
Chapter 6

Multi-attribute based

self-stabilizing algorithm for leader

election in distributed systems

Nowadays, several areas such as artificial intelligence, distributed machine learning, dis-

tributed deep learning expert systems, natural language processing, cloud computing, edge

computing and robotics realise the requirement of a truly distributed system and try to

adopt it. In distributed systems, leader election is a fundamental problem because the

elected leader node coordinates all the nodes (resources). A good quality (suitable) leader

improves the system’s resource utility and overall performance, simplifies its management

procedure, reduces coordination and operational complexity, and makes the system more

fault-tolerant. The existing well-known leader election algorithms talked about electing

a good quality leader [104] [20] [102]. However, no precise and rigorous leader election

method has been proposed to elect a good quality leader based on the system require-

ments. Different distributed systems are designed for different purposes. So the definition

of a good quality leader may vary from system to system. On the other hand, a distributed

system may consist of heterogeneous nodes. A node can have multiple attributes, and dif-

ferent nodes can have different values of those attributes. So it is challenging to determine

which type of quality a leader of a distributed system should have and which attributes

114

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 115

are responsible for that quality of the leader. It is also difficult to determine how much

priority has to be given to those pertinent attributes. Hence electing a good quality leader

for a system considering multiple attributes is a pretty intricate task.

This chapter proposes a self-stabilizing leader election method to elect a good quality leader

(according to the system requirements) for a dynamic distributed system. The proposed

leader election algorithm can be used in replicated distributed databases, cloud computing,

distributed edge computing and new technologies such as distributed machine learning,

distributed artificial intelligence, e-learning, etc. Seeing the popularity of replicated cloud

servers in distributed databases, we consider the scenario of replicated cloud servers like

Cloud Spanner [32], and conduct an experiment to assess the efficiency of the elected leader

using the proposed election method.

Outline: Section 6.1 describes the considered system model. We describe the proposed

leader election method in section 6.2. Proof of self-stabilization, complexity analysis and an

illustrative example are also given in this section. The experimental results are presented

in section 6.3 and section 6.4 summarizes the chapter.

6.1 System Model

This section describes the system model. Various definitions and assumptions are given

in this section that will be used in the following sections. For this work, we consider a

distributed system consisting of N nodes (N is a finite integer and N ≥ 2). These nodes

are uniquely identifiable by their Ids which are distinct integers, and they are connected

through an arbitrary network topology. The nodes can be heterogeneous, and they com-

municate with one another using message passing. Each node has an adequately large

receive buffer to avoid buffer overflow. The links are bidirectional and a message gets

transmitted from one node to its adjacent node through a correct link within a bounded

time. Each node has a local clock. The local clocks need not be synchronized, and they

are used only to implement timers. A link cannot create, corrupt, or duplicate the mes-

sages. Formally, D = (Π, L) represents our considered distributed system, where Π refers

to the set of node Ids (Π = {N Idi}, i = 0, 1, 2, · · · , N − 1) and L refers to the set of

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 116

network connectivity (links) of the nodes. The nodes and the network connections may

fail and recover independently. Each node has a failure detection module. By invoking

this module, a node can detect the link and node failures in the system.

6.1.1 Definitions

Definition 1 (Stable node): A node is called a stable node if it does not fail for a long

time. Especially during the selection, a stable node does not fail until the election process

ends.

Definition 2 (Correct link): A link is said to be a correct link if it can send a message

from one node to another node (connected through this link) within a bounded time

without any modification of the message.

Definition 3 (Network regions): Due to link and/or node failures, a network may get

divided into smaller sub-networks. These sub-networks are called network regions.

Definition 4 (Status of a node): A node can have one of the three statuses, i.e.,

NULL, Leader and Non-leader. The variable Statusi represents the status of a node i.

The status of a node i is set to Leader if and only if the node is elected as the leader.

Otherwise the status is set to Non-leader. During the election, the status of every node

is set to NULL until a node gets elected as the leader.

6.1.2 Assumptions

� Every network region has some stable nodes (at least one stable node). The nodes

of a region may not know who are the stable nodes.

� After recovering from the failure state, a node does not fail again instantly, which

means it exists in the system for a certain amount of time, and then it can fail.

� Every node knows the Id of its all adjacent nodes and also knows the minimum and

maximum value of every attribute.

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 117

6.2 The Proposed Leader Election Method

A good quality leader can coordinate the nodes for completing various tasks while main-

taining consistency, efficiently managing the system’s resources, reducing communication

overhead, etc. The quality of a leader depends on multiple quality attributes. The pro-

posed leader election method considers the multiple quality attributes that determine the

quality of the node. CPU capacity, available memory, failure rate, security level, degree,

eccentricity, closeness centrality, etc., are some quality attributes that define the node in a

distributed system. Based on the system’s goal, it is challenging to identify multiple quality

attributes that precisely define a suitable system leader where the importance of attributes

changes accordingly. Thus, it is required to specify a proper set of quality attributes that

can distinctly characterize the nodes participating in the leader election process. And in

the light of multiple attributes, we need to assess the worth of each identified attribute

utilized to elect a leader. Since the system itself cannot recognize the attributes, we re-

quire system experts to understand the system. Hence, we attempt to propose a multiple

attribute based decision making approach [58] to solve the leader election problem. The

proposed process consists of two parts: i) appropriate attributes identification and their

prioritization ii) designing of the leader election algorithm. We employ the group decision-

making approach in the first part, where a group of system experts is invited to express

their knowledge over the set of attributes through preference relations. And in the second

part, the decision result obtained from the first part is provided as input for initiating the

election process.

6.2.1 Identification and prioritization of the quality attributes

In distributed system environment, it is required to identify all the possible quality at-

tributes that characterize a node. Each expert provides different sets of quality parameters.

Let E = {e1, e2, e3, . . . , eλ} where λ ≥ 2 be the finite set of experts and each expert pro-

vides its own set of attributes for the decision analysis. Let ηk be the number of attributes

suggested by the expert ek ∈ E then Qk = {qkl}, ∀ l ∈ {1, 2, . . . , ηk} and k ∈ {1, 2, . . . , λ},

be the set of attributes provided by some expert ek. Based on the requirement of the

system and the experts understanding and knowledge, the set of attributes provided by

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 118

each expert may or may not be the same. So, we need to decide on a global finite set of

attributes that will be communicated to all experts to obtain their preferences. For this,

we apply a union operator over the attribute set provided by each expert to obtain the

global set of attributes Q.

Q =
λ⋃

k=1

Qk

Now, the global set of attributes Q of size say m, where m is the number of unique

attributes, is suggested by the experts. For this obtained set Q, each expert expresses

their opinions in the form of a pairwise comparison matrix using fuzzy preference relation

[98]. Let P k = (pkij)(m×m) ∀ i, j ∈ {1, 2, . . . ,m} be the preference matrix provided by

expert ek over the set of attributes say Q = {q1, q2, . . . , qm} , where m ≥ 2 . Once the

evaluation matrix P k of each individual expert is obtained, the score of each attribute qi

is computed in two phases [58]: 1) aggregation and 2) Exploitation

Aggregation Phase: This phase is used to combine experts’ preferences. It defines the

collective preference, P c = (pcij)(m × m), obtained by the aggregation of the individual

preference relations {P 1, P 2, . . . , P λ} as shown: P c = φ(P k), k ∈ {1, 2, . . . , λ} and λ ≥ 2

Where P c is the global preference between every pair of attributes from the opinions

obtained from the majority of experts and φ is an aggregation operator such as ordered

weighted averaging (OWA) or weighted averaging (WA) operator [119] used to aggregate

the individuals preference.

Exploitation Phase: This phase is used to obtain the solution set of attributes from the

global preference information obtained from the aggregation phase. The acquired global

preference is transformed to get the scores of the attributes, defining their priorities. Choice

functions [97] are used to obtain the solution set, and therefore we apply the dominance

degree for each attribute qi. The following function is used to obtain the dominance degree:

D(qi) =
1

m− 1

m∑
j=1,j ̸=i

pcij

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 119

where m is the number of global quality attributes and pcij is the preference value of

attribute i over attribute j according to the group of experts. And finally, the importance

level of an attribute defined by the weight assigned wi, for i ∈ {1, 2, . . . ,m} where wi ≥ 0

and
∑m

i=1wi = 1, we normalize the obtained dominance degree as shown:

wi =
D(qi)

(
∑m

i=1D(qi)

where wi is the weight assigned to the quality attribute qi. And this obtained weight value

will be treated as input to the leader election algorithm. For a particular system, the

quality attributes identification and prioritization is done only once. Further, it does not

need to re-identify and re-prioritize the quality attributes until the system’s requirements

get changed.

6.2.2 The leader election algorithm

In the first part of the election method, with the help of some experts’ opinions, we identify

the appropriate attributes and assign their weight that is considered at the time of leader

election. Since we consider multiple attributes of the nodes, we can use the multi-criteria

decision-making (MCDM) method to elect the leader node. However, a node may or may

not have information about all other system nodes in a distributed system. In general,

a node does have some nodes’ information. Therefore we cannot use an MCDM method

directly to elect the leader. On the other hand, we should choose an MCDM method with

minimum time complexity and implementable in a distributed system. TOPSIS [121] [110]

is a well-known and widely accepted MCDMmethod with adoptable time complexity. Here

we modify the concept of the TOPSIS method so that it can work in a distributed sce-

nario to elect a leader. We assume that for each attribute, a node knows the minimum

and maximum value of the attribute. Before taking part in the election, a node calculates

its quality factor. The system leader is elected based on the quality factor of the nodes.

The node with the highest quality factor is elected as the system leader. A node calculates

its quality factor using the following four steps.

Step 1: Normalization

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 120

Different attributes of a node are usually measured in different units. The normaliza-

tion transforms different dimensional attributes into dimensionless attributes that allow

comparisons across criteria. A node i normalizes its attributes’ values using the following

equation.

nij =
aij −min(qj)

max(qj)−min(qj)

Here, aij is the value of attribute qj of a node i. min(qj) and max(qj) are the possible

minimum and maximum value of the attribute qj respectively.

Step 2: Weighted normalization

A node i calculates the weighted normalize value (vij) using the following equation. vij =

wj · nij

Step 3: Distance calculation

In this step, a node i calculates the euclidean distance from the ideal best and ideal worst.

Here, dib and diw represent the euclidean distance from the ideal best and ideal worst

respectively.

dib =

√√√√ m∑
j=1

(vij − vb)2

where, vb = 1 if qj is a benefit attribute and vb = 0 if qj is a cost attribute. Benefit

attributes are those attributes whose higher values are preferred while cost attributes are

those attributes whose lower values are preferred during leader election.

diw =

√√√√ m∑
j=1

(vij − vw)2

where, vw = 0 if qj is a benefit attribute and vw = 1 if qj is a cost attribute.

Step 4: Quality factor calculation

In this step, the quality factor (qf) of a node i is calculated and the leader is elected based

on the quality factor of the nodes.

Qfi =
diw

dib + diw

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 121

In the proposed leader election method, we use five types of messages to conduct an elec-

tion. They are i) EIM [Emc Id, S eim], ii)ACK[Emc Id,C ack], iii)AGM [Emc Id,C agm],

iv) MQFM [Mqf,Mqf Id, S mqfm], v) LDM [El Id].

EIM [Emc Id, S eim] is the election-initiating message, it is used to initiate an election,

and it has two fields: the Id of the election initiating node (Emc Id) and the Id of the

EIM message sender (S eim). ACK[Emc Id,C ack] is an acknowledgement message. In

general, when a node gets an election-initiating message (EIM) from an adjacent node, it

creates an ACK[Emc Id,C ack] message and sends it to the adjacent node that had sent

the EIM message. It has two fields: the Id of the election initiating node (Emc Id) and

the Id of the acknowledgement message creator. If a node gets the same EIM message

from another adjacent node(s), then the node creates an AGM [Emc Id,C agm] message

and sends it to the EIM message sender node(s) to inform them that the EIM message is

already received. It also has two fields: the Id of the election initiating node (Emc Id) and

the Id of the AGM message creator. MQFM [Mqf,Mqf Id, S mqfm] is the maximum

quality factor message. It is used to pass the information of a node with the leading quality

factor. It has three fields: the maximum quality factor (Mqf), the Id of the node with

maximum quality factor (Mqf Id) and the Id of the MQFM message sender (S mqfm).

LDM [El Id] is used to declare the Id of the elected leader to all the nodes in the system.

It has only one field i.e., the Id of the elected leader (El Id).

In our proposed algorithm, a node can be one of the three types of nodes i.e., the parent

node, the co-parent node and the child node. Here, we introduce the concept of a co-parent

node to increase the number of link and node failures tolerability of the proposed election

algorithm. This algorithm is divided into three phases: Initiation of the election, Interme-

diate steps and Declaration of the leader, which are given in Algorithm 11, Algorithm 12

and Algorithm 13 respectively. We explain each phase as follows.

I. Initiation of the election: When a node identifies that the system leader is failed, it

creates an election-initiating message (EIM [Emc Id, S eim] where Emc Id contains the

Id of the election initiator and S eim contains the Id of the EIM message sender. In the

case of the election initiating node, both fields of the EIM message hold the same node

Id (the Id of the election initiator) because the node that creates the EIM message also

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 122

sends it) and starts the election by sending it to all the adjacent nodes. After sending the

EIM message, the node expects an acknowledgment message (ACK) from every adjacent

node. If it does not get an ACK message from an adjacent node, then it does not consider

that node as its adjacent node anymore. The node then waits Tfe-m amount of time to get

an MQFM message from each of its adjacent nodes. If multiple nodes initiate the election

simultaneously, the node with the minimum Id among those election initiating nodes gets

the scope to conduct the election. That means the EIM message created by the node

with the minimum Id gets spread over the network, and the EIM messages created by

the other nodes get discarded.

Algorithm 11: Initiation of the election

1 if (A node i identifies that the leader is failed) then
2 Emc Id← N Idi, S eim← N Idi, Ein Idi ← N Idi, Pnodei ← NULL, L Idi ← NULL,

Statusi ← NULL.
3 Create the EIM [Emc Id, S eim] and send it to all the adjacent nodes and wait for Tfe-m time

to get an MQFM message from each adjacent node.
4 end

II. Intermediate steps: When a node receives an election-initiating message (EIM), it

checks whether it is first received EIM message. If it is its first received EIM message,

the node considers the EIM message sender as its parent node and knows about the

election initiator. The node stores the Id of the EIM message sender and the Id of the

election initiator in its pnode and ein id, respectively. If the node itself is a leaf node, it

creates a maximum-quality-factor message (MQFM) using its self-information, sends it

to the parent node and waits for Tfe-m time to get a LDM message. If the node is not

a leaf node, it creates an acknowledgment (ACK) regarding the received EIM message

and sends it to its parent node. Besides, the node replaces the second field of the received

EIM message with its own Id and sends it to all the adjacent nodes except the parent

node. Then the node waits for Tfe-m time to get the MQFM messages from the adjacent

nodes whom it sent the EIM messages.

On the other hand, if the received EIM message is the second or onward EIM message,

the node compares the first field of the EIM message (Emc Id) with its own ein id

because if multiple nodes initiate the election simultaneously, the EIM message created

by the minimum Id needs to be spread out in the network, and other EIM messages

need to be discarded. If both are the same that means the node already got the same

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 123

EIM message, the node creates an AGM message regarding the received EIM message

and sends it to the EIM message sender node and includes the S eim in its cpnode. If

the Emc Id is less than the ein id, the node removes all the Ids stored in its cnode and

cpnode and acts the same way as it did when it got the EIM message for the first time.

If Emc Id is greater than ein id, the node discards the received EIM message.

When a node receives an acknowledgment message (ACK) from an adjacent node, it

considers that adjacent node as its child node and includes the child node Id into its

Cnode.

When a node receives an (AGM) message from an adjacent node, it considers that adjacent

node as its co-parent node and includes the co-parent node Id in its cpnode. Then it checks

whether all the adjacent nodes are co-parent nodes except the parent node. If so, the node

creates an MQFM message using self-information and sends it to all the co-parent nodes.

When a node gets all the expected MQFM messages from its child nodes, it selects

the maximum quality factor from among the received quality factors and its own quality

factor. The node then makes a MQFM message using the information of the node with

the maximum quality factor, sends it to all the co-parent nodes and waits to get the

MQFM message from the co-parent nodes. As a node passes the information to its co-

parent nodes about the node that has the higher quality factor among itself and its child

nodes, the information of the node with the highest quality factor among all the nodes

get several paths to reach the election conducting node. That increases the number of

link and node failure tolerability of the proposed algorithm. Afterwards, when the node

gets all the expected MQFM message from the co-parent nodes, it selects the maximum

quality factor among all the received quality factors (from all the child nodes and co-parent

nodes) and its own quality factor, makes an MQFM message using the information of the

node with the maximum quality factor, sends it to its parent node and waits for an LDM

message. If a node does not have any co-parent node, then after getting all the expected

MQFM messages from the child nodes, the node chooses the maximum quality factor

among all the received quality factors (from all the child nodes) and its own quality factor,

creates an MQFM message using the information of the node with the maximum quality

factor, sends it to its parent node and waits for a LDM message. If a node does not get

the expected MQFM messages from its adjacent nodes during a certain amount of time,

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 124

it sends a request message to those adjacent nodes to send the MQFM message. If the

node does not get any response regarding the request message from an adjacent node, it

does not consider that node as its adjacent node anymore.

III. Declaration of the leader: When the election initiating node gets all the expected

MQFM messages from its adjacent nodes, it chooses the node with highest quality factor

among the received quality factors and its own quality factor as the leader. If the election

initiating node finds that multiple nodes have the highest quality factor, then it chooses

the node with minimum Id among them as the leader. Thus the node with the highest

quality factor is elected as the new system leader. To declare the newly elected leader, the

election initiating node creates a leader declaration message (LDM [El Id] where El Id is

the elected leader’s Id) and sends it to all the adjacent nodes. When a node gets an LDM

message, it gets to know about the newly elected leader and it sends the LDM to the

adjacent node except the node that had sent it the LDM message. Further if the node

gets the same LDM message, it discards the message.

If a node recovers from its failure state, it performs the following actions.

� The node collects all the required system information from its adjacent nodes.

� If the node gets back from its failure state during the election and its all adjacent

nodes have sent the MQFM message to their parent nodes, the node does not

participate in the election. It only waits for the LDM message. Otherwise, the

node randomly selects its parent node among the adjacent nodes that did not send

a MQFM message to their parent node. Then the node participates in the election

by creating an MQFM message using self-information and sending it to its parent

node.

6.2.3 Proof of Self-stabilization

Lemma 6.1. Let the system consists of N connected nodes and Π represents the set of all

nodes (|Π| = N) and Sp is the set of participating nodes in the election. A proper execution

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 125

Algorithm 12: Intermediate processing

1 if (A node j gets an EIM [Emc Id, S eim] message) then
2 if (Ein Idj == NULL) then
3 Pnodej ← S eim , Ein Idj ← Emc Id, L Idj ← NULL, Statusj ← NULL
4 if (Node j is a leaf node) then
5 Mqf ← Qfj ,Mqf Id← N Idj , S mqfm← N Idj
6 Create an MQFM [Mqf,Mqf Id, S mqfm] and send it to the parent node.
7 Wait for Tfe-m time to get a LDM message.

8 else
9 S eim← N Idj , C ack ← N Idj

10 Create an ACK[Emc Id, C ack] message and send it to the sender of the EIM message.
11 Send the EIM [Emc Id, S eim] to all the adjacent nodes except the sender of EIM .
12 Wait for Tfe-m time to get the MQFM messages.

13 end

14 else
15 if (Ein Idj == Emc Id) then
16 Include S eim in Cpnodej , C agm← N Idj
17 Create an AGM [Emc Id, C agm] and send it to the sender of the EIM message.

18 else
19 if (Ein Idj > Emc Id) then
20 Pnodej ← S eim, Ein Idj ← Emc Id
21 Remove all the Ids from Cnodej and Cpnodej .
22 Follow step 4 to step 11.

23 else
24 Discard the received EIM message.
25 end

26 end

27 end

28 end
29 if (A node j gets an ACK message) then
30 Include C ack in Cnodej .
31 end
32 if (A node j gets an AGM message) then
33 Include C agm in Cpnodej .
34 if (All the adjacent nodes are co-parent nodes except the parent node) then
35 Mqf ← Qfj , mqf←N Idj , S mqfm← N Idj
36 Create an MQFM [Mqf,Mqf Id, S mqfm message and send it to all the co-parent nodes.

37 end

38 end
39 if (A node j gets an MQFM message) then
40 Store the received MQFM [Mqf,Mqf Id, S mqfm] message.
41 if (The expected MQFM messages are received from all the child nodes only but not from the

co-parent nodes) then
42 Select the maximum quality factor from among the received quality factors and self quality

factor.
43 Make a MQFM message using the information of the node with maximum quality factor

and send it to all the co-parent nodes.
44 end
45 if (The expected MQFM messages are received from all the child nodes and co-parent nodes or

the expected MQFM messages are received from all the child nodes and Cpnodej == NULL)
then

46 Select the maximum quality factor from among the received quality factors and self quality
factor.

47 Make a MQFM message using the information of the node with maximum quality factor
and send it to the parent node.

48 Wait for LDM message.

49 end

50 end

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 126

Algorithm 13: Declaration of the leader

1 if (Node i is the election initiating node) then
2 if (Node i gets all the expected MQFM messages within the Tfe-m time) then
3 Find the highest quality factor from among received quality factors and self quality factor.
4 Declare the node with highest quality factor as the elected leader.
5 If multiple nodes have the highest quality factor, then choose the node with minimum Id

among them as the leader.
6 L Idi ← the elected leader Id
7 El Id← L Idi
8 if (El Id == N Idi) then
9 Statusi ← leader

10 else
11 Statusi ← Non-leader
12 end
13 Create an LDM [El Id] message and send it to all the adjacent nodes.
14 Ein Idi ← NULL

15 else
16 Check the aliveness of the adjacent nodes which did not send the MQFM message.
17 Collect the MQFM from the alive adjacent nodes.
18 Follow step 3 to step 14.

19 end

20 else
21 if (A node j gets an LDM [El Id] message for the first time) then
22 L Idj ← El Id
23 Ein Idj ← NULL
24 if (El Id == N Idj) then
25 Statusj ← leader
26 else
27 Statusj ← Non-leader
28 end
29 Send the received LDM [El Id] message to all the adjacent nodes except its sender node.

30 else
31 Discard the received LDM [El Id] message.
32 end
33 if (A node j does not get a LDM message within the Tfe-m time) then
34 The node j re-initiates the election.
35 end

36 end

of the proposed election method ensures that if node x ∈ Π and all x are connected through

a network, then x ∈ Sp.

Proof: Initially, Sp = ϕ. A node participates in the election either by creating an EIM

message or by receiving an EIM message and get a chance to become the leader. When

a node i initiates an election by creating EIM and sends it to its all the adjacent nodes,

the node i becomes the first participant of the election and an element of Sp. When the

adjacent nodes of i receive the EIM , they participate in the election and each of them

sends the EIM message to its adjacent nodes except the parent node and becomes an

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 127

element of Sp. In this way, the EIM message gets spread over the network. That means

the broadcasting method is used to spread the EIM message over the network. On the

other hand, according to the system model, a message gets transmitted from one node

to another node within a bounded time period and all N nodes are connected through

a network. So all the nodes in the network get the EIM message within a certain time

period and become the elements of set Sp. After a certain time of election initiation,

if x ∈ Π then x ∈ Sp and |Π| = |Sp| = N . That means all the nodes in the network

participate in the election. ■

Lemma 6.2. If Sec represents the set of election conducting node Id, then a proper execu-

tion of the proposed election algorithm in a system consisting of n connected node ensures

that |Sec| = 1.

Proof: Suppose Sei is the set of election initiating node Id. Node x ∈ Sec if and only if

x ∈ Sei and the node x declares the elected leader by creating a LDM message. When

a node realizes the leader’s failure, it creates an EIM message and initiates the election.

Leader’s failure can be detected by a single node or multiple nodes simultaneously. When

only one node (suppose node i) detects the leader’s failure, then only that node creates the

EIM message and initiates the election by sending the EIM message to its all adjacent

nodes. So, node i ∈ Sei and |Sei| = 1. According to the proposed algorithm, the EIM

message gets spread all over the network through a broadcasting method and a message

gets transmitted from one node to another node within a bounded time period. Hence

within a certain amount of time, the node i gets the MQFM messages from its adjacent

nodes and declares the node with the highest quality factor as the leader. So node i ∈

Sec. In this case, only node i initiates the election and conducts the whole election.

Hence |Sec| = 1. Let’s consider the scenario where multiple nodes initiate the election

simultaneously. Suppose r number of nodes initiate the election simultaneously. So, Sei =

{x : x ∈ Π and x creates an EIM message} and |Sei| = r. In the proposed algorithm,

if multiple nodes create EIM messages and initiate election simultaneously, the EIM

message created by the node with minimum Id gets spread all over the network and others

get discarded. According to the system model, every node has a distinct integer Id. So

among all the election initiating nodes, there will be only one node with minimum Id.

Suppose the node i has the minimum Id in Sei. So the only node i will get the MQFM

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 128

messages from its all adjacent nodes and declare the leader by creating an LDM message.

Hence node i ∈ Sec and |Sec| = 1. That means only one node conducts an entire election

process. ■

Lemma 6.3. A proper execution of the proposed election algorithm in a distributed system

consisting of N connected nodes elects only one node as the system leader.

Proof: In the proposed algorithm, only one node conducts the whole election process (cf.

Lemma 6.2). If a node initiates an election or gets an EIM message, it sets its status

to NULL. Later on, when the election conducting node gets all the expected MQFM

messages from its adjacent nodes, it chooses the node with the highest quality factor among

the received quality factors and its own quality factor as the leader. Here two cases may

occur, 1) all the quality factors are distinct 2) multiple nodes have the same quality factor.

In case 1, the election conductor chooses the node with highest quality factor and declares

it as the leader by broadcasting the LDM [El Id]. When a node gets the LDM [El Id]

message it compares self Id with the El Id. If both are same, the node sets its status

to leader. Otherwise, it sets its status to Non-leader. In this case, all the node have

distinct quality factor so among all the nodes only one node’s status gets set to leader

and each of the other nodes status gets set to Non-leader. In case 2, if multiple nodes

have the highest quality factor, the node with the minimum Id among them is chosen and

declared as the leader. As the node Ids are distinct integer and only one node conducts

the election so a single node gets elected as the leader and like case 1 (among all the nodes

only one node’s status gets set to leader and each of the other nodes status gets set to

Non-leader). Hence the proposed algorithm always elects only one node as the system

leader. ■

Lemma 6.4. Let the system consists of N connected nodes and Π represents the set of all

nodes (|Π| = N) and Sarg represents the set of nodes that agree the elected leader. At the

end of the election, if node x ∈ Π then x ∈ Sarg.

Proof: In Lemma 6.1, we proved that all the connected nodes of a distributed system

participate in the election. According to the proposed algorithm, when a node initiates an

election or gets an EIM message, it sets its L Id to NULL. Later on every node shares

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 129

its quality factor through a MQFM message. Finally, when the election conducting node

gets higher quality factor nodes information through its adjacent nodes, the node with

the highest quality factor gets elected as the leader. The election conducting node then

declares the elected leader by broadcasting an LDM [El Id] message. When a node i gets

the LDM [El Id] message, it accepts the elected leader by setting its L Id to the Id of

the elected leader and becomes an element of Sarg. As all the node are connected and

the LDM [El Id] message is broadcast over the network through a flooding method so all

the nodes get the LDM [El Id] message and become the elements of Sarg. Hence if node

x ∈ Π then x ∈ Sarg. That means all the nodes get to know about the elected leader and

they agree with the elected leader. ■

Lemma 6.5. A proper execution of the proposed election algorithm in a distributed system

consisting of N connected nodes elects a leader in a finite time.

Proof: Suppose the proposed algorithm takes δt time to elect a leader. We have already

proved that at a time, only one node conducts the election (cf. Lemma 6.2). So election

termination depends on the election conducting node. Here two cases may occur: 1) the

election conducting node does not fail during the election 2) the election conducting node

fails during the election. In case 1, the election gets terminated in O(D) that means

δt = O(D) where D is the diameter of the network. The maximum diameter of our

considered network can be N − 1. Our system consists of N nodes, where N is a finite

integer, so D is also finite. Hence in the first case, the algorithm elects the leader and

gets terminated in a finite time. In the second case, if the election conducting node fails

before creating the leader declaration message (LDM), then election re-initiation happens.

The system has some stable nodes, and when one of these stable nodes gets the chance to

conduct the election, one node is elected as the system leader because the stable node does

not fail during the election. In the worst scenario, all the unstable nodes get the chance

to conduct the election first then the stable nodes get the chance to conduct the election.

The system is consisting of finite number of nodes so the number of unstable nodes is also

finite. In this scenario, δt = O(N · D) that means the proposed algorithm also elect the

leader in finite time. ■

Theorem 6.6. The proposed leader election algorithm is a self-stabilizing leader election

algorithm.

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 130

Proof: Lemma 6.3 proves that the proposed algorithm always elects a unique leader for the

system. Lemma 6.4 proves that the algorithm satisfies the agreement condition and lemma

6.5 proves the termination condition of the algorithm. Hence the proposed algorithm is a

self-stabilizing leader election algorithm. ■

6.2.4 Complexity analysis

The efficiency assessment of a distributed algorithm is done by three complexity measures,

i.e., message complexity, time complexity, and bit complexity. In this section, first, we

calculate these three complexity measures of the proposed algorithm for arbitrary network

topology. Next, we calculate these complexity measures for the several regular network

topologies and present them in a tabular form.

6.2.4.1 Message complexity

In the leader election algorithm, the message complexity refers to the number of transmit-

ted messages to elect a leader for the system.

Best case: The proposed leader election algorithm is designed considering an arbitrary

network topology consisting of N nodes and l links. Here, in the best-case, only one

node initiates the election and conducts the whole election process. In this algorithm

we use five types of messages i.e., EIM , ACK, AGM , MQFM and LDM . Here, O(l)

EIM messages need to transmit to initiate the election. After that, at most O(l) ACK

messages and O(l) AGM messages get transmitted as the response of the EIM messages.

The proposed algorithm finds the relation between a node and its adjacent nodes by

transmitting these three messages (EIM , ACK and AGM). On the other hand, O(l)

MQFM messages are transmitted to send the information of the higher quality factors’

nodes to the election initiator. Finally, O(l) LDM messages are exchanged to declare the

elected leader. Hence, in the best case, the message complexity of the proposed algorithm

is O(l).

Worst case: Suppose the election conducting node is not a stable node and it fails

before declaring the elected leader. The considered distributed system is consisting of

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 131

at least one stable node. In the worst case, each of the N − 1 unstable nodes gets the

chance to conduct the election first then the stable node gets the chance to conduct the

election. Unlike unstable node when a stable node conducts the election, it can complete

the entire election process and elect a leader. When one node initiates the election, the

message complexity is O(l). In this scenario, after N−1 incomplete elections, one complete

election happens. So maximum O(N · l) messages are required to elect the leader. Hence

in the worst case the message complexity of the proposed algorithm is O(N · l).

6.2.4.2 Time complexity

The time complexity of a leader election algorithm refers to the time required by the

algorithm to elect a leader for the system.

Best case: In this case, only one node initiates and conducts the whole election process.

the EIM message created by the election conducting node gets spread all over the network.

After that, every node sends a MQFM message to its parent node. Finally, when the

election conducting node gets the MQFM messages from adjacent nodes, it declares the

new system leader by creating and sending a LDM message. The EIM message takes

O(D) time to get spread all over the network, where D is the diameter of the network.

After initiating the election, the election initiator gets the MQFM messages from its all

the adjacent nodes in O(D) time. The LDM message also takes O(D) time to get spread

all over the network. So total O(D) + O(D) + O(D) time is required to elect a leader.

That means the complexity of the proposed algorithm is O(D).

Worst case: In this case, after N−1 incomplete elections, one complete election happens.

One complete election process takes O(D) time. So N−1 consecutive incomplete elections

and one complete election can take maximum O(N ·D) time. Hence, in the worst case the

time complexity of this algorithm is O(N ·D).

6.2.4.3 Bit complexity

In a distributed algorithm, nodes exchange information with their neighbors through mes-

sage passing. Bit complexity refers to the number of bits contained in the message. In

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 132

Table 6.1: Time complexity and message complexity in the best case and worst-case
scenarios of the proposed algorithm in different regular network topologies.

Message complexity Time complexity

Topology Best case Worst case Best case Worst case

Ring O(N) O(N2) O(N) O(N)

Bus O(N) O(N2) O(N) O(N)

Full-mesh O(N2) O(N2) O(1) O(1)

2D torus O(N) O(N
√
N) O(

√
N) O(

√
N)

Star O(N) O(N) O(1) O(1)

k-ary tree O(N) O(N2) O(logk N) O(logk N)

the proposed leader election algorithm, five types of messages i.e., EIM , ACK, AGM ,

MQFM and LDM are used to elect the leader. Each of EIM , ACK, and AGM contains

two node Ids, LDM contains a single node Id, and MQFM contains quality factor of a

node and two node Ids. If the system is consists of n nodes, then log2N bits are required

to represent a node Id uniquely. On the other hand, quality factor of a node takes constant

number of bits. So the bit complexity of the proposed algorithm is O(log2N).

Now we calculate the message complexity and time complexity of the proposed leader

election algorithm for several regular network topologies and present them in Table 6.1.

We do not include the bit complexity of the proposed algorithm in this table because, for

any network topology, the bit complexity is O(log2N).

6.2.5 Illustrative Example

To illustrate the algorithm, we consider a distributed system consisting of 7 nodes and 9

edges (cf. Figure 6.1 (a)). In Figure 6.1 (a), a circle represents a node, the integer inside

the circle represents the node Id and the fractional number outside the circle represent

the quality factor (qf) of a node. First we consider the scenario where no link and node

failure occur during the election. Suppose node 2 initiates the election. So node 2 creates

an election-initiating message (EIM [2, 2]) and sends it to its adjacent nodes i.e., nodes

0, 1 and 3 (as shown in Figure 6.1 (b)). After receiving the EIM [2, 2], each of nodes

0, 1 and 3 creates an acknowledgement message i.e., ACK[2, 0], ACK[2, 1] and ACK[2, 3]

respectively and sends the acknowledgement to node 2. Nodes 0, 1 and 3 consider node 2 as

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 133

their parent node and store Id 2 in Pnode0, Pnode1 and Pnode3 respectively. Besides, each

of these three nodes replaces the second field of the received election-initiating message with

their own Id and sends the modified election-initiating message i.e., EIM [2, 0], EIM [2, 1]

and EIM [2, 3] to their adjacent nodes (node 0 sends to nodes 3 and 6, node 1 sends to

node 5, and node 3 sends to nodes 0, 4 and 5 (as shown in Figure 6.1 (c))).

When node 2 gets the ACK messages from its adjacent three nodes i.e., nodes 0, 1 and

3, it consider them as the child nodes and store their Ids in the Cnode2. On the other

hand, after getting the EIM [2, 0] from node 0, the node 6 creates ACK[2, 6], sends it to

node 0, considers node 0 as its parent node and stores Id 0 in Pnode6. Then it replaces

the second field of the received election-initiating message with its own Id and sends this

modified election-initiating message i.e., EIM [2, 6] to node 5. When node 5 gets the

EIM [2, 1] message from node 1, it creates ACK[2, 5] and sends it to node 1. The node 5

considers node 1 as its parent node and stores Id 1 in Pnode5. Then it replaces the second

field of the received election-initiating message with its own Id and sends the modified

EIM [2, 5] to nodes 3 and 6. When node 0 and node 3 get election-initiating message

(i.e., EIM [2, 3] and EIM [2, 0] respectively) from each other, they create AGM [2, 0] and

AGM [2, 3] respectively and send their created AGM message to each other because they

already got the same election-initiating message from node 2. Then node 0 and node 3

include the node Id 3 and node Id 0 in the Cpnode0 and Cpnode3, respectively because they

consider each other as their co-parent node. When node 4 gets the EIM [2, 3] message,

it considers node 3 as its parent node. It then creates an MQFM [0.60, 4, 4] message and

sends it to its parent node i.e., node 3 because node 4 is a leaf node (as shown in Figure

6.1 (d)).

When node 5 and node 3 get EIM message from each other, they act in the same way

as node 0 and node 3 acted when they got the EIM message from each other. Likewise,

when node 5 and node 6 get EIM message from each other, they also act in the same way

as node 0 and node 3 acted when they got the EIM message from each other (as shown

in Figure 6.1 (e)).

When node 3 gets AGM [2, 5] from node 5, it gets to know that it has two co-parent

nodes i.e., nodes 0 and 5 and one child node i.e., node 4. The node 3 has already got the

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 134

expected MQFM message from node 4. So node 3 chooses the node between node 4 and

itself whoever has the higher quality factor. As node 3 itself has the higher quality factor,

it creates MQFM [0.94, 3, 3] message and sends it to nodes 0 and 5. On the hand, after

getting AGM [2, 3] and AGM [2, 6] from node 3 and node 6 respectively, the node 5 gets to

know that it has two co-parent nodes i.e., nodes 3 and 6 and no child node. So it creates

MQFM [0.69, 5, 5] message (using self-information) and sends it to nodes 3 and 6. After

receiving AGM [2, 5] message from node 5, the node6 gets to know that it has only one

co-parent node and no child node. So it also creates MQFM [0.74, 6, 6] message (using

self-information) and sends it to node 5 (as shown in Figure 6.1 (f)).

When node 6 receives MQFM [0.69, 5, 5] from node 5, it learns that it has the higher

quality factor between node 5 and itself. So it sends MQFM [0.74, 6, 6] message to its

parent node i.e., node 0. On the other hand, when node 5 gets expected two MQFM

messages from nodes 3 and 6, it finds that node 3 has the maximum quality factor among

the nodes 3, 6 and itself. So node 5 creates MQFM [0.94, 3, 5] and sends it to its parent

node i.e., node 1 (as shown in Figure 6.1 (g)).

When node 0 gets theMQFM from its only child node i.e., node 6, it createsMQFM [0.74, 6, 0]

because 0.74 is the maximum quality factor between the quality factor received through

the MQFM message from its child node and its own quality factor. Then it sends

MQFM [0.74, 6, 0] to its single co-parent node i.e., node 3. After getting theMQFM [0.74, 6, 6]

message, the node 0 got all the expected MQFM messages from its child node and co-

parent node and 0.94 is the maximum quality factor among all the received quality factor

and its own quality factor, so it sends MQFM [0.94, 3, 0] to its parents node i.e., node

2. Node 1 also sends the MQFM [0.94, 3, 1] to its parent node i.e., node 2 (as shown in

Figure 6.1 (h)). Likewise, when node 3 receives MQFM message from node 0, it sends

the MQFM [0.94, 3, 0] to node 2 (as shown in Figure 6.1 (i)).

Finally, when the node 2 gets all the expected MQFM messages from its adjacent nodes,

it finds that node 3 has the highest quality factor among all the node in the network.

So node 3 is elected as the new system leader. To declare the elected leader, the node 2

creates an LDM [3] message and sends it to its all the adjacent nodes (as shown in Figure

6.1 (j)). After that nodes 0, 1 and 3 send the LDM [3] message to all of their adjacent

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 135

nodes except their parent node (as shown in Figure 6.1 (k)). Thus all the node gets to

know about the newly elected system leader.

0

1

2 3 4

5

6

0.72

0.94
0.60

0.74

0.81

0.69

0.65

0

1

2 3 4

5

6

0.72

0.94
0.60

0.74

0.81

0.69

0.65

0

1

2 3 4

5

6

0.72

0.94
0.60

0.74

0.81

0.69

0.65

(a) (b) (c)

0

1

2 3 4

5

6

0.72

0.94
0.60

0.74

0.81

0.69

0.65

0

1

2 3 4

5

6

0.72

0.94
0.60

0.74

0.81

0.69

0.65

0

1

2 3 4

5

6

0.72

0.94
0.60

0.74

0.81

0.69

0.65

(d) (e) (f)

0

1

2 3 4

5

6

0.72

0.94
0.60

0.74

0.81

0.69

0.65

0

1

2 3 4

5

6

0.72

0.94
0.60

0.74

0.81

0.69

0.65

0

1

2 3 4

5

6

0.72

0.94
0.60

0.74

0.81

0.69

0.65

(g) (h) (i)

0

1

2 3 4

5

6

0.72

0.94
0.60

0.74

0.81

0.69

0.65

0

1

2 3 4

5

6

0.72

0.94
0.60

0.74

0.81

0.69

0.65

(j) (k)

represents an EIM
message.

represents an ACK
message.

represents an AGM
message.

represents an MQFM
message.

represents a LDM
message.

[3]

[2, 2][2
,
2
]

[2
,
2
]

[2
,
0
]

[2
,
0
]

[2, 0]

[2, 3]

[2
,
3
]

[2
,3

]

[2,3]

[2
,
1
]

[2
,
1
]

[2
,3

]

[2, 0]

[2
,
5
]

[0.6, 4, 4]

[2
,
5
]

[2
,
6
]

[2
,
6
]

[2
,
3
]

[2
,
5
]

[2
,
6
]

[0
.6

9
,
5
,
5
]

[0.69, 5, 5][0
.7

4
,
6
,
6
]

[0
.7

4
,
6
,
6
]

[0
.9

4
,
3
,
5
] [0
.9

4
,
3
,
1
]

[0
.9
4
,
3
,
0
]

[0.74, 6, 0]

[0.94, 3, 3]

[3]

[3] [3]

[3]

[3]

[3]

[3]

[3]

[0
.9

4
,
3
,
3
]

[2
,
5
]

[0
.9
4,

3,
3]

[2
,
5
]

Figure 6.1: (a) A distributed system consisting of 7 nodes and 9 edges. (b), (c), (d),
(e), (f), (g), (h), (i), (j) and (k) are the different steps of the proposed leader election

algorithm to elect the leader for the system.

Now we consider link and node failures during the election and try to determine whether

the proposed algorithm can elect the leader in the presence of link and node failures.

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 136

First, we consider single link failure, then we consider multiple link failures, and at last,

we consider node failure.

Let’s assume when node 3 receives the EIM message from node 2, the link between node

3 and node 2 fails. In this case, the MQFM message of node 3 is transmitted to node

2 via node 0 as well as via nodes 5 and 1, and node 3 gets elected as the leader. We

find that the proposed algorithm can tolerate any single link failure of a node during the

election to elect the system leader. If a link failure divided a network into two parts, the

proposed election algorithm elects a leader for each part. When the link between node 3

and node 4 fails, node 4 becomes an isolated node, and the network gets divided into two

parts (as shown in Figure 6.2 (a)). In this case, node 4 (one part of the network) becomes

an isolated node, so no need of leader election for this isolated node. On the other hand,

node 3 is elected as the leader for the other part (consisting of nodes 0, 1, 2, 3, 5 and 6) of

the network.

0

1

2

5

6

0.72

0.74

0.81

0.69

0.65

(c)

0

1

2 3 4

5

6

0.72

0.94
0.60

0.74

0.81

0.69

0.65

(a)

0

1

2 3 4

5

6

0.72

0.94
0.60

0.74

0.81

0.69

0.65

(b)

4 0.60

Figure 6.2: Node and link failures in the network.

Now we consider the case where multiple links of a node may fail during the election. Let’s

assume when node 3 receives the EIM message from node 2, the links between nodes 3

and 2, and nodes 3 and 0 fail. In this case, node 2 does not get the ACK message from

node 3, so node 2 does not consider node 3 as its adjacent node anymore. However, the

MQFM message of node 3 is transmitted to node 2 via nodes 5 and 1 and node 3 gets

elected as the leader. Instead of two links, if three links of node 3 (i.e., the links between

nodes 3 and 2, nodes 3 and 0, and nodes 3 and 5) fail, the network gets divided into two

parts. One part contains nodes 0, 1, 2, 5 and 6 and another part contains nodes 3, 4 (as

shown in Figure 6.2 (b)). In this case, node 2 does not get the ACK message from node

3, so node 2 does not consider node 3 as its adjacent node anymore. As nodes 3 and 4 get

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 137

disconnected from the network, node 2 does not get the MQFM message of node 3. In

this situation node 2 is elected as the leader of one part (containing nodes 0, 1, 2, 5 and 6)

and broadcast leader declaration message (LDM [2]). However, nodes 3 and 4 do not get

this LDM [2] message. After waiting a certain amount of time (Tfe-m) when node 3 does

not get the LDM message, it re-initiates the election and node 3 is elected as the leader

of the another part (consisting of nodes 3 and 4) of the network.

Now we consider node failure and discuss the node failure tolerability of the proposed

algorithm. If one or more nodes among nodes 0, 1, 4, 5 and 6 fail during the election, node

3 is elected as the system leader. If node 3 fails, node 4 gets isolated from the network

and the network gets divided into two parts. One part contains nodes 0, 1, 2, 5 and 6 and

another part contains only node 4 (as shown in Figure 6.2 (c)). In this situation, node 2

becomes the system leader. On the other hand, after creating the EIM message if the

election initiating node (node 2) fails, the LDM message is not created. So, after sending

the MQFM messages other nodes wait for LDM message. After waiting a certain amount

of time (Tfe-m), when a node does not get an LDM message, it re-initiates the election.

6.3 Experiment and result analysis

Nowadays, replicated cloud database is becoming popular as it increases data availability

and reliability, speeds up the query evaluation, reduces the load, makes a system more

fault-tolerant and improves its performance. Multiple replicated data servers located at

different places get connected through a network and build a replicated cloud database.

Cloud Spanner [32] is a globally distributed and synchronously replicated cloud database

developed by Google. In a replicated distributed database, data inconsistency [22] [87] is

a significant issue, and maintaining data consistency is challenging. Generally, at the time

of data modification in the servers, data inconsistency happens. The concept of leader

election is a way to handling the data inconsistency. Here, one of the servers is elected as

the leader to coordinate all the servers’ data modification activities. Now we conduct an

experiment and show how a good quality leader elected by the proposed leader election

method helps improve the overall system performance.

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 138

This experiment considers three arbitrary network topologies consisting of eight, ten, and

twelve nodes (as shown in Figure 6.3). Here a node works as a replicated server. First,

we consider eight replicated servers connected through an arbitrary network topology and

elect one of the servers as the leader using the proposed election method. Next, we add two

replicated servers through random connection with these eight servers and implement the

proposed election method to elect the leader. In the same way, we add two more servers

through random connection with the existing ten servers and elect the leader. For this

experiment, we involved six experts in identifying the important attributes of the node

that should consider electing the leader for a replicated distributed system. The experts

identified five main attributes for our considered system. They are Closeness centrality

(Cc), Degree (Deg), Failure rate (Fr), CPU capacity (CPU) and Available memory (Am)

where, Closeness centrality, Degree, CPU capacity and Available memory are the benefit

attributes, and Failure rate is the cost attribute. They assigned 0.28, 0.25, 0.22, 0.15 and

0.10 as the weight of the Closeness centrality, Degree, Failure rate, CPU capacity and

Available memory, respectively. During the data modification, the user cannot access the

data. Hence to improve the system performance, data modification needs to perform as

quickly as possible. It is possible if the elected leader’s closeness centrality and degree

are comparatively high. That is why the experts gave the highest priority and second-

highest priority to the Closeness centrality and degree, respectively. All the system’s

collaborative works get halted during the election process due to the lack of coordination.

Due to the frequent leader failure may hamper the system performance. If an elected

leader fails frequently, the system needs to invoke the election algorithm again and again

in electing the leader. In this situation, the system spends much time in leader election

that hampers the system performance, so frequent leader failure is not expected. That is

why the experts gave the third-highest priority to the failure rate. On the other hand,

the leader with moderately high CPU capacity and moderately high available memory can

easily handle the data modification task in a replicated distributed system. That is why

the expert gave the least priority and second-least priority to the Available memory and

CPU capacity. The weight, the minimum value and the maximum value of each attribute

is given in Table 6.2 and all the nodes’ information is given in Tables 6.3, 6.4 and 6.5.

We have conducted all the experiment in a single machine and it was set up with Ubuntu

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 139

Table 6.2: The weight given by the experts, the minimum value and the maximum value
of the attributes.

CPU Am Fr Cc Deg

Weight 0.15 0.10 0.22 0.28 0.25

Minimum value 1.8 0 0 0 1

Maximum value 6 64 1 1 12

Table 6.3: Information of all the nodes of the system consisting of 8 nodes and 9 links.

Node Id CPU Am Fr Cc Deg Qf

0 4.9 26 0.07 0.46 1 0.3492

1 2.9 28 0.06 0.50 2 0.3469

2 4.1 24 0.03 0.77 5 0.3637

3 3.9 22 0.08 0.58 3 0.3516

4 3.8 22 0.06 0.58 3 0.3523

5 3.0 32 0.07 0.36 1 0.3424

6 3.2 24 0.01 0.38 1 0.3455

7 3.6 24 0.06 0.53 2 0.3491

Linux Release 16.04 (xenial kernel 4.4) operating system, Intel Core(TM) i5-2410M (2.3

GHz, 4 MB cache, 2.9 GHz Turbo Boost) processor, NVIDIA GeForce graphics, 8 GB

DDR3 RAM and 1 TB hard disk drive. We used python 3.6 as programming language

and mpi4py as Message Passing Interface (MPI).

(a) (b)

2

0

1

34
6

7

5
10

9 0

5

11

7

6 4

2

1

3

(c)

2

4

7

6

9

5

8
0

1

3

8

Figure 6.3: (a) eight replicated servers connected through an arbitrary network topol-
ogy, (b) ten replicated servers connected through an arbitrary network topology and (c)

twelve replicated servers connected through an arbitrary network topology

When we implement the proposed leader election method on the system consisting of 8

nodes (cf. Figure 6.3 (a)), node 2 is elected as the system leader. Node 2 has the highest

closeness centrality, highest degree, second lowest failure rate, second highest CPU capacity

and moderate available memory (cf. Table 6.3). Let us assess the quality of the elected

leader to maintain the system performance and consistency. We know that the data

modification in replicated distributed database consisting of multiple replicated servers is

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 140

Table 6.4: Information of all the nodes of the system consisting of 10 nodes and 13
links.

Node Id CPU Am Fr Cc Deg Qf

0 4.9 26 0.07 0.50 2 0.3518

1 2.9 28 0.06 0.53 3 0.3493

2 4.1 24 0.03 0.69 5 0.3614

3 3.9 22 0.08 0.52 3 0.3500

4 3.8 22 0.06 0.52 3 0.3508

5 3.0 32 0.07 0.36 1 0.3424

6 3.2 24 0.01 0.42 2 0.3478

7 3.6 24 0.06 0.52 3 0.3504

8 3.7 20 0.05 0.45 3 0.3490

9 3.5 22 0.06 0.36 1 0.3431

Table 6.5: Information of all the nodes of the system consisting of 12 nodes and 22
links.

Node Id CPU Am Fr Cc Deg Qf

0 4.9 26 0.07 0.52 3 0.3539

1 2.9 28 0.06 0.55 4 0.3515

2 4.1 24 0.03 0.61 5 0.3592

3 3.9 22 0.08 0.50 3 0.3495

4 3.8 22 0.06 0.57 4 0.3538

5 3.0 32 0.07 0.44 2 0.3457

6 3.2 24 0.01 0.55 3 0.3526

7 3.6 24 0.06 0.57 4 0.3534

8 3.7 20 0.05 0.57 4 0.3538

9 3.5 22 0.06 0.55 3 0.3507

10 4.3 26 0.02 0.68 6 0.3645

11 3.3 28 0.03 0.47 3 0.3503

handled by the leader server. When a data modification is required, the leader sends a

lock message against that data to all the servers and waits for those servers’ response.

The leader sends the lock message so that nobody (users or clients) can access that data

during the data modification. When the leader gets all the servers’ responses regarding

the lock message, it sends the data modification message to all the servers. The data

modification message tells what modification needs to be performed on the data. After

data modification, every server sends a modification completion message to the leader.

When the leader gets the modification completion messages from all the servers, it sends

an unlock message to all the servers to make the data accessible for the users. Suppose a

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 141

message takes c unit time (where c is constant) to traverse one hop (one node to another

adjacent node). If node 2 is elected as the leader, then 10c unit time is required to modify

a data. On the other hand, if any other node except node 2 is elected as the leader, atleast

15c unit time is required to modify a data. In this system, instead of any other node, if

node 2 is elected as the leader, the data modification can be performed atleast 1.5 times

faster way.

As the leader coordinates all the system’s cooperative activities, all the nodes or servers

need to communicate with the leader frequently. The proposed election method elects

a node with a higher degree. The higher degree of the leader node increases the com-

munication path diversity between the leader and the other nodes in the system. The

higher path diversity decreases the communication traffic between the leader node and

other nodes. In the system (as shown in Figure 6.3 (a)), node 2 gets elected as the leader

with highest degree that helps in reducing communication traffic between the leader and

other servers. This helps to increase the overall system performance. The election method

also elects a node with a moderately low failure rate. Node 2 has the second lowest failure

rate among all the nodes. So the leader failure probability is also low. That means the

proposed election method elects a leader who will live for a long time in the system. All

the system’s collaborative works get halted during the leader election process due to the

lack of coordination. As the aliveness probability of the elected leader is high, the system

does not need to execute the leader election algorithm repeatedly, which helps to increase

the system’s performance. On the other hand, the proposed algorithm elects a leader with

moderately high CPU capacity and available memory that also takes care of the system

performance.

We also observe that when we prioritize a particular attribute by assigning a much higher

weight than other attributes, then the node with the best value of that attribute gets

elected as the leader. To prioritize an attribute, we assign 0.8 as the weight of that

attribute and 0.05 as the weight of every other attribute. In this way, when we prioritize

the CPU capacity, Available memory, and Failure rate, then node 0, node 5, and node 6

get elected as the leader, respectively. On the other hand, when we prioritize the Closeness

centrality and Degree, then node 2 gets elected as the leader. The proposed algorithm

also elects node 2 as the leader. Let’s compare these four nodes (nodes 0, 2, 5 and 6) to

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 142

find out which one is most suitable as the system leader of the above-mentioned system.

Though node 0 has the highest CPU capacity and moderate available memory, its closeness

centrality and degree are comparatively low and its failure rate is comparatively high. If

node 0 is elected as the leader, it will take 15c unit time to modify the data, whereas node

2 takes 10c unit time to modify the data. The degree of node 0 is 1 whereas the degree of

node 2 is 5. So node 2 can handle its communication traffic in a better way than node 0.

The failure rate of node 2 is much lower than that of node 0. That means node 2 has a

higher probability of aliveness in the system than node 0. When we compare node 2 and

node 5, we know that node 5 has the highest available memory, but regarding all other

attributes, node 2 is better than node 5. On the other hand, regarding the failure rate

node 6 is better than node 2 but for the other attributes node 2 is better than node 6.

Likewise, when we implement the proposed leader election method in the systems consist-

ing of ten nodes (cf. Fig 6.3 (b)) and twelve nodes (cf. Fig 6.3 (c)), node 2 and node

10 get elected as the system leader, respectively. Here, these two systems also get similar

benefits from their elected leader, like the system consisting of eight nodes benefited by

electing node 2 as the system leader.

Now we compare the performance of the proposed algorithm and the existing PALE al-

gorithm. This performance comparison is based on the number of exchanged messages

and the time required to elect a leader in the best-case and worst-case scenarios. We

consider Five different networks consisting of 10, 15, 20, 25 and 30 nodes and implement

the proposed election algorithm and PALE algorithm to elect the leader. We create each

of these five networks by connecting the nodes randomly. For the PALE algorithm we

consider maxRatio = 3 (the authors also consider maxRatio = 3 in their paper).The

number of exchanged messages and the time these two algorithms take to elect the leader

is shown in Figure 6.4. Figure 6.4 (a) and (b) show that the proposed algorithm exchanges

fewer messages than the PALE algorithm to elect the system leader in the best-case and

worst-case scenarios. On the other hand, Figure 6.4 (c) and (d) tell that the proposed

algorithm takes less time than the PALE algorithm to elect the system leader in best-case

and worst-case scenarios.

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 143

0

50

100

150

200

250

300

350

400

450

500

10 15 20 25 30

The PALE algorithm

The Proposed algorithm

0

2000

4000

6000

8000

10000

12000

10 15 20 25 30

The PALE algorithm

The Proposed algorithm

N
u

m
b

e
r

o
f

ex
ch

an
ge

d
 m

e
ss

ag
e

s

N
u

m
b

e
r

o
f

ex
ch

an
ge

d
 m

e
ss

ag
e

s

Number of nodes Number of nodes

0

1000

2000

3000

4000

5000

6000

7000

8000

10 15 20 25 30

The PALE algorithm

The Proposed algorithm

Number of nodes

Ti
m

e
 (

M
ill

is
e

co
n

d
)

(a) (b)

(c)

0

50000

100000

150000

200000

250000

10 15 20 25 30

The PALE algorithm

The Proposed algorithm

Number of nodes

(d)

Ti
m

e
 (

M
ill

is
e

co
n

d
)

Figure 6.4: Performance comparison of the PALE algorithm and the proposed algo-
rithm. (a) and (b) show the required time to elect the leader in the best case and worst
case, respectively. (c) and (d) show the number of exchanged messages to elect the leader

in the best case and worst case, respectively.

6.4 Summary

This chapter introduced a leader election method to elect a good quality leader (according

to the system requirements) for a dynamic and partially asynchronous distributed system

with weak assumptions. Here, we involved a group of experts and used the concept of

Multi-attribute decision-making (MADM) to elect a suitable leader for the system. The

experts play a vital role in pointing out the necessary attributes of the nodes and their

weight according to their importance to elect the leader. Once the attributes and weights

are determined, a node calculates its quality factor using the proposed modified TOPSIS

method. The proposed leader election algorithm then elects the node with the highest

quality factor as the system leader. We proved that the proposed election algorithm sat-

isfies the Uniqueness, Agreement, and Termination conditions which means the proposed

algorithm is a self-stabilizing one. So the proposed algorithm can maintain the system

Chapter 6. Multi-attribute based self-stabilizing leader election algorithm 144

consistency that helps the system complete its tasks successfully. According to the sys-

tem requirements, our election method elects a good quality leader for the system, so the

elected leader helps to improve the system resource utility, reliability, fault tolerability, and

overall performance. That directly helps improve the performance of the applications of

the various fields that adopt this system. The simulation results show that the algorithm

reduces the time and message overhead to elect a suitable leader.

