the environmental binary sensors deployed in the home of a single

elderly resident. In the first smart home (used for collecting these datasets), 19 sensors

were deployed, and the collecting duration was 61 days. These sensors continuously

and unobtrusively monitor the daily life activities of inhabitants. In the second smart

home, 13 sensors were deployed. Of these 13 sensors, 11 are sensors, each with the same

type and location as the corresponding sensor in the first smart home. From the view

of activity recognition, we consider these 11 common sensors in D1 and D2 and delete

sensor events that do not pertain to any of these 11 sensors from both the datasets.

The data collecting duration of D2 dataset is 57 days. The home layouts of the two

datasets are different.

6.4.2 Implementation details

The weight matrices in the neural network layers are initialized by the Xavier Initial-

ization and Uniform He initialization [105] when the layers use softmax and ReLU

activation functions, respectively. The optimization algorithm is Adam, with a mini-

batch size of 64. The initial learning rate is set to be 0.001. The proposed system

converged within about 100 epochs. We use sliding window size of 90 sensor events for

the experimental results. The hyperparameters α and γ of focal loss are set 0.25 and

2, respectively, following [106]. We run the experiments under the environment of Intel

Core i7-CPU @2.80-GHz, 8G RAM, GeForce GTX 1050 graphics card, and Ubuntu

18.04 64-b operating system. We perform each experiment ten times and report the

average results. We use Python based libraries, Keras, and Scikit-learn for implemen-

tation. We use activity classification accuracy as our performance metrics, which is
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defined as follows:

Accuracy =
Number of correctly classified sliding windows

Total number of sliding windows
(6.13)

6.4.3 Evaluation Design

We estimate the effectiveness of our proposed network through the transferring between

D1 and D2. We define two adaptation tasks: D1 → D2 and D2 → D1. Here adaptation

task D1 → D2 denotes that D1 acts as source domain and D2 as target domain. For

these two datasets, we consider the common set of ADL A ∈{Bed toilet transition,

Eating, Enter home, Housekeeping, Leave home, Meal preparation, Personal hygiene,

Sleeping in bed}, which are denoted as {a1, · · · , a8}. We choose these eight ADL classes

to be retained in the training data since they are included in both datasets in sufficient

numbers, and also, these ADL are more important for daily living and more likely to

be labeled. In this way, there are labeled sensor events of eight ADL in both source

and target datasets.

6.4.4 Results and discussion

This section carries out the experimental evaluation to evaluate the effectiveness of

TNADLR for transfer learning. We compare TNADLR with domain adversarial neu-

ral network (DANN) [124], wasserstein discrepancy metric (WD) [125], KL diver-

gence [126], Proxy A-Distance [127], and deep correlation alignment (CORAL) [128]

since these approaches and our proposed TNADLR all aim at learning the domain in-

variant feature representations, which are crucial to reducing the domain discrepancy.

For all these approaches, we use the base model same as TNADLR.

Only-Source: It serves as an experimental lower bound. In this case, we train a model

using the labeled source data and test it directly on the target test data.

DANN: DANN is an adversarial representation learning approach in which a domain
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classifier tries to distinguish learned source/target features while the feature extractor

attempts to confuse the domain classifier.

KL divergence: Kullback-Leibler (KL) divergence is a measure of how one probability

distribution is different from a second, reference probability distribution.

Proxy A-Distance: Proxy A-Distance (PAD) is a measure of similarity between

datasets from different domains.

CORAL: Deep correlation alignment minimizes domain discrepancy by aligning the

second-order statistics of target and source distributions.

WD: The Wasserstein Distance (WD) is a function for estimating differences between

probability distributions in a given metric space.

The evaluation results are shown in Table 6.1. The results indicate that our proposed

TNADLR outperforms all other compared approaches in both adaptation tasks. We

observe that all the approaches achieve better results than Only-Source. DANN got the

worst accuracy, and it sometimes didn’t converge. On the other hand, we can see that

these different approaches have different performances on different adaptation tasks.

Table 6.1: Transfer between D1 and D2 datasets.

Task Comparison Methods Accuracy (%)

D1 → D2

Only-Source 68.22
WD 70.49

CORAL 70.27
kl divergence 73.65

Proxy A-Distance 71.69
DANN 69.26

TNADLR 82.58

D2 → D1

Only-Source 66.26
WD 72.84

CORAL 69.43
kl divergence 75.49

Proxy A-Distance 68.37
DANN 67.96

TNADLR 79.33
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6.5 Conclusion

Transfer learning strives to relieve the high cost of obtaining adequate samples for a

learning task in a certain domain by employing knowledge obtained from other related

domains. This chapter presents a transfer network for activities of daily life recognition

through unsupervised domain adaptation between heterogeneous smart home datasets

having different sensor deployment and spatial layouts. Our proposed transfer network

learns the domain invariant yet target-discriminative feature representations by utiliz-

ing MMD, focal, and center loss. Focal loss handles the long-tailed class distribution,

and center loss enhances the discriminative power of the deeply learned features. Exper-

imental results on real-world datasets show the effectiveness of the proposed TNADLR.

For future work, we would like to utilize the data from more than one source home to

improve the learning of the classification model.


