
Chapter 3

Sensor Signals based Early

Dementia Detection System using

Travel Pattern Classification

This chapter presents an early dementia detection system using inhabitant travel pat-

tern classification. The system segments the movements into travel episodes and classi-

fies them using a recurrent neural network. The system handles the unbalanced classes

of travel patterns by using the focal loss and enhances the discriminative power of the

deeply learned features by the center loss function. We conduct several experiments on

real-life datasets to verify the accuracy of the system.

3.1 Introduction

Many older adults suffer from some degree of cognitive impairment, such as dementia.

Dementia is an overall term for diseases and conditions characterized by a decline in

memory, language, problem-solving, and other thinking skills. There is no one test to

determine if someone has dementia [98, 99]. Inefficient travel (or wandering) patterns

of inhabitant are one of the first and primus indicators of progressive dementia. Many

30 3.1. Introduction

attempts have been made to understand the travel patterns of People with Dementia

(PwD); one prevailing strategy has been the classification of travel patterns based on

the geographical region [100]. The authors categorized the travel patterns into four

basic types: direct travel, random travel, lapping, and pacing. Except direct travel

pattern, other patterns are considered inefficient wandering patterns.

Different sensor modalities used to gather movement (travel pattern) information

include wearable sensors, environmental sensors, and video sensors [30]. As discussed

earlier, environmental sensors are considered acceptable solutions for sensing smart

homes due to their non-intrusive characteristics, making them suitable for environments

where user acceptance and privacy are needed. The literature on the classification of

traveling patterns used conventional machine learning [101].

Pacing
Model

Laping

Direct

Random

Travel Pattern

Classification

.

.

.

Figure 3.1: Illustration of classification of travel patterns in the EDD system.

In this chapter, we address the problem: how to detect dementia of an inhabit-

ant at an early stage by using travel patterns of the inhabitant? To address

this problem, we propose an Early Dementia Detection (EDD) system by using Recur-

rent Neural Network (RNN), which automatically extracts the high-level features, as

shown in Figure 3.1. We consider the environmental passive infrared motion sensors for

sensing the movements of the inhabitant. The system segments the movements into the

travel episodes and classifies the episodes. The proposed system directly deals with raw

3.1. Introduction 31

movement sensory data and is fully end-to-end. To do this, we use RNN architecture,

especially Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), for

extracting the high-level features. The system also handles the unbalanced classes by

using a special loss function.

3.1.1 Motivation

The work in this chapter is motivated by the following limitations noted in the liter-

ature. The first limitation of the existing work [36, 59, 61, 62] is the use of wearable

sensors or video sensors. As discussed earlier, wearable sensors are inconvenient for

inhabitants, and video sensors are not practical due to privacy issues. Furthermore,

multimodality based solutions where using two or more types of sensors, (e.g., wear-

able and video sensors) consist of the limitations of both types of sensors [102]. In

this work, we consider only environmental sensors to overcome this limitation. Next,

existing work either based on feature engineering [36, 59, 101], which is usually limited

by the domain knowledge of humans or transforming the travel patterns into image-like

representations [2].

3.1.2 Major contributions

The major contributions of this chapter are as follows:

• This work considers non-intrusive environmental sensors for acquiring the inhab-

itant movement information.

• The proposed system is fully end-to-end and directly deals with raw movement

sensory data without requiring any other domain-specific knowledge, unlike pre-

vious methods where some hand-crafted feature engineering or image-like repre-

sentations are required.

• Focal loss is applied to address the class imbalance problem. Center loss enhances

the discriminative power of the deeply learned features.

32 3.2. Preliminary and Overview of the EDD System

• We evaluate the accuracy of the EDD system by using five real-life datasets

collected in the CASAS smart home testbeds [44].

The rest of the chapter is organized as follows: Section 3.2 states the assumptions

and overview of the EDD system. Section 3.3 presents EDD system in detail. Section 3.4

reports the experimental results followed by the conclusions in Section 3.5.

3.2 Preliminary and Overview of the EDD System

This section describes the terminologies used in this work and presents an overview of

the EDD system.

3.2.1 Smart home

The EDD system considers a scenario where an inhabitant stays alone in a smart home

denoted by region Ψ. We assume that region Ψ equipped with motion sensors mounted

on the ceiling to detect inhabitant movements. Furthermore, the sensors are passive

infrared binary sensors that generate events only when movement is present under their

sensing region. The region Ψ consists of sub-regions (e.g., bathroom, bedroom, living

room, office, kitchen, etc) and consists of the obstacles (e.g., table, chair, bed, door,

television, etc). We assume that the region Ψ consists of total N sub-regions and

obstacles, which are denoted by ψi, where 0 < i ≤ N . The location of ψi, denoted by

Li, be the coordinates of the ψi.

Definition 3.1 (Movement) A movement, denoted by mij, is defined as an action

taken to move from ψi to ψj, i.e., Li to Lj, where i �= j, Li �= Lj, and 1 ≤ {i, j} ≤ N .

Definition 3.2 (Episode) An episode consists of one or more sequential movements,

and each episode has a start and a stop location. An episode with n sub-regions

ψ1,ψ2, · · · ,ψn is denoted by the sequence in chronological order of the locations of

3.2. Preliminary and Overview of the EDD System 33

ψi, i.e.,

E = {L1, L2, ..., Ln}, (3.1)

where Li �= Li+1 and 1 ≤ i ≤ n− 1. The length of episode E is n, i.e., total number of

locations it covers. Using episode E, the sequence of movements is given by

M ={m12,m23, · · · ,mn−1n}

={(L1, L2), (L2, L3), ..., (Ln−1, Ln)}. (3.2)

3.2.2 Travel pattern model for PwD

We classify the travel patterns of PwD into the following two categories, as modeled

in [100].

3.2.2.1 Efficient travel

Efficient travel is a straightforward path from one location to another without rerout-

ing and diversion. Part (a) of Figure 3.2 illustrates an example scenario of direct

pattern. An episode consists of an efficient travel, called as direct pattern, if M =

{(Li, Lj), (Lj, .), · · · (., Lk)}, where Li �= Lj �= Lk, and 1 ≤ {i, j, k} ≤ n.

3.2.2.2 Inefficient travel

Inefficient travel have been used to define the wandering behavior of PwD [66,67]. The

term wandering covers different types of behavior, including aimless movement without

a discernible purpose. It consists of pacing, lapping, and random patterns as shown in

parts (b)-(d) of Figure 3.2.

Pacing pattern is defined as a repeated path back and forth between two locations;

it contains at least three consecutive to-and-fro movements. Next, lapping pattern

has repeated circular path involving at least three locations. It contains at least two

repeated circular routes involving at least three different locations; it can be the same

34 3.3. Early Dementia Detection System

or opposite direction. Finally, random pattern is a path, which has multiple locations

with no particular order.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

(a) (b)

(c) (d)

Repetition >= 3

Different locations >= 3
Repetition >= 2

L1

L3L4

L2L2L1

L3

L2L1

L3

L2L1

Figure 3.2: Travel patterns: (a) Direct (b) Pacing (c) Lapping (d) Random.

3.2.3 Overview of the EDD system

This work presents an Early Dementia Detection (EDD) system through the classifica-

tion of indoor travel patterns as shown in Figure 3.3. The input of the EDD system is

the sensor event stream generated by motion sensors embedded inside the smart home.

The system first preprocesses the sensor event stream and generates the episodes (travel

patterns). Next, the system uses recurrent neural network to extract the high-level fea-

tures from episodes. Finally, the system minimizes a loss function, which is a linear

combination of focal loss and center loss.

3.3 Early Dementia Detection System

This section presents a sensors based Early Dementia Detection (EDD) system through

the classification of inhabitant travel patterns. Algorithm 3.1 illustrates the EED sys-

tem which consists the following phases.

3.3. Early Dementia Detection System 35

2011−07−26 11:55:40.952243 LS004

2011−07−26 11:55:13.402138 LS001

2011−07−26 11:58:16.479485 MA003

2011−07−26 11:55:18.070759 LS004

2011−07−26 11:55:11.339252 M004

2011−07−26 11:57:46.223110 M004

2011−07−26 11:55:16.014366 M004

2011−07−26 11:55:10.236765 M004 ON

4

ON

OFF

OFF

ON

26

ON

OPEN

OFF

OFF

22

12

6

5

9

CLOSE

ON

OFF

2011−07−26 11:55:42.845981 LS002

2011−06−15 09:59:06.855117 M007

OFF

2011−06−15 10:00:59.781910 T104

ON

ON

OFF

2011−07−26 11:55:18.133519 M004

2011−06−15 09:58:45.585184 D005

2011−06−15 09:58:45.585184 D005

2011−06−15 09:58:45.878022 D007
2011−06−15 09:58:46.993148 D007
2011−06−15 09:58:48.714339 D005

2011−07−26 11:55:17.597086 MA003

2011−06−15 09:58:45.794425 D008

2011−06−15 09:58:49.732452 D008

2011−07−26 11:55:40.981975 M004

2011−06−15 10:01:30.468928 LS022

2011−06−15 10:00:29.202069 LS001
2011−06−15 10:00:46.369412 LS007

C
en

ter L
o
ss

F
o
ca

l L
o
ss

Prob.

FeatureSensor event stream
extraction

Preprocesssing and
episode segmentation

Classification Output

m=50, 4

23

h

n=150

h

n=150

h

RNN

RNN

RNN

n=150

.

.

.

.

.

.

λλλ +++

Direct

Random

Lapping

Pacing

Figure 3.3: EDD system to classify travel patterns, where m and n are number of
nodes in a FC layer and nodes in a RNN unit, respectively.

3.3.1 Episode segmentation from sensor events

Let an inhabitant performs moving inside the region Ψ. The system generates an event

stream whenever inhabitant comes inside the sensing range of a sensor, as shown in

Figure 3.3. Segmentation of an episode is a process of separating the long consecutive

movements into groups of movements that have a start and stop locations. Procedure

3.1 illustrates the steps of episode segmentation for a given z sensor events stream. The

procedure iterates over all the sensor events (Step 1). The starting location of the first

episode is the first ‘ON’ value of the binary sensor (Steps 4-7). The start location of any

subsequent episode would be the next location after the stop location of the previous

episode. The stop location of an episode is defined as one where the inhabitant spent

more than a threshold time interval denoted by Tth (Steps 10-14). The time interval

of two consecutive movements in an episode is not more than Tth (Step 15-17). Due to

some visitor(s), there may be some multiperson episodes. We excluded such episodes

by using a visitor detection algorithm [2] to acquire correct episodes that belong to

inhabitant only.

36 3.3. Early Dementia Detection System

Procedure 3.1: Episode segmentation
Input: Sensor events e = {e1, e2, ..., ez} ;
Output: Episodes E = (E1, E2, ..., En) ;
Initialization: ei = 1 # episode index;

1 for i ← 1 to z do
2 /* For each event < ei > of stream e*/
3 if (si ∈ M� and vi ==‘ON’) then
4 if (si is the first event) then
5 Add si to E1;
6 timeprev = ti and locationprev = si;
7 else
8 interval = ti − timeprev;
9 if interval > Tth then

10 ei ++ and Add si to Eei;
11 timeprev = ti and locationprev = si;
12 else if interval ≤ Tth and locationprev �= si then
13 Add si to Eei;
14 timeprev = ti and locationprev = si;
15 Remove all Ei from E, where length of Ei == 2;
16 return E;

Example of Procedure 3.1: Parts (a) and (b) of Figure 3.4 show an example of the

movement from the kitchen (M017) to the office (M026) and the corresponding motion

sensor events generated due to those movements, respectively. This episode can be

represented as M017→M018→M021→M022→M028→M026. If we assume that the

inhabitant stayed more than Tth at location M021, then the movements would be divided

into two separate episodes i.e. M017→M018→M021 and M021→M022→M028→M026.

3.3.2 High-level features generation

Next, the EDD system uses recurrent neural network for extracting high-level features.

Recurrent neural networks are a generalization of the standard feedforward neural net-

works that contain cyclic connections, to allow it to model sequential data. Given a

general input sequence [x1, x2, ..., xT] where xi ∈ Rd (different samples may have differ-

ent sequence length T), at each time-step of RNN modeling, a hidden state is produced,

resulting in a hidden sequence of [h1, h2, ..., hT]. The activation of the hidden state at

3.3. Early Dementia Detection System 37

M019

M007

M024

M025

Kitchen

Living

Dinning

M009

M014

M010M012

M029

M026

Bedroom

Bathroom

M001

M013

M005
M006

M008
M004

M015

M021 M022

M023

M016

M017

M030

M003

M002

Front door

M031

Office

M011

Back door Garage door

Closet

Bathroom

Bedroom

M028

M018

M027

M020

ON

ON

ON

ON

ON

ON

2011−06−15 09:58:02.585184 M017

2011−06−15 09:58:15.732452 M026

2011−06−15 09:58:07.878022 M021

2011−06−15 09:58:03.794425 M018

2011−06−15 09:58:09.993148 M022

2011−06−15 09:58:11.714339 M028

(a) (b)

Figure 3.4: Illustration of episode segmentation: part (a) depicts a direct episode
and part (b) shows corresponding generated sensor events. Marks “�” and “•” are IR
motion, and wide-area IR motion sensors, respectively.

time-step t is computed as a function f of the current input xt and previous hidden

state ht−1 as

ht = H(Wxhxt +Whhht−1 + bh) (3.3)

At each time step, an optional output ot can be produced as

yt = O(Whoht + bo) (3.4)

where the W terms denote weight matrices and the b terms denote bias vectors. H(·)

and O(·) are the activation functions in the hidden layer and the output layer, respec-

tively. This kind of connection is not very useful to keep the information stored for

long time durations; also, it does not allow forgetting nonessential information. Back-

Propagation Through Time (BPTT) algorithm is used to train an RNN. The popular

cells of the RNN are LSTM and GRU. We select the parameters of RNN based on the

accuracy of the system, as shown in Section 3.4.

38 3.3. Early Dementia Detection System

3.3.3 Objective loss formulation

The EDD system uses focal loss and center loss jointly as the supervisory signals to

improve the travel pattern classification performance.

3.3.3.1 Focal loss

We applied Focal Loss (FL) [103] to address the class imbalance problem. Focal loss

is a variant of standard cross-entropy loss, and it adds a modulating factor to the

cross-entropy loss to reduce the loss for well-classified examples and focus on difficult

ones. We denote focal loss by LFL. Let the input sample x with class label y ∈ C and

predicted output from the classifier for all classes are z ∈ {z1, z2, ..., zC}. The focal loss

of the sample x can be written as [103]

LFL = −
C�

i=1

(1− σ(zxi))
γ log(σ(zxi)) (3.5)

We use an α balanced variant of focal loss:

LFL = −α
C�

i=1

(1− σ(zxi))
γ log(σ(zxi)) (3.6)

where γ is the focusing parameter and σ is the Softmax function.

3.3.3.2 Center loss

The Center Loss (CL) [104], denoted by LCL, enhances the discriminative power of

the deeply learned features. The center loss simultaneously learns a center for deep

features of each class and penalizes the distances between the deep features and their

corresponding class centers. The center loss function can be written as [104]

LCL =
1

2

N�

i=1

�x̂i − cyi�22 (3.7)

3.4. Experiments and Results 39

where N , x̂i, yi, and cyi are the size of mini-batch, ith deep feature, class label of x̂i,

and class center of deep features of yi, respectively.

• Joint Supervision of Focal Loss and Center Loss: The loss function of the

proposed system is defined by combining the focal loss LFL and center loss LCL as:

L = LFL + λLCL (3.8)

where hyperparameter λ balances the two-loss terms and 0 < λ ≤ 1. Substituting LFL

and LCL from Eqs. 6.10 and 6.11, respectively,

L = −α
C�

i=1

(1− σ(zxi))
γ log(σ(zxi)) +

λ

2

N�

i=1

�x̂i − cyi�22 (3.9)

Algorithm 3.1: Early Dementia Detection System
Input: Event stream e, test instance e� /∈ e, η, α, γ & λ;
Output: Predicted class label for e�;

1 Obtain E = {E1, E2, · · · , En} from e using Proc. 3.1;
2 Obtain label’s of E using [59], now labeled dataset
= {(E1, y1), (E2, y2), · · · , (En, yn)};

3 Initialize network parameter Θ;
4 while not converge do
5 t = t+ 1;
6 Forward propagation and compute loss;
7 Compute gradients (gt);
8 Update weight parameters Θ by Θt+1 = Θt − ηgt;
9 Obtain E � = {E �

1, E
�
2, · · · , E �

x} from e� using Proc. 3.1;
10 for i ← 1 to x do
11 Use the model Θ to classify E �

i;

3.4 Experiments and Results

This section presents experimental results for evaluating the performance of the EDD

system and compares it with other state-of-the-art approaches.

40 3.4. Experiments and Results

M020

M024

M025
M027

Kitchen

Back door Garage door

Closet

Living

Dinning

M009

M028

M014

M010M012

Bathroom

M029

M026

Bedroom

Bathroom

M001

M007

M013

M005
M006

M008
M004

M018M015

M021 M022

M023

M016

M017

M019

M030

M003

M002

Front door

M031

Office

Bedroom

M011

Figure 3.5: Aruba smart home floor plan and sensor layout. Marks “�” and “•” are
IR motion, and wide-area IR motion sensors, respectively.

3.4.1 Datasets

We used publicly available five datasets collected in the CASAS [41] as shown in Ta-

ble 3.1. The CASAS smart home testbeds assume that the infrared motion, magnetic

door sensors, and temperature sensors are placed inside the smart home for observ-

ing physical surroundings of the inhabitants. Figure 3.5 illustrates a layout of Aruba

testbed for collecting D1 dataset. Typical samples from the raw dataset are represented

as sensor event stream in Figure 3.3. Motion sensors in a smart home are relevant for

this study to capture inhabitant movements; therefore, we depicted only motion sensors

in Figure 3.5. Motion sensors generate an ON event only when motion is present under

their coverage area.

3.4.1.1 Training and testing sets

For training and testing sets preparation, first, we segmented episodes from the raw

sensor dataset using the episode segmentation procedure illustrated in Procedure 3.1.

For example, Procedure 3.1 classified dataset D1 in 46235, 20366, 12943, and 50162

3.4. Experiments and Results 41

Table 3.1: Summary of the datasets used in the EDD system.

ID No. of events No. of sensors Time span (days) Dataset updated
D1 5228654 27 625 2010
D2 669330 14 107 2011
D3 569330 14 60 2011
D4 216255 17 60 2017
D5 484931 22 60 2017

episodes as direct, pacing, lapping, and random, respectively. It shows that the dataset

D1 was imbalanced. We randomly chosen 90% of the episodes from each pattern as the

training set and the remaining 10% as the testing set. We used Vuong’s MS pattern

algorithm [59] for creating the labeled dataset. The Vuong’s MS pattern algorithm

classifies the episodes into one of the patterns: direct, pacing, lapping, or random.

The algorithm determines whether an episode can be classified into the first three

patterns i.e. direct, pacing, and lapping. If not, then the episode is classified as a

random pattern. For the multi-pattern episode scenario, the episode is considered as a

concatenation of single-pattern sub episodes. To classify multi-pattern episodes, first,

the numbers of occurrence of each type of inefficient patterns are counted in the entire

multi-pattern episode. Then the episode is classified as the pattern which has the

highest number of count. When there are multiple patterns with the same number of

the highest count, then the episode is classified based on the severity of the inefficient

patterns, which is random, followed by lapping then pacing.

3.4.2 Implementation details

The weight matrices in the neural network layers are initialized by the Xavier Initial-

ization and Uniform He initialization [105] when the layers use softmax and ReLU

activation functions, respectively. The optimization algorithm is Adam, with a mini-

batch size of 64. The initial learning rate is set to be 0.001. After each epoch, the

42 3.4. Experiments and Results

models shuffle the training data to make different mini-batches. The proposed system

converged within about 100 epochs. The hyperparameters α and γ of focal loss are set

0.25 and 2, respectively, following [106]. Empirically, we choose λ = 0.01, i.e., the ratio

between focal loss and center loss in Equation 3.8. To handle variable-length input se-

quences (episodes) in RNNs, we use padding and masking. We padded shorter episodes

with zeros to the length of the longest episode i.e. 128 for dataset D1 for Tth of 15 sec-

onds as given in [59]. We consider padding to make all the episodes to the equal length.

We run the experiments under the environment of Intel Core i7-CPU @2.80-GHz, 8 GB

RAM, GeForce GTX 1050 graphics card, and Ubuntu 18.04 operating system. We use

Python based libraries, Keras, and Scikit-learn for implementation.

3.4.3 Performance metrics

We consider the following five widely used performance metrics for multi-class classifi-

cation to estimate the performance of the proposed framework.

•Precision: measures the proportion of correct episodes of a class to the entire episodes

classified as that class, calculated using the formula

Precision =
TP

TP + FP
(3.10)

• Recall: (or Sensitivity) represents the proportion of episodes correctly classified as

a given class to the actual total episodes in that class, calculated as

Recall =
TP

TP + FN
(3.11)

• Specificity: measures the goodness of classifier at avoiding false alarms, calculated

as

Recall =
TN

TN + FP
(3.12)

• F1 score: represents the harmonic mean of precision and recall. To evaluate the per-

formance over the highly imbalanced dataset we assessed F1 score, which is calculated

3.4. Experiments and Results 43

as

F1 = 2.
P recision.Recall

Precision+Recall
(3.13)

• Accuracy: represents the proportion of correctly classified episodes over all classifi-

cations, calculated as

Accuracy =
TP + TN

TP + FP + FN + TN
.100 (3.14)

where TP , TN , FP , and FN are the true positives, true negatives, false positives, and

false negatives, respectively. Apart from this, we also measure the test time (computa-

tion cost), which indicates the required time to classify an episode.

3.4.4 Baseline comparison

We consider six traditional machine learning classifiers i.e. Naive Bayes, KNN, SVC,

Decision Tree, Random Forest, and Gradient Boost for the baseline comparison. We

compute the following eight features for each travel episode which are used by the ma-

chine learning classifiers: entropy (F1), repeated locations (F2), repeated movements

(F3), number of pairs of opposite movements (F4), number of movements (F5), time

duration (F6), approximate distance (F7), and approximate average speed (F8) [2,59].

Let, a given episode E = (L1, L2, ..., Ln) and its corresponding movements M =

((L1L2), (L2, L3), ..., (Ln−1, Ln)). The set of distinct elements in E is given by:

SE = {Li, 1 � i � n|Li ∈ L} (3.15)

The set of distinct elements in M is given by:

SM = {(Li, Li+1), 1 � i � n− 1|(Li, Li+1) ⊆ M} (3.16)

The frequency of occurrence of each element in SE is given as:

fi = (number of occurrences of Li in E)/n, 1 ≤ i ≤ n (3.17)

44 3.4. Experiments and Results

Then, F1-F8 features can be formulated as follows:

F1 = −
n�

i=1

filogfi (3.18)

F2 = n− ||SE|| (3.19)

F3 = n− 1− ||SM ||, (3.20)

F4 = ||Lj+1 ∧ Li+1|| (3.21)

F5 = n− 1 (3.22)

F6 = timestop − timestart (3.23)

F7 =
n−1�

i=1

�
(xi,2 − xi,1)2 + (yi,2 − yi,1)2 (3.24)

F8 =
F7

F6
(3.25)

where xi,2, xi,1 are x coordinates of two locations in i-th movement; similarly, yi,2, yi,1

are y coordinates of two locations in i-th movement.

3.4.5 Results and discussion

This section carries out the experimental evaluation to validate the performance of the

proposed EDD system.

3.4.5.1 Performance comparison of different network architectures

Table 3.2 shows the comparison of different network architectures which can be repre-

sented by a general form as

A
a→ [B1, ..., Bn]� �� �

B

b→ C
c→ D (3.26)

Symbol A is the dimension for each input sequence. The symbol B indicates n stacked

recurrent layers, as shown in Figure 3.3, and Bi is the number of units at the i-th

3.4. Experiments and Results 45

recurrent layer. Moreover, the symbol C is the size of the dense (fully connected) layer,

and D is the number of units for the output layer (also the number of travel pattern

classes).

The third column in Table 3.2 shows the recurrent unit type (LSTM or GRU) for

each model. Different networks are compared from five aspects, including Memory con-

sumption in the fourth column, total training time (in hours) in the fifth column, latency

or testing speed (in millisecond) for one episode in the sixth column, training accuracy

in the seventh column, and test accuracy in the last column. Latency (testing speed)

is the time spends during the classification of an episode. Other configurations are the

same as described in Section 3.4.2 to give a fair comparison of different architectures.

It is shown that the best performance (test accuracy) is achieved by ARCH6.

Table 3.2: Comparison of different architectures for travel pattern classification using
D1 dataset.
Name Architecture Recurrent Type Memory Train Time Latency Train Acc. Test Acc.

Part (a): Comparison of different depths

ARCH1 128 a→ [150] b→ 50 c→ 4 LSTM 1.20 MB 3.28 h 0.0042 ms 97.37% 96.80%
ARCH2 128 a→ [150] b→ 50 c→ 4 GRU 957 KB 2.89 h 0.0025 ms 97.12% 96.88%
ARCH3 128 a→ [150,150] b→ 50 c→ 4 LSTM 3.40 MB 6.38 h 0.0085 ms 97.96% 97.59%
ARCH4 128 a→ [150,150] b→ 50 c→ 4 GRU 2.60 MB 5.02 h 0.0057 ms 98.47% 98.17%
ARCH5 128 a→ [150,150,150] b→ 50 c→ 4 LSTM 5.60 MB 11.22 h 0.0181 ms 99.21% 98.13%
ARCH6 128 a→ [150,150,150] b→ 50 c→ 4 GRU 4.20 MB 6.10 h 0.0130 ms 98.83% 98.63%

Part (b): Comparison of different number of recurrent units

ARCH7 128 a→ [100,100,100] b→ 50 c→ 4 LSTM 3.23 MB 5.14 h 0.0165 ms 98.16% 98.12%
ARCH8 128 a→ [100,100,100] b→ 50 c→ 4 GRU 1.81 MB 4.05 h 0.0116 ms 98.38% 97.96%
ARCH9 128 a→ [100,150,200] b→ 50 c→ 4 LSTM 5.80 MB 11.37 h 0.0245 ms 99.18% 98.25%
ARCH10 128 a→ [100,150,200] b→ 50 c→ 4 GRU 4.40 MB 6.30 h 0.0196 ms 98.46% 98.06%
ARCH11 128 a→ [200,200,200] b→ 50 c→ 4 LSTM 9.12 MB 14.7 h 0.0269 ms 98.89% 97.86%
ARCH12 128 a→ [200,200,200] b→ 50 c→ 4 GRU 7.05 MB 8.20 h 0.0212 ms 98.66% 97.90%

3.4.5.2 Comparison of LSTM and GRU

In this section, multiple RNN models with either LSTM or GRU recurrent units were

trained and compared under the same configurations. As shown in part (a) of Ta-

ble 3.2, from the perspective of test accuracy, ARCH2 outperforms ARCH1, ARCH4

beats ARCH3, and ARCH6 is better than ARCH5. Similarly, part (b) of Table 3.2

46 3.4. Experiments and Results

shows, ARCH8, ARCH10, and ARCH12 outperforms ARCH7, ARCH9, and ARCH11,

respectively, in test accuracy. However, the differences are not significant. Therefore,

the only conclusion we can draw is that LSTM and GRU have comparable classification

accuracies, and GRU is performing better on our classification task. Furthermore, as

revealed in Table 3.2, from the perspectives of memory consumption, training time, and

especially latency, we can conclude that GRU is much better than LSTM. The GRU

can be viewed as a light-weight version of LSTM, and still shares similar functionali-

ties with LSTM, which makes GRU favored by practical applications with particular

requirements on memory or speed.

3.4.5.3 Comparison of different depths

Different depths for the networks are compared in Table 3.2(a). Compared with only

one recurrent layer (ARCH1 and ARCH2), stacking two layers (ARCH3 and ARCH4)

and three layers (ARCH5 and ARCH6) can indeed improve both the training and test

accuracies. Moreover, as shown in part (a) of Table 3.2, with more stacked recurrent

layers, memory size, training time, and testing time are increasing. Beyond the depth

of three layers, increasing network capacity further did not yield any performance im-

provement. From the perspectives of accuracy, ARCH6 is preferred among the other

network architectures.

3.4.5.4 Comparison of different number of recurrent units

Different number of units in recurrent layers are also compared in part (b) of Table 3.2.

The test accuracy does not vary significantly as we vary the number of recurrent units.

As shown in Table 3.2, ARCH6 is the best performing network architecture, which has

150 units in each recurrent layer.

3.4. Experiments and Results 47

3.4.5.5 Comparison of different RNN variants

In this section, we tested the following RNN variants: LSTM, GRU, Bi-directional

LSTM, Bi-directional GRU [107], LSTMwith peephole connections [108], MUT1, MUT2,

and MUT3 [109]. MUT1, MUT2, and MUT3 recurrent neural architectures evolved

from a pool of several thousand candidate architectures [109]. Table 3.3 shows the

comparison results. We found that the GRU (ARCH6) outperformed all other variants

and the performance of MUT2 was comparable to GRU. This may be because most of

the variants of RNN are developed based on the image processing where the dimension

of the data is very huge. Due to the limited size of sensor dataset, such co-relations

and modifications are not very effective.

Table 3.3: Comparison of different RNN variants for travel pattern classification using
D1 dataset.

RNN variant Test Accuracy
LSTM 98.13%
GRU (ARCH6) 98.63%
Bi-directional LSTM 97.23%
Bi-directional GRU 97.47%
LSTM with peephole connections 97.89%
MUT1 98.43%
MUT2 98.60%
MUT3 98.17%

3.4.5.6 Effectiveness of loss function

To check the effectiveness of loss function, we used dataset D1 and retrained ARCH6

with conventional softmax cross-entropy loss, and we witnessed accuracy was decreased

to 97.31 percent. Since dataset D1 was highly imbalanced, therefore could not be

exploited well by deep learning models with cross-entropy loss. Moreover, we also

retrained ARCH6 with focal loss, and the accuracy was 98 percent, which was better

than the earlier case. This suggests that imbalanced datasets can be exploited well by

48 3.4. Experiments and Results

deep learning models with focal loss. Focal loss employs a modulating factor to the

cross-entropy loss to help focus on hard samples and down-weight the many easy ones.

When we retrained ARCH6 with a joint loss combining focal loss and center loss, the

accuracy was further improved to 98.63 percent. This is because the discrimination

ability caused by the center loss has a positive impact on classification performance.

Center loss adds a cluster-based loss term to the focal loss, ensuring that the learned

representations have both large interclass margins and small intraclass variations. That

is, the learned representations are not only separable but also discriminative.

3.4.6 Comparison with other approaches

Table 3.4 lists the performance achieved by different machine learning classifiers on five

datasets D1-D5 to compare the EDD system with other approaches. It is shown that

the deep learning based proposed system outperforms the traditional machine learning

methods with significant margins. Recently, state-of-the-art performance on the Aruba

dataset has been achieved by [2] with a DCNN classifier for indoor travel patterns. The

authors considered interval time (Tth) of 10 seconds for episode segmentation and re-

ported 0.979, 0.978, 0.993, 0.978, and 97.84% for precision, recall, specificity, F1 score,

and accuracy, respectively. The work in [2] has a particular requirement of transforming

the sensor data into image representations, which increases the time complexity and

adds new constraints that the episodes can be of a maximum length of 32 only. The

EDD system directly deals with the raw movement data and therefore has the potential

to exploit additional information that is discarded in the spatial representations. More-

over, the EDD system does not have any episode length constraint and classifies travel

episodes of all given length. The EDD system is end-to-end, depending only on generic

priors about sequential data processing, and not requiring any other domain-specific

knowledge. As shown in Table 3.4, the EDD system (ARCH6) outperforms all baseline

approaches and DCNN [2] in all performance metrics.

3.4. Experiments and Results 49

Table 3.4: Comparison with other approaches, whereC,D, P,R, S, F1, andA, denote
classifier, dataset, precision, recall, specificity, F1 score, and accuracy, respectively.

C D P R S F1 A Latency

N
ai
ve
Ba
ye
s D1 0.7033 0.5962 0.9141 0.5985 76.90% 0.0004 ms

D2 0.7833 0.6982 0.9342 0.6984 86.80% 0.0013 ms
D3 0.8503 0.8746 0.9877 0.8591 95.59% 0.0013 ms
D4 0.7668 0.6865 0.9265 0.6589 81.84% 0.0009 ms
D5 0.7256 0.6568 0.9178 0.6658 82.65% 0.0011 ms

K
N
N

D1 0.7959 0.7867 0.9489 0.7903 85.06% 0.0293 ms
D2 0.7251 0.6549 0.9003 0.6798 78.95% 0.0235 ms
D3 0.8222 0.7297 0.9246 0.7668 84.50% 0.0249 ms
D4 0.7565 0.7326 0.9125 0.7388 83.68% 0.0264 ms
D5 0.7863 0.7482 0.9321 0.7484 84.80% 0.0274 ms

SV
C

D1 0.8373 0.8135 0.9568 0.8232 87.63% 2.5926 ms
D2 0.8720 0.7332 0.9301 0.7865 86.60% 0.0739 ms
D3 0.1434 0.2500 0.7500 0.1823 57.39% 0.0740 ms
D4 0.7123 0.5582 0.9051 0.5855 79.98% 0.0854 ms
D5 0.7633 0.7282 0.9042 0.7984 80.81% 0.0963 ms

D
ec
isi
on
Tr
ee D1 0.8582 0.8613 0.9679 0.8597 90.37% 0.0001 ms

D2 0.9334 0.9246 0.9678 0.9284 95.69% 0.0009 ms
D3 0.9394 0.9648 0.9944 0.9506 98.06% 0.0009 ms
D4 0.9033 0.7962 0.9541 0.8985 93.90% 0.0010 ms
D5 0.8833 0.7956 0.9342 0.8984 93.80% 0.0013 ms

R
an
d.
Fo
re
st D1 0.8680 0.8779 0.9715 0.8725 91.20% 0.0095 ms

D2 0.9288 0.9011 0.9893 0.9087 96.34% 0.0173 ms
D3 0.9536 0.9709 0.9959 0.9610 98.59% 0.0179 ms
D4 0.8083 0.8962 0.9154 0.7985 89.90% 0.0204 ms
D5 0.9033 0.9082 0.9542 0.8912 92.65% 0.0225 ms

G
ra
d.
Bo
os
t D1 0.8682 0.8925 0.9731 0.8783 91.39% 0.0034 ms

D2 0.9419 0.9492 0.9831 0.9442 96.38% 0.0041 ms
D3 0.9536 0.9709 0.9959 0.9610 98.59% 0.0042 ms
D4 0.9063 0.9062 0.9741 0.8985 92.90% 0.0044 ms
D5 0.9133 0.8982 0.9652 0.9254 92.80% 0.0052 ms

D
C
N
N
[2
]

D1 0.9717 0.9716 0.9821 0.9716 96.41% 0.4351 ms
D2 0.9635 0.9530 0.9829 0.9550 96.53% 0.4347 ms
D3 0.9715 0.9718 0.9907 0.9716 97.66% 0.4340 ms
D4 0.9533 0.9662 0.9741 0.9685 96.90% 0.4386 ms
D5 0.9643 0.9712 0.9742 0.9584 96.80% 0.4405 ms

P
ro
p.
E
E
D D1 0.9863 0.9862 0.9950 0.9862 98.63% 2.0980 ms
D2 0.9866 0.9865 0.9956 0.9865 98.65% 0.4536 ms
D3 0.9898 0.9898 0.9966 0.9898 98.98% 0.4305 ms
D4 0.9733 0.9862 0.9941 0.9865 98.35% 0.4402 ms
D5 0.9813 0.9882 0.9942 0.9884 98.91% 0.4652 ms

50 3.5. Conclusion

Table 3.5 demonstrates the confusion matrix for the proposed system recognitions

on datasets D1-D5. In this experiment, we take the average value of the correct clas-

sifications of patterns of five datasets. The large number in diagonal entries of the

matrix shows that the proposed EDD system successfully recognized the given episode.

Finally, Table 3.6 illustrates the difference of the correctly classification of pattern, be-

tween proposed EDD and existing [2], i.e., probability of correctly classifying a given

pattern by EDD-probability of correctly classifying a given pattern by [2]. The result

shows that the proposed EDD gives higher accuracy for classifying the patterns.

Table 3.5: Confusion matrix for EDD system datasets.

Predicted label
Direct Lapping Pacing Random

Tr
ue
la
be
l Direct [98.71%] [0] [0] [1.29%]

Lapping [0] [99.40%] [0.34%] [0.26%]
Pacing [0] [0.79%] [98.28%] [0.93%]
Random [0.82%] [0.05%] [0.78%] [98.35%]

Table 3.6: Confusion matrix for difference between EDD and existing work [2].

Predicted label
Direct Lapping Pacing Random

Tr
ue
la
be
l Direct [1.45%] [-0.70%] [0] [-0.75%]

Lapping [-1.0%] [1.52%] [-0.02%] [-0.5%]
Pacing [0] [-1.0%] [1.04%] [-0.04%]
Random [-0.70%] [-0.05%] [-0.75%] [1.5%]

3.5 Conclusion

This chapter proposed a sensor based EDD system by using RNN, which automatically

extracts the high-level features. We considered the environmental passive sensors for

sensing the movements of the inhabitant. The system segments the movements into

3.5. Conclusion 51

the episodes and classifies the travel patterns. We used focal loss for handling the

unbalanced classes of travel patterns, and center loss to enhance the discriminative

power of the deeply learned features. Experimental results support our hypothesis that

using high-level features, focal loss, and center loss together can converge faster to

optimal accuracy, even using passive sensors and imbalanced classes. We believe that

the proposed system can be very useful for automated dementia detection at an early

stage.

