
Chapter 5

Real-time Activities of Daily Living

Recognition under Long-Tailed

Class Distribution

This chapter presents an online system that recognizes ADL while considering the long-

tailed class distribution problem. The system first generates hand-crafted and high-level

features using conventional learning and deep learning, which cover the advantage of

both technologies to recognize ADL. Next, the system uses an ensemble technique to

concatenate the generated features. Finally, the system minimizes a loss function, which

is a linear combination of focal loss for addressing the long-tailed class distribution

problem and center loss for enhancing the discriminative power of the deeply learned

features. We conduct several experiments on real-life long-tailed datasets to verify the

accuracy of the proposed system.

5.1 Introduction

The world is experiencing growth in the proportion and number of older adults in

their population, owing to declining fertility and increasing longevity. Moreover, the



74 5.1. Introduction

�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

B
at

hi
ng

E
nt

er
 h

om
e

T
ak

in
g 

m
ed

ic
in

e

L
ea

ve
 h

om
e

R
es

ti
ng

 o
n 

co
uc

h

H
ou

se
ke

ep
in

g

E
at

in
g

Tall Head Long Tail

Personal hygiene

5

32

18

F
re

q
u

en
cy

 o
f 

se
n

so
r 

ev
en

ts
 (

in
 %

)

B
ed

 t
oi

le
t 
tr

an
si

ti
on

M
ea

l 
pr

ep
.

S
le

ep
in

g 
in

 b
ed

Figure 5.1: Illustration of ADL dataset having long-tailed class distribution.

number of older adults who live alone at home is also increasing. As discussed earlier,

despite having different medical and cognitive problems associated with old age, older

adults wish to live independently in their own homes for as long as possible rather

than move to an aged care facility [13]. Furthermore, according to the World Health

Organization, one billion people live with disabilities around the world [114]. Many

older and disabled adults have difficulties in performing the ADL. Examples of ADL

are shown in Figure 5.1, where x-axis and y-axis illustrate ADL and frequency of sensor

events associated with each ADL, respectively. The need to improve the quality of

independent living for such people underlines the growing significance of health-assistive

technologies.

Smart homes have become widely popular, especially in providing such assistive

services. ADLR in smart homes is crucial for developing advanced assistive services

and is an active research topic. ADLR identifies the ADL performed by the inhabitant

by using the sequence of sensor events. From a machine learning viewpoint, ADLR

maps a sequence of sensor events to a matching ADL label.

In recent years, deep learning has become the prevalent approach in ADLR due

to its high accuracy. Such approaches can learn features automatically from an ad-
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equately large training set without requiring any specific domain knowledge. Even

though deep learning based methods now outperform the state-of-the-art in several

recognition problems, still many challenges remain. Most apparently, the collection

and labeling of enough data for ADLR are often expensive and time-consuming, espe-

cially for the elderly and impaired. Another issue is that the collected real-life data

follows a long-tailed class distribution, i.e., a few classes account for most of the data,

while most classes are under-represented [29], as shown in Figure 5.1. The long-tailed

class distribution can result in a biased ADLR system optimized to favor the majority

classes while failing to identify the discriminant features needed to recognize the minor-

ity classes. This behavior is termed the class-imbalance problem, and it is intrinsically

exhibited in nearly all of the collected ADL databases. Such datasets are termed as

long-tailed datasets.

Moreover, various ambient intelligence applications require real-time/online ADLR

systems, i.e., systems that can recognize the activities as the sensor event sequence

arrives. The unpredictability nature of future events and the requirement of dealing

with the un-segmented activity streams make online ADLR very challenging [31, 33].

Until now, research on ADLR has mostly centered around offline recognition.

ADLR is a critical module in the design of a smart home. It is valuable for energy-

efficient home automation, anomaly detection, and automated context-aware prompt.

For example, using ADLR, a smart home can prompt the inhabitant to start essential

activities. For illustration, consider “taking medicine” is an essential activity. A smart

home recognizes that the “taking meal” activity has occurred. After that, if the smart

home does not recognize “taking medicine” activity within a specific timespan, a prompt

can be delivered to the inhabitant.

In this chapter, we address the problem: how to recognize the activities of

daily living online with the long-tailed dataset? To address this problem, we

propose an ADLR system by using conventional learning and deep learning, which
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Figure 5.2: Illustration of recognition of ADL in the proposed system.

cover the advantage of both technologies to recognize the ADL better, as shown in

Figure 5.2. Furthermore, the system adopts focal loss [103] and center loss [104] jointly

as the supervisory signals to boost the ADL recognition performance. Different from

the existing work, the proposed ADLR system considers data collected from external/

environmental sensors such as infrared motion, magnetic door, light, or temperature

sensors for unobtrusive ADL recognition. The non-intrusive characteristics of such

sensors make them practically useful and especially for older and disabled adults.

5.1.1 Motivation

The work in this chapter is motivated by the following limitations noted in the literature.

The first limitation of the existing work [19–28] is the use of video or wearable sensors.

However, as discussed earlier, video sensors are not practical due to privacy issues, and

wearable sensors may be uncomfortable and inconvenient for inhabitants. In this work,

we consider only environmental sensors to overcome this limitation. Next, existing

work either uses hand-crafted features or high-level features to recognize the ADL. We

effectively combine both sources of information to lift the ADLR performance. Also,

most of the approaches for solving long-tailed distribution problems [79–83, 115] work

on image dataset. All such approaches are not usually suitable for sensor event-based
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ADLR systems because they have limited size datasets. Some existing work [6, 30, 33]

uses environmental sensors and high-level features but not handling the long-tailed

distribution problem. To this end, we conclude that none of the work recognizes the

ADL online with high accuracy addressing the class-imbalance problem.

5.1.2 Major contributions

To the best of our knowledge, we are among the first to address the class-imbalance

problem in real-time/online ADL recognition. Apart from this, the major contributions

of this chapter are as follows:

• We propose a system that unobtrusively recognizes ADL in real-time from stream-

ing data with very high accuracy.

• To improve ADL recognition performance, we use mutual information of the sen-

sor events and cyclical encoding. The mutual information reduces the weight of

irrelevant sensor events, thereby enhances the given sliding window’s recognition

performance.

• We effectively combine deep learned features with hand-crafted features via an

ensemble framework to recognize ADL better.

• We combine the focal loss and center loss functions to minimize the intra-class

features variances and maximize the inter-class features differences further for

training a more discriminative ADL recognition system.

• Our proposed system achieved new state-of-the-art performance on the datasets

collected in CASAS smart home testbeds [41]. We use five CASAS datasets for

empirical evaluation.

The rest of the chapter is organized as follows: Section 5.2 states the assumptions

and formally defines the notations and overview of the ADLR system. The ADLR

system is presented in Section 5.3. Section 5.4 presents the experimental results followed

by the conclusions in Section 5.5.
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5.2 Preliminary and Overview of the ADLR System

This section describes the terminologies used in this work and then presents an overview

of the ADLR system. The block diagram of the ADLR system is shown in Figure 5.2.

5.2.1 Preliminary

The ADLR system considers a scenario where an inhabitant stays alone in a smart

apartment. The smart apartment is equipped with motion sensors on the ceiling to

detect motion and magnetic sensors on doors and cabinets to detect their openings

and closings. The motion sensors are further classified into infrared motion sensors

and wide-area infrared motion sensors based on the sensing range of the sensors. The

sensors are binary sensors that generate the events only when the inhabitant performs

some ADL inside the sensors’ sensing range.

Definition 5.1 (Sensor event) An event is represented by 4-tuple <date (di), time

(ti), sensor identification (si), sensor value (vi)> and answers the following questions:

what day the sensor event generated? what time of day event is generated?, which sensor

generates the event?, and what is the sensor state?, respectively. For binary state motion

and magnetic sensors, the value of vi is ON/OFF, OPEN/CLOSE, respectively.

Definition 5.2 (Cyclical encoding) The cyclical encoding of a feature x is defined

by the sine and cosine trigonometric transformation of the feature x, i.e., xsin =

sin
�

2πx
max(x)

�
and xcos = cos

�
2πx

max(x)

�
.

Definition 5.3 (One-Hot encoding) Let the categorical feature x take m number of

different values, i.e., x1, x2, · · · , xi, · · · , xm. The one-hot encoding of this feature when

having value xk is defined as xk : {0, · · · , 0� �� �
k−1

, 1, 0, · · · , 0� �� �
m−k

}.

Definition 5.4 (Mutual dependency matrix) Two sensors are said to be mutu-

ally dependent if they generate the events sequentially, i.e., one after another. For a
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given sensor stream {e1, e2, ...eN}, the mutual dependency between sensor si ∈ S and

sj ∈ {S − si} is given by Di↔j = 1
N

�N−1
x=1 (I(ex and ex+1 generated by si and sj) +

I(ex and ex+1 generated by sj and si)), where identity function I(.) returns true only

when si and sj consecutively generate the events. The mutual dependency matrix of the

sensors is given by

Dk×k =




D1↔1 · · · D1↔k

... . . . ...

Dk↔1 · · · Dk↔k




(5.1)

5.2.2 Overview of the ADLR system

Architecture of the ADLR system is illustrated in Figure 5.3. The input of the system

is the sensor event stream generated by embedded sensors inside the smart apartment.

An example scenario of a smart apartment floor plan and sensor layout is shown in

Figure 5.4. The sensor events are generated by sensors when inhabitant performs an

activity within the sensing range of these sensors. The system first preprocesses and

segments event stream into the fixed-length sliding windows. Next, the system ex-

tracts the hand-crafted and high-level features. Such features are concatenated before

feeding into Multi-Layer Perceptron (MLP). The system uses the focal loss to address

the problem of long-tailed dataset and center loss for discriminative feature learning.

Finally, the system generates the output activity label that corresponds to the most

recent event in the given sliding window.

5.3 Activities of Daily Living Recognition System

This section presents the Activities of Daily Living Recognition (ADLR) system to

recognize ADL while addressing the long-tailed class distribution problem. The archi-

tecture of the system is shown in Figure 5.3, which consists of the following steps.
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Figure 5.3: Architecture of the ADLR system, where k, f, m, n and v are number of
sensors, filters, nodes in a FC layer, nodes in a GRU or LSTM unit, and the dimensions
of the feature vector, respectively.

5.3.1 Generating sliding windows from event stream

Let a user perform a set of n activities which are denoted as {a1, a2, · · · , an}. The

system generates an event stream whenever a user performs the activities. The system

segments such event stream into the fixed-size event count-based window as shown in

Figure 5.3. The number of events in a window is known as the length of the win-

dow, which is denoted by l. The event stream and window vector are denoted by

e = {e1, e2, · · · , ei, · · · }T andW = {W1,W2, · · · ,Wj, · · · }T , respectively. A window Wj

consists of the following events {ej, ej+1, · · · , ej+l−1}. The system empirically derives

the length l by observing the effect of the different values of l on the system’s perfor-

mance. Procedure 5.3 illustrates the steps of generating the sliding windows. To this

end, we address the following challenges:

• Why does the system use an event count-based window? The segmentation of the

event stream can be done according to the number of events or time interval of the

window. The system generates events when the inhabitant performs ADL; therefore,

it is quite possible that some time intervals do not have any event. Thus time based
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Procedure 5.3: Generating sliding windows
Input: e = {e1, e2, · · · , ei, · · · }T , Accuracy = 0 ;
Output: W = {W1,W2, · · · ,Wj , · · · }T , l ;

1 lmin ← min{ΔE1, · · · ,ΔEi, · · · ,ΔEn};
2 lmax ← median{ΔE1, · · · ,ΔEn};
3 for i ← lmin to lmax do
4 for j ← 1 to z − i+ 1 do
5 Window Wj ← {ej , ej+1, · · · , ej+i−1};
6 W� ← {W1,W2, · · · ,Wj , · · · }T ;
7 The accuracy of system using W� is Acci;
8 if (Acci > Accuracy) then
9 Accuracy ← Acci, W ← W�, and l ← i;

10 return W and l;

segmentation is not suitable.

• Does the size of the window affect the time complexity of the system? The time com-

plexity of the system increases with the size of the window. However, a small window

gives less accuracy because it provides less context information to classify the window’s

last event correctly.

• Does sliding of window per sensor event really require? Sliding the window per sensor

event generates a large number of windows, which helps increase the dataset’s size.

5.3.2 Generating hand-crafted features

The system uses Hand-Crafted Features (HCFs) as a complementary source of infor-

mation along with High-Level Features (HLFs). A fixed dimensional feature vector of

HCFs is extracted from each sliding window and concatenated to HLFs, as shown in

Figure 5.3. The procedure for extracting of HCFs from each sliding window is as fol-

lows:

• Boundary events of the sliding window: The system uses the first and last

events of each sliding window to estimates the HCFs, which answer the following ques-

tions: when is the activity done? And who sensed the activity? Such events consists

of cyclical time attribute and categorical data. To preserve the cyclical nature of time,
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Procedure 5.4: Generating hand-crafted features
Input: W = {W1,W2, · · · ,Wj , · · · }, l ;
Output: HCFs of W ;

1 for j ← W1 to W�
Z
l

� do

2 /* HCFs of boundary events of a window Wj*/
3 Initialize HCFWj to the empty list;
4 First event of Wj is < ej : dj , tj , sk, vj > ;
5 Last event of Wj is < ej+l−1 : dj+l−1, tj+l−1, sy, vj+l−1 >;
6 Add cyclical encoding of time tj and tj+l−1 to HCFWj , using Definition 5.2:

tj : (tj)sin, (tj)cos tj+l−1 : (tj+l−1)sin, (tj+l−1)cos;
7 Add representation of sk and sy to HCFWj , as per Definition 5.3:

sk : {0, · · · , 0� �� �
k−1

, 1, 0, · · · , 0� �� �
m−k

} sy : {0, · · · , 0� �� �
y−1

, 1, 0, · · · , 0� �� �
m−y

};

8 Add (tj+l−1 − tj) to HCFWj ;
9 Add Day(dj+l−1) to HCFWj ;

10 /* HCFs of intermediate events of a window Wj */
11 Initialize cjf ← 0, where cjf ∈ cj and 1 ≤ f ≤ k ;
12 for f ← 1 to k do
13 for g ← 1 to l do
14 if (< ej+g−1 : ., sf , . >) then
15 cjf ← cjf + 1;

16 Add HCF (D[y]� cj) to HCFWj ;
17 Add HCFWj to All_HCFs;
18 return All_HCFs;

the system uses Definition 5.2 and creates HCFs for the time attribute of the first and

last events. The system uses One-Hot Encoding as given in Definition 5.3 to convert

the sensor identification into a categorical form. The complete procedure is illustrated

in steps 5-10 of Procedure 5.4.

• Intermediate events of the sliding window: A user in the system continuously

performs the activities; therefore, sensor events in a given sliding window may corre-

spond to an activity transition and may not be related to the last sensor event under

consideration. For example, the inhabitant finishes the “Personal Hygiene” activity and

begins the “Meal preparation” activity. The authors in [33] tackled this problem by

defining a weighting scheme using mutual dependency between sensors. The mutual

dependence between sensors helps reduce the influence of sensor events from different
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functional areas on the HCFs of the sliding window. We count the generated events

by each sensor in a given window Wi, i.e., ci = {ci1, · · · , cij, · · · , cik}, where cij denotes

the number of events generated by sensor sj ∈ S in window Wi. Let the last event of

Wi is generated by sy sensor, where 1 ≤ y ≤ n. The HCFs of the intermediate events

of Wi are computed by D[y]� ci, where operation � denotes the element-wise product

and mutual dependency matrix D is given in Definition 5.1. For k different sensors,

the dimension of the HCF is k + 8. The HCF of a window Wi, denoted by HCFWi
, is

marked with the label of yi of the last sensor event. Each label yi depicts an activity

class ai ∈ A.

5.3.3 Generating high-level features

The ADLR system uses four deep neural networks for extracting high-level features

from sliding windows. The system employs CNN to capture the spatial relationship

and RNN (LSTM and GRU) to model feature dynamics. A hybrid architecture is also

used to combine the goodness of CNN and LSTM. This section briefly discusses CNN,

LSTM, GRU, CNN_LSTM architectures.

5.3.3.1 Convolution Neural Network (CNN)

CNN learns spatial features by alternating and stacking convolutional layers, activa-

tion layer, and pooling operation. Convolution is the first layer of CNN, which takes a

sequence of events, called an input map, and a filter as inputs and generates a feature

map. The filter in convolution layers convolves over the input sequence and computes

the dot product. Next, the activation layer in CNN increases the non-linearity of the

network without affecting the receptive fields of the previous layer. Finally, a pooling

layer decreases the dimensionality of the feature map but holds essential information.

It joins the outputs of neuron clusters at one layer into a single neuron in the next

layer.
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• CNN in ADLR system: CNN in ADLR system receives sliding windows as input

(I), and each sliding window is a sequence data of length l, where I = {e1, · · · , et, · · · , el},

where et ∈ Rm at each timestamp. The system uses one dimensional (1D) CNN and

32 convolutional filters Lf of size j, where 0 < j < l and 1 ≤ f ≤ 32. In this paper,

for simplicity, we present the CNN network with one filter. The tth element of feature

map is the dot product of events {et, et+1, · · · , et+j−1} and filter Lf , i.e.,

Cf
t =

j�

g=1

Lf (g, :)I
T (:, t+ g − 1). (5.2)

The activation function and bias of the network are denoted by fa(.) and ba, respectively.

The system uses a Rectified Linear Unit (ReLU) activation function because it allows

the system to learn faster and perform better. The tth element of feature vector after

the activation function is given by

�
Cf
t = fa(C

f
t + ba) =





0 for(Cf
t + ba) ≤ 0

Cf
t + ba for(Cf

t + ba) > 0

= I((Cf
t + ba) > 0)(Cf

t + ba),

= CNN(et). (5.3)

The feature vector of window Wi of l events for Lf filter is given by

�Cf
i = {�Cf

1 ,
�
Cf

2 , · · · , �Cf
l−j+1}. (5.4)

The pooling layer can reduce the length of the feature map, which can further minimize

the number of model parameters. We do not use the pooling layer because the sliding

window mechanism constrains the input of the system, and this fact limits the possibility

of downsampling the data [116].
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5.3.3.2 Long Short-Term Memory (LSTM)

The LSTM [113] incorporates memory cells with multiple gates governing information

into and out of the cell. The LSTM at each time-step receives a new input and produces

an output based on the current input and previous output. The memory cell and gates

enable it to memorize the long-period interdependencies in sequential data without

suffering from the vanishing gradients effect [117]. The temporal dependency learning

can be conveniently converted to the spatial domain. The LSTM consists of input,

forget, and output gates to answer the following questions: what information is going

to store in the memory cell?, what information to throw away from the memory cell?,

and what part of the memory cell to output?, respectively.

• LSTM in ADLR system: Similar to CNN, input of LSTM is a sequence of sensor

events I = {e1, · · · , et, · · · , el}, where et ∈ Rm at each timestamp. We can utilize the

LSTM network to learn the sequence of motion states ht ∈ Rm to recognize ADL. The

LSTM units in the system are updated as

it = σ(Mxiet +Mhiht−1 + bi), (5.5)

ft = σ(Mxfet +Mhfht−1 + bf), (5.6)

ot = σ(Mxoet +Mhoht−1 + bo), (5.7)

gt = tanh(Mxget +Mhght−1 + bg), (5.8)

ct = ft � ct−1 + it � gt, (5.9)

ht = ot � tanh(ct), (5.10)

where it, ft, ot, gt, and ct are input gate, forget gate, output gate, input modulation

gate, and memory cell, respectively. All gates and memory cells are of the same size

as the hidden vector ht. {Mxi,Mhi,Mxf,Mhf,Mxo,Mho,Mxg,Mhg} ∈ R2m are weighted

matrices. bi, bf, bo, and bg are the biases of LSTM unit. σ is the logistic sigmoid

function where σ(x) = 1/(1+ e−x). The operation � denotes the element-wise product
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with the gate value. The update of each LSTM unit can be summarized as

ht = LSTM(ht−1, et,ωL), (5.11)

where LSTM(.) is a combination of Eqs. 6.1-6.6 and ωL denotes all the parameters in

the LSTM network.

5.3.3.3 Gated Recurrent Unit (GRU)

The GRU is a simplified version of LSTM, which has two gates (reset and update) that

modulate the flow of information, however, without having a memory cell. The GRU

has a hidden state and the candidate state. The use of fewer gates and parameters

makes GRU a bit faster and computational lightweight than LSTM. The reset and

update gates address the following questions: how much information to flush from

the memory?, and how much information needs to be stored at the current time step

for future computations?, respectively. The reset gate in the ADLR system is useful

because significant discontinuities occur in the sequence of events generated by human

activities.

• GRU in ADLR system: The input of GRU is a sequence of sensor events I =

{e1, · · · , et, · · · , el}, where et ∈ Rm at each timestamp. The GRU in the system is

updated as

rt = σ(Mxret +Mhrht−1 + br), (5.12)

zt = σ(Mxzet +Mhzht−1 + bz), (5.13)

h̃t = tanh(Mxhet +Mhh(rt � ht−1) + bh), (5.14)

ht = zt � ht−1 + (1− zt)� h̃t, (5.15)

where rt, zt, and ht are reset gate, update gate, and hidden vector, respectively. All

gates and memory cells are the same size as the hidden vector ht. {Mxr,Mhr,Mxz,Mhz,
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Mxh, and Mhh} ∈ R2m are weighted matrices. br, bz, and bh are the biases of the GRU

unit. The update of each GRU can be summarized as

ht = GRU(ht−1, et,ωG), (5.16)

where GRU(.) is a combination of Eqs. 5.12-5.15 and ωG denotes all the parameters in

the GRU.

5.3.3.4 CNN_LSTM

CNN_LSTM is the hybrid model of convolutional neural networks and long short-

term memory. It exploits the benefits of CNN and LSTM. It utilizes the ability of

convolution layers to learn the internal representation of time-series data and LSTM

layers to identify short-term and long-term dependencies.

• CNN_LSTM in ADLR system: In CNN_LSTM, the outcomes of the CNN are

fed as the input to the LSTM. The inputs of CNN are the sliding windows and each

sliding window is a sequence of l sensor events I = {e1, · · · , et, · · · , el}, where et ∈ Rm

at each timestamp. CNN outputs the intermediate-level representation �Cf
i of window

Wi as shown in Equation 5.4. In CNN_LSTM, the input of LSTM units are �Cf
i and it

generates ht as shown in Equation 5.11. The update of CNN_LSTM for a window Wi

can be summarized as

�
Cf

t = CNN(et),

ht = LSTM(ht−1,
�
Cf

t ,ωCL). (5.17)

where LSTM(.) is a combination of Eqs. 6.1-6.6 and ωCL denotes all the parameters

in the LSTM network.
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5.3.4 Ensemble technique

Ensemble is a technique that combines the outputs of various candidate systems to get

better results. It exploits the goodness of all the participating systems. The proposed

ensemble model is a Multi-Layer Perceptron (MLP) built on top of learned high-level

features of four deep learning models and hand-crafted features. We first separately

train and tune all the four deep learning models. We extract intermediate layer acti-

vation (high-level features) from these trained models by removing their output layer.

These four high-level features are concatenated with hand-crafted features (generated

by Procedure 5.4), as shown in Figure 5.3. Procedure 5.5 illustrates the steps of the

concatenation of the features. The ensemble model learns the mapping of concatenated

features and output labels. It utilizes the richness of different features and learns a

joined representation for activity recognition. The dimension of the concatenated fea-

tures is k + 408, i.e., 100 dimension high-level features from each deep learning model

plus k + 8 dimension hand-crafted features.

Procedure 5.5: Concatenation of the features
Input: I = {(W1, y1), (W2, y2), · · · , (W�

Z
l

�, y�Z
l

�)};
Output: Concatenated features

1 Train CNN, GRU, LSTM, and CNN_LSTM base models on input I by using
Eqs. 5.4, 5.11, 5.16, and 5.17, respectively;

2 Remove output layer of trained base models;
3 Concatenate the outputs of the base models (high-level features) and hand-crafted
features;

4 return Concatenated features;

5.3.5 Objective loss formulation

To improve the recognition performance of the proposed ADLR system, we use focal loss

and center loss jointly as the supervisory signals. The comparison of these losses with

conventional softmax cross-entropy loss will be discussed in the experimental section.
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5.3.5.1 Focal loss

The system uses Focal Loss (FL) [103], denoted by LFL, for addressing the long-tailed

class distribution problem. The FL adds a modulating factor to the sigmoid cross-

entropy loss to reduce the loss for well-classified examples and focus on difficult ones.

Let the input sample x with class label y ∈ C and predicted output from the classifier for

all classes are z ∈ {z1, z2, · · · , zC}. The LFL of x can be written as LFL = −�C
i=1(1−

σ(zxi ))
γ log(σ(zxi )). The system uses an α balanced variant of focal loss:

LFL = −α
C�

i=1

(1− σ(zxi ))
γ log(σ(zxi )), (5.18)

where γ and σ are the focusing parameter and softmax function, respectively [103].

5.3.5.2 Center loss

The Center Loss (CL) [104], denoted by LCL, improves the discriminative ability of the

deeply learned features. The CL concurrently learns a center for deep features of each

class and penalizes the distances between the deep features and their corresponding

class centers. The CL function can be written as [104]

LCL =
1

2

N�

i=1

�x̂i − cyi�22 , (5.19)

where N , x̂i, yi, and cyi are the total training sample in the dataset, ith deep feature,

class label of x̂i, and class center of deep features of yi, respectively.

• Loss function of ADLR system: The loss function of the proposed system is

defined by combining LFL and LCL as:

LADLR = LFL + λLCL, (5.20)
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where hyperparameter λ balances the two-loss terms and 0 < λ ≤ 1. Substituting LFL

and LCL from Eqs. 5.18 and 5.19, respectively,

LADLR = −α
C�

i=1

(1− σ(zxi ))
γ log(σ(zxi )) +

λ

2

N�

i=1

�x̂i − cyi�22 . (5.21)

We apply Procedure 5.6 to train the proposed ADLR system. The output of Proce-

dure 5.6 is the trained network parameters, denoted by Θ, where the network consists

of the least error. The learning rate of the network at iteration τ is denoted as µτ . ck

denotes the kth class center defined by the averaging over the features in the kth class.

cτk denotes the kth estimated class center at the τth iteration and hyperparameter α

control the learning rate of the centers.

Procedure 5.6: Training procedure of ADLR system
Input: Training Data D={(x1, y1), (x2, y2), · · · }, α, λ, µτ ;
Output: Trained network parameter Θ ;

1 while not converge do
2 τ = τ + 1;
3 Compute total loss LADLR using Equation 5.21;
4 Compute backpropagation error for i as ∂LADLR

∂x̂τ
i
;

5 Update parameters:
6 cτ+1

k =cτk − αΔcτk;
7 Θτ+1=Θτ − µτ ∂LADLR

∂Θτ = Θτ − µτ
�

i
∂LADLR

∂x̂τ
i

∂x̂τ
i

∂Θτ ;

8 return Θ;

5.4 Experiments and Results

This section presents experimental results for evaluating the performance of the pro-

posed ADLR system and compares our results with other state-of-the-art approaches.



5.4. Experiments and Results 91

Figure 5.4: CASAS smart home floor plan and sensor layout for D5. Marks “�”,
“•”, and “�” are IR motion (S1), wide-area IR motion (S2), and magnetic sensors (S3),
respectively.

5.4.1 Datasets

We used publicly available five real datasets collected in CASAS smart home testbeds

at Washington State University [31,41,44], referred to as Di datasets, where 1 ≤ i ≤ 5.

Figure 5.4 illustrates the layout of the testbed for D5. CASAS smart home testbeds

use infrared motion sensors, wide-area infrared motion sensors, and magnetic sensors,

which are denoted by S1, S2, and S3, respectively. The CASAS smart home datasets

consist of a set of eleven human activities A ∈{Bathing, Bed toilet transition, Eating,

Enter home, Housekeeping, Leave home, Meal preparation, Personal hygiene, Resting

on couch, Sleeping in bed, Taking medicine}, which are denoted as {a1, · · · , a11} [31]. In

a real-world setting, there may be sensor events that do not belong to a predefined class,

such as events generated due to transitions between different activities or corresponds

to some other well-defined activities. We assign them to an “Other” category, denoted

by a12. The smart home residents were older adults who were performing normal

unscripted activities of daily life. Table 5.1 shows that the percentage of sensor events

belongs to activities A in each dataset. The following points illustrate the motivation

of the selection of the datasets. Class imbalance ratios (the ratio between the sample
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Table 5.1: The summary of CASAS smart home datasets.

D1 D2 D3 D4 D5

(S1,S2,S3) (S1,S2,S3) (S1,S2,S3) (S1,S2,S3) (S1,S2,S3)

A
ct
iv
iti
es

A
a1 (0,2,0), 2.1% (0,1,0), 0.06% (0,1,0), 0.12% (1,1,0), 0.67% (4,4,0), 1.19%

a2 (0,2,0), 2.9% (0,2,0), 0.25% (1,1,0), 5.07% (0,1,0), 0.41% (3,3,0), 0.63%

a3 (1,3,0), 1.63% (3,8,0), 1.47% (2,7,0), 0.79% (5,1,0), 0.44% (8,3,1), 2.08%

a4 (2,2,1), 0.87% (2,5,1), 0.38% (2,3,1), 0.89% (6,3,1), 1.38% (5,2,1), 0.59%

a5 (1,2,0), 5.32% (4,6,1), 14.0% (2,4,1), 3.80% (7,3,0), 14.7% (16,7,4), 20%

a6 (2,1,1), 0.80% (2,4,1), 0.42% (2,3,1), 1.17% (8,3,1), 1.48% (2,1,1), 0.60%

a7 (1,2,0), 26.8% (4,5,0), 23.9% (5,4,2), 18.0% (6,3,0), 24.5% (11,4,3), 14.5%

a8 (2,5,0), 19.5% (2,8,1), 11.5% (2,7,0), 32.1% (6,4,0), 21% (15,7,0),25.9%
a9 (3,7,3), 2.5% (4,9,1), 2.5% (1,5,0), 1.38% (9,5,0), 3.6% (16,7,1), 5.6%
a10 (3,6,0), 5.01% (2,9,1), 3.9% (3,6,0),1.33% (10,4,0), 1.0% (16,6,0), 1.9%
a11 (0,2,0), 1.1% (3,1,0), 2.1% (0,1,0), 1.02% (0,1,0), 1.11% (4,4,1), 0.4%
a12 (3,7,3), 31.2% (4,9,3), 39.2% (5,9,3), 34.2% (17,7,3), 29.3%(16,7,4), 26.3%

R
eg
io
ns

R1
√ √ √ √ √

R2
√ √ √ √ √

R3
√ √ √ √ √

R4
√ √

R5
√ √ √ √ √

R6
√ √

Se
ns
or
s S1 3 4 5 17 16

S2 7 9 9 7 7
S3 3 3 3 3 5

size of smallest and largest classes) are 1 : 39, 1 : 655, 1 : 275, 1 : 71, and 1 : 64

in datasets D1 to D5, respectively. Next, the different layout of the sensors deployed

in the apartment incorporates the robustness in the experiment results. Finally, we

emphasize the number of different types of sensors used in the apartment. Table 5.1

illustrates that D1 to D5 datasets used 13, 16, 17, 27, and 28 sensors (sum of S1, S2, and

S3), respectively. It also shows the number of sensors for each activity. For example,

activity a1 is sensed by (0,2,0) sensors, i.e. two S2 sensors in D1 dataset.

5.4.2 Implementation details

The proposed models are trained for Di datasets, 1 ≤ i ≤ 5, using 80% of the data

for training and 20% for testing. The weight matrices in the neural network layers
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are initialized by the Xavier Initialization and Uniform He initialization [105] when

the layers use softmax and ReLU activation functions, respectively. We use the Adam

optimization algorithm with a mini-batch size of 64. The initial learning rate is set to

be 0.001. Then we decrease the learning rate by ×0.3 when the accuracy on the training

data stops improving [118]. The proposed model converged within about 200 epochs.

Each experiment is repeated ten times and took the average. We use Python-based

libraries, Keras and Scikit-learn, for implementation. The experiments are performed

on a PC with Intel Core i7-CPU, 2.83 GHz clock speed, 6 GB RAM, and Ubuntu 18.04

operating system.

5.4.3 Performance metrics

We consider the following performance metrics for estimating the performance of the

proposed system.

• Overall activity classification accuracy: It is defined as

P1 =
1

|A|

|A|�

i=1

Acci =
1

|A|

|A|�

i=1

TPi

TPi + FNi
. (5.22)

where A is the set of all activity classes including the “Other” a12 class and TPi, FPi,

FNi, and Acci are the true positive, false positive, false negative window counts, and

classification accuracy of activity ai ∈ A, respectively. Moreover, the average overall

activity classification accuracy of all the datasets (Di, 1 ≤ i ≤ 5) is given by

Q =
1

5

5�

i=1

P1 of Di. (5.23)

• Predefined activity classification accuracy: It is computed as

P2 =
1

|A�|

|A�|�

i=1

Acci =
1

|A�|

|A�|�

i=1

TPi

TPi + FNi
. (5.24)

where A� = A − a12 is the set of predefined activity classes i.e., set of all activities

excluding the “Other” a12 class. Note that this activity classification accuracy differs

from that employed in [33], where P2 =
�|A�|

i=1 TPi/
�|A�|

i=1 (TPi + FNi), which can be
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biased to the majority class and therefore not suitable for the class imbalanced datasets.

• F1-score: The F1 score of the activity set A is computed as

P3 =
1

|A|

|A|�

i=1

2× TPi

TPi + FPi + FNi
. (5.25)

5.4.4 Models for ADLR system

We present the following models for the ablation studies of the proposed work.

5.4.4.1 Baseline models (M1,M2)

We consider two baseline models [31] to compare the performance of our proposed

models. The model M1 uses Baseline Features (BFs) as inputs and SVM as activity

classifier. The modelM2 is the extension of the modelM1 where the inputs of the SVM

are Baseline features with Mutual Information (BM) as given in Definition 5.1. Such

BM features are generated using Procedure 5.4 in Section 5.3.2. In BF computation, a

simple count of different sensor events is used, whereas, in BM, it is the sum of every

sensor event’s contributions weighted by mutual dependency.

5.4.4.2 Deep learning models (M3 −M5)

The models M3,M4, and M5 use CNN, LSTM, and GRU, respectively, to recognize the

human activities. The input of these models is a window W90×5 of the sequence of 90

sensor events. Each event is represented by a tuple <day of the event, timesin, timecos,

sensorID, sensor value>, instead of using raw streaming sensor events to gain a better

experimental result. Here timesin and timecos are the sine and cosine transform of the

time of the event, defined in Definition 5.2. The windowW is generated using Procedure

5.3 in Section 5.3.1.
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5.4.4.3 Hybrid model (M6)

ModelM6 is the combination of CNN and LSTM. It takes windowW90×5 of the sequence

of 90 sensor events as input, first pass it through the CNN, and then LSTM.

5.4.4.4 Ensemble models (M7 −M12)

The ensemble technique creates multiple models and then synthesizes the predictions

from these models to produce improved results. Model M7 uses a separately trained

and tuned M3 model to obtain deep features by removing its output layer. These deep

features are concatenated with hand-crafted BM features before feeding into the en-

semble model for recognizing human activities. Similarly, models M8, M9, and M10 use

trained models M4, M5, and M6, respectively, and hand-crafted BM features. Models

M11 and M12 use all four deep learning models for deep feature extraction. Model M11

uses separately trained M3, M4, M5, and M6 models, and the intermediate learned rep-

resentations are used for the final ensemble. Finally, Model M12 uses all the four base

models same as M11, and hand-crafted BM features. The input of all these models is

the windowW90×5. The proposed ADLR system uses M12 since it provides the highest

accuracy.

5.4.4.5 Ensemble End-to-End model (M13)

M13 is same as M12 except that here all four base models are trained in a unified

architecture along with the ensemble model. Model M13 uses the window W90×5 as

input, ensembles CNN , LSTM , GRU , CNN_LSTM and BM, and trains the entire

model to recognize the human activities.

Table 5.2 summarizes the architecture of M3 to M13 models. The symbol A is the

dimension of the input sliding window, and D is the number of units for the output

layer. The B : [B1, B2, · · · ] and C : [C1, C2, · · · ] indicate the convolution/recurrent

layers and dense layers, respectively, where Bi and Ci are the dimension at the ith
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Table 5.2: Comparison of the architectures of different models.

Model
Architectures

A
a→ [B1, B2, · · · ]� �� �

B

b→ [C1, C2, · · · ]� �� �
C

c→ D

M3 90× 5
a→ [32, 32, 32, 32, 32, 32, 32, 32]

b→ 100
c→ 12

M4 90× 5
a→ [100, 100]

b→ 100
c→ 12

M5 90× 5
a→ [100, 100]

b→ 100
c→ 12

M6 90× 5
a→ [32, 32, 32, 32, 100, 100]

b→ 100
c→ 12

M7 90× 5
a→
�
Model X
BM

�
b→
�
200, 100

� c→ 12

Where Model X= Separately trained M3, M4, M5, and M6

models for M7, M8, M9, and M10, respectively.
M8

M9

M10

M11 90× 5
a→




M3

M4

M5

M6




b→
�
200, 100

� c→ 12

M12 90× 5
a→




M3

M4

M5

M6

BM




b→
�
200, 100

� c→ 12

M13 Same as M12, except that here all base models are trained in a
unified architecture along with the ensemble model.

convolutional/recurrent and dense layer, respectively.

5.4.5 Results and discussion

This section carries out the experimental evaluation to validate the performance of the

ADLR system by giving answers to the following questions:

• What is the influence of the input window size and hyperparameters of the loss

functions on the activity recognition accuracy? The answer to this question gives

the optimal window size and hyperparameters for the system’s highest accuracy.

• What is the impact of the loss functions on the activity recognition accuracy?
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The result identifies a loss function that provides the highest activity recognition

accuracy by using the optimal hyperparameters.

• What is the benefit of the inclusion of hand-crafted features in the ensemble archi-

tecture on the activity recognition accuracy? The answer to this question infers

that the inclusion of hand-crafted features along with deep features in the ensem-

ble architecture results in an improvement of the activity recognition accuracy.

• How efficiently can the ADLR system classify human activities compared to base-

line models? The answer to this question illustrates the accuracy of the ADLR

system by using optimal hyperparameters and loss function. It shows that M12

gives the highest accuracy.

• Does the traditional ensemble methods help to improve activity recognition accu-

racy? The answer to this question concludes that the proposed ensemble achieves

much better performance than any of the traditional ensemble methods.

• What are the time and space requirements of the ADLR system? The answer

to this question illustrates the required time and space of a given model for

recognizing the activities.

• Does the ADLR system take care of under-represented activity classes? The an-

swer to this question concludes that the proposed system successfully recognized

the given activity classes, including under-represented classes with high accuracy.

5.4.5.1 Impact of the hyperparameter selection

We discuss the selections of two critical hyperparameters, input window size, and λ.

Here λ is the ratio between focal loss and center loss as menitoned in Equation 5.20.

The hyperparameters α and γ of FL are set 0.25 and 2, respectively, following [106].

The performance of the ADLR varies based on the window size. To determine the

optimal window size, we change the size and observe the effects on the accuracy of

the system. These tests are performed using D1 to D5 datasets. The search space
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Figure 5.5: Illustration of the impact of window size (part (a)) and λ (part (b)) on
the performance of the ADLR system.

of window size is {10, 20, · · · , 150}. Part (a) of Figure 5.5 illustrates the impact of

the window size on the average performance of the ADLR system (aggregated across

all datasets). It shows that the performance increases as window size increases until

performance plateaus. After that, the addition of more sensor events does not enhance

performance much. According to these findings, we consider a window size of 90 for the

experimental results. This window size provides most of the advantages obtained from

a broader window size. Increasing the window size further may give a small benefit;

however, the complexity rises as the window size increases.

Next, we study the impact of the λ and employ the weight set λ ∈ {0, 10−6, 10−5, · · · ,

10−1, 1}, which implies the model varying gradually from the model with only FL to the

case where the FL and CL ratio is equal to 1. Experiments use the highest imbalanced

D2 dataset. Part (b) of Figure 5.5 demonstrates the impact of the λ on the recognition

accuracy and the center loss. We observed that for λ = 0, i.e., the model with only

FL yields a significant value of the center loss. Also, with increasing the value of λ,

the center loss decreases, while the recognition accuracy does not change significantly.

Considering these observations, we choose λ = 0.01 in the experimental result.
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Figure 5.6: Performance comparison among three loss functions on D1-D5 datasets,
where P1 denotes overall activity classification accuracy.

5.4.5.2 Impact of loss function

Next, we illustrate the impact of the loss function on the performance of M3, M4, M5,

and M6 models in terms of activity recognition accuracy. We present results of these

models when supervised by conventional softmax Cross-Entropy Loss (CEL), FL, and

a joint loss FL+CL that combines FL and CL. Figure 5.6 illustrates the following ob-

servations: (i) The CEL leads to the worst results on all the data sets and models

since our datasets are highly imbalanced and cannot be exploited well by deep learning

models with CEL. We used the FL to train the proposed deep models. FL employs a

modulating factor to the CEL to help focus on hard samples and down-weight the many

easy ones. The FL gives better results than the CEL on all the data sets. (ii) Joint loss

FL+CL further improves the recognition performance and generalization of the pro-

posed models and provides the highest recognition accuracy on all the datasets. This is

because the discrimination ability caused by the CL has a positive impact on recognition
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performance. CL adds a cluster-based loss term to the FL, ensuring that the learned

representations have both large interclass margins and small intraclass variations. That

is, the learned representations are not only separable but also discriminative. Joint loss

FL+CL gives the best recognition accuracy in terms of all the metrics.

Table 5.3: Performance comparison among M1-M13 models for ADL recognition on
D1-D5 datasets, where P1, P2, P3, and Q denote overall activity classification accuracy,
predefined activity classification accuracy, F1-score, and average P1 of all the datasets,
respectively.

Models
Performance

D1 Dataset D2 Dataset D3 Dataset D4 Dataset D5 Dataset QP1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

Part (a): Baseline models
M1 77.62 76.23 55.02 68.33 57.15 33.22 70.96 71.89 28.68 66.11 63.65 30.61 62.29 63.32 37.60 69.06
M2 84.82 80.93 60.48 72.42 60.68 38.52 80.12 81.19 34.13 70.33 66.43 35.28 62.51 57.13 43.01 74.04

Part (b): Deep learning models
M3 97.33 97.19 94.28 97.32 96.33 82.54 95.93 95.10 79.43 94.25 94.26 85.16 95.18 95.75 89.20 96.00
M4 99.10 99.16 98.50 98.81 98.85 97.18 98.42 98.26 93.90 98.27 98.60 96.68 98.44 98.84 96.91 98.61
M5 99.14 99.20 98.53 98.84 98.75 96.15 98.28 98.09 92.80 98.12 98.38 96.19 98.27 98.69 96.49 98.53
M6 99.06 99.10 98.41 98.88 98.87 96.12 98.31 98.04 93.03 98.28 98.65 96.40 98.23 98.59 96.82 98.55

Part (c): Ensemble models (Single pre-trained deep learning model with BM features)
M7 97.36 97.20 94.62 97.56 96.18 85.48 96.17 95.56 81.44 94.29 94.31 84.61 95.18 95.94 89.42 96.11
M8 99.11 99.02 98.53 98.81 98.73 97.30 98.42 98.30 93.75 98.31 98.64 96.57 98.46 98.79 96.79 98.62
M9 99.16 99.11 98.59 98.87 98.70 96.26 98.34 98.19 92.10 98.12 98.41 96.15 98.28 98.71 96.84 98.55
M10 99.07 99.14 98.43 98.89 98.75 96.66 98.33 98.16 93.40 98.28 98.34 96.42 98.24 98.64 96.93 98.56

Part (d): Ensemble All together models (All 4 pre-trained deep learning models without and with BM features)
M11 99.20 99.12 98.65 99.16 99.08 97.32 98.64 98.47 91.57 98.35 98.80 96.54 98.64 98.96 97.29 98.80
M12 99.21 99.23 98.70 99.15 99.15 97.85 98.63 98.43 91.75 98.60 98.88 97.25 98.64 98.98 97.46 98.85

Part (e): Ensemble End-to-End model
M13 99.20 99.14 98.68 99.08 99.17 97.71 98.58 98.57 93.00 98.28 98.61 96.77 98.47 98.82 97.45 98.72

5.4.5.3 Performance comparison among M1-M13 models

In this study, we compared the performance of M1-M13 models. We consider the per-

formance metrics P1, P2, and P3 as given in Section 5.4.3, to measure the performance

of the models, and results were shown in Table 5.3. The previous result illustrates

that the joint loss FL+CL function addresses the class imbalance problem, interclass

compactness, and interclass dispersion and provides the highest accuracy. Therefore,

we use this loss function in all the models.

• Observations for M1 and M2: Table 5.3 shows that M2 outperforms M1 in terms of

all performance metrics. For example, the improvement in P1, P2, and P3 are 7.2%,
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4.7%, and 5.5%, respectively, for D1 dataset. The reason is that M2 uses the mutual

information, which reduces the weight of sensor events from different functional areas

on the features defining the last sensor event within a sliding window. The mutual

information accurately detects the correlation among the events in a sliding window.

• Observations for M3-M6: The performance of CNN, LSTM, GRU, and CNN_LSTM

based M3, M4, M5, and M6 models, respectively, are illustrated in Table 5.3. It shows

that these deep learning models provide much better accuracy than the baseline hand-

engineered feature-based M1 and M2 models, where features are manually extracted

using domain knowledge. The reasons are as follows: (i) M3-M6, deep learning models,

use the non-linear correlations among the events during the recognition of activity

and can learn much more high-level and meaningful features automatically through

the network. (ii) Through human domain knowledge, only shallow features can be

learned [64].

• Observations for M7-M10: Next, we illustrate the benefit of the inclusion of hand-

crafted features in the ensemble architecture on the accuracy of the ADLR system.

Table 5.3 illustrates the performance of M7-M10 models which use separately trained

M3-M6 models, respectively, to obtain deep features by removing their output layer.

These deep features are concatenated with hand-crafted BM features before feeding

into the ensemble model for recognizing human activities. The results illustrate that

the inclusion of hand-crafted features results in an improvement of performance. This

is because these ensemble models use hand-crafted BM features, which complement

deep features and provide the additional domain knowledge of the dataset, therefore,

enhancing the performance.

• Observations for M11 -M12: Next, deep learning models M11 and M12 use separately

trainedM3,M4,M5, andM6 models together as shown in Table 5.2. Table 5.3 illustrates

that M11 model provides better accuracy then all previous models (M1 to M10). This

is because it exploits the richness of different feature representations and the goodness
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Table 5.4: Comparison with the traditional ensemble approaches using M12 model,
where P1, P2, P3, and Q denote overall activity classification accuracy, predefined
activity classification accuracy, F1-score, and average P1 of all the datasets, respectively.

Ensemble
Performance

D1 D2 D3 D4 D5 QP1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

Bagging 94.53 93.49 93.98 93.66 91.72 82.22 94.33 94.83 83.36 94.36 91.84 86.88 92.77 93.30 90.18 93.93
Random Forests 94.35 94.80 92.43 93.48 90.64 80.04 94.08 93.80 86.28 94.60 92.95 88.39 94.90 94.30 94.67 94.28
AdaBoost 56.78 39.03 12.52 51.31 59.25 20.01 53.88 74.50 14.59 49.33 52.87 18.46 20.01 23.05 08.37 46.26
Gradient Boosting 85.58 82.66 64.11 72.06 61.40 37.54 83.17 80.94 48.79 71.20 71.47 44.94 62.98 60.67 48.14 75.00
Extra-trees 94.09 94.69 91.56 93.42 91.65 85.62 94.34 93.21 86.72 92.10 91.85 89.72 92.54 93.00 92.35 93.30
Proposed 99.21 99.23 98.70 99.15 99.15 97.85 98.63 98.43 91.75 98.60 98.88 97.25 98.64 98.98 97.46 98.85

of CNN and RNN. In addition to M11 base models, M12 model additionally uses hand-

crafted BM features, which provide more learning the correlation information among

the events in a given input window and hence gives slightly more accuracy than M11

model in all the metrics.

• Observations for M13: Finally, we study our proposed M12 model in an end-to-end

network in which all base models are trained in a unified architecture along with the

ensemble model. Table 5.4 illustrates that the accuracy of M13 model is inferior to

the M12 model. As per our understanding, since M13 end-to-end ensemble model has

a relatively large set of parameters to train, and therefore, requires a large dataset.

However, the size of our datasets is limited and not sufficient to optimize the parameters.

5.4.5.4 Comparison with the traditional ensemble methods

Experiments were further conducted to compare our proposed ensemble model with

various traditional ensemble methods. The proposedM12 model uses a stacking ensem-

ble technique for constructing an ensemble. The comparative results are shown in Ta-

ble 5.4, where we consider five traditional ensemble methods Bagging, Random Forests,

AdaBoost, Gradient Boosting, and Extra-trees for all the datasets (D1-D5). Table 5.4

shows that the proposed ensemble method gives the best performance than any other

ensemble method on all performance metrics. This is because the proposed ensemble

method exploits the richness of different feature representations (hand-crafted and high-
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Table 5.5: Time and space requirements of models on D1 dataset.

Model Memory Train Time Test Speed Accuracy P1

M3 4.20 MB 1.61 h 0.0732 ms 97.33%
M4 1.70 MB 8.28 h 0.5272 ms 99.10%
M5 1.30 MB 8.22 h 0.5170 ms 99.14%
M6 2.00 MB 9.33 h 0.5641 ms 99.06%
M12 4.30 MB 15.39 h 1.0375 ms 99.21%
M13 10.30 MB 29.61 h 1.0375 ms 99.20%

level features) and learns a combined representation for solving the ADL recognition

problem.

5.4.5.5 Time and space requirements of the models

Next, we illustrate the requirement of time and space for the different models. For

experiments, we consider dataset D1 since it gives the highest accuracy. Table 5.5

shows the memory consumption, training time, testing time, and accuracy of different

models. Training and testing time indicate the required time to train the model and test

on a given sliding window, respectively. Models M12 and M13 uses separately trained

base models (M3-M6). Therefore, the training time of these models is the sum of the

required time to train the ensemble and the maximum required training time of base

models (max{τi}), where τi is training time ofMi and 3 ≤ i ≤ 6. As shown in Table 5.5,

CNN (M3) and end-to-end model (M13) take the least and the most training and testing

time, respectively, as expected. LSTM (M4) takes slightly more training and testing

time than GRU (M5), and both have comparable accuracy. From the perspective of

accuracy, M12 outperforms all other models.

5.4.5.6 Illustration of class-wise accuracy of ADLR system

Next, we illustrate the accuracy of the successful recognition of a given class by the

ADLR system. Table 5.6 demonstrates the confusion matrix for D1 dataset. The large
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Table 5.6: Confusion matrix for the ADLR system recognizes on D1 dataset. Each cell
consists of a

(b)
, where a and b denote the recognized activity in number and percentage,

respectively. The • indicates a = 0 and b = 0.
Recognized Activities

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

a1
487

(99.795) • • • • • • • • • • 1
(0.205)

a2 • 644
(100) • • • • • • • • • •

a3 • • 362
(98.907) • • • • • • • • 4

(1.093)

A
ct
ua
lA
ct
iv
it
ie
s

a4 • • • 195
(100) • • • • • • • •

a5 • • 2
(0.168) • 1170

(98.319) • 4
(0.336) • • • • 14

(1.200)

a6 • • • 3
(1.667) • 177

(98.333) • • • • • •

a7 • • • • • • 5992
(99.967) • • • 1

(0.017)
1

(0.017)

a8 • • • • • • • 4341
(99.382) • • 1

(0.023)
26

(0.595)

a9 • • • • • • • • 511
(90.925) • • 51

(9.075)

a10 • • • • • • • • • 1106
(99.640) • 4

(0.360)

a11 • • • • • • • 4
(1.594) • • 245

(97.610)
2

(0.797)

a12 • 2
(0.029)

6
(0.086) • 2

(0.029) • 1
(0.014)

14
(0.200)

31
(0.444)

2
(0.029)

1
(0.014)

6924
(99.155)

number of zero entries dominating the confusion matrix except for the last column and

the diagonal entries suggests that the proposed system results in low confusion amongst

the pre-defined activities. Even the system recognizes the under-represented classes

with high accuracy. For example, the recognition accuracy of Leave home activity (a6)

is 98.333% even if it consists of only 0.807% sensor events (given in Table 5.1). The

last column has non-zero entries, indicates that few sliding windows corresponding to

pre-defined activities are misclassified as ’Other’ activity.

5.4.6 Comparison with other approaches

Table 5.7 lists the state-of-the-art performance achieved by previous works on the

CASAS datasets to compare our proposed system with other approaches. For fairness

of comparison, we have directly included results reported in the respective papers. The

state-of-the-art performance on the CASAS datasets has recently been achieved by [33]

with latent knowledge and basic features. Authors in [33] proposed an approach that
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Table 5.7: Comparison of the proposed system (M12) with other approaches on the
CASAS datasets, where P1 and P3 denote overall activity classification accuracy and
F1-score, respectively.

Method Ref.
Performance

Tulum Aruba Cairo HHl02 HHl04
P1 P3 P1 P3 P1 P3 P1 P3 P1 P3

TB with RF classifier [33] 93.28 83.11 99.07 93.66 98.67 89.32 96.15 82.22 96.60 86.88
HM with RF classifier [33] 92.76 80.36 99.00 93.20 99.72 98.07 92.42 70.97 91.33 71.57
TB with NN classifier [33] 93.53 84.76 99.22 93.15 98.68 90.71 94.69 82.00 98.38 92.89
HM with NN classifier [33] 93.76 85.78 99.24 93.75 99.65 94.92 92.17 74.92 95.28 81.15

P-SVM [35] - - 95.00 82.00 - - - - - -
DCNN [6] - - 98.54 79.00 - - - - - -
DCNN [30] - - - - 95.20 90.57 - - - -
ADLR ours 98.61 97.85 99.53 97.71 99.91 99.05 98.64 97.46 99.29 98.85

learns the latent knowledge from explicit-activity windows and determines the given

sliding window’s prediction. Their approach then feeds the prediction with other slid-

ing window features into a classifier to produce the final class prediction for each sliding

window. The authors considered ten ADL for recognition and conducted experiments

on five CASAS datasets. As revealed in Table 5.7, our proposed system outperforms

previous approaches with significant margins from the aspects of both overall activity

classification accuracy and F1-score.

5.5 Conclusion

This chapter presented the design, implementation, and evaluation of an online ADL

recognition system. The proposed system uses focal loss to handle the long-tailed class

distribution and center loss to enhance the discriminative power of the deeply learned

features. We effectively combine deep learned features with hand-crafted features via an

ensemble technique. The proposed system achieved new state-of-the-art performance

on the CASAS datasets.


