
Chapter 5

Preselection Based Leader

Election in Distributed Systems

A distributed real-time system (DRTS) consists of autonomous computing nodes

connected by a real-time network. Nodes in such a system cooperate to achieve a

common goal within specified deadlines. The correctness of such (DRTS) system

behavior depends not only on the logical results of the computations but also on

the time when the results are produced. Missing the deadline may have disastrous

consequences. Many industries use real-time systems that are distributed locally

and globally. Airlines use flight control systems, Uber and Lyft use dispatch sys-

tems, manufacturing plants use automation control systems. This chapter presents a

leader election method for distributed real-time systems where nodes are connected

through an arbitrary network topology. The distributed real-time systems need to

meet the specified deadline. So after the leader crashes, the system needs to select

another leader instantly. In this chapter, we introduce the concept of the primary

leader and the provisional leader that helps to an instant selection of a leader. The

existing algorithms elect only one node as a leader. In contrast, the proposed algo-

rithm identifies r comparatively higher potential leader capable nodes in the system

and designates the highest potential node among them as the primary leader. The

other r−1 higher potential leader capable nodes are kept in reserve so that while the

97

Chapter 5. Preselection based leader election algorithm 98

primary leader fails, another leader capable node from these nodes can be selected

instantly. To reduce the time complexity and the message complexity of the election

process, based on the eccentricity of the nodes, we divide a distributed system into

two layers (i.e., inner-layer and outer-layer). Only the inner-layer nodes take part

to identify the list of potential nodes. We introduce the concept of the quality-

coefficient to identify the potential nodes of the system. The quality-coefficient of a

node is calculated by combining the eccentricity, processing capacity (Pc), Memory

capacity (Mc), Degree (Deg) and Eccentricity (Etc) of the node. Our algorithm

always tries to elect a node with the highest quality-coefficient as the leader so that

the system gets a high quality leader. The algorithm proposed herein satisfies the

uniqueness, agreement, and termination conditions that make it a self-stabilizing

one. We also simulate the proposed algorithm on several arbitrary network topolo-

gies and compare the results with the well-known existing algorithms to evaluate

the algorithm’s performance.

Outline: In section 5.1, we describe our considered distributed real-time system

model. Section 5.2 presents the proposed leader election algorithm. Complexity

analysis and an illustrative example of the algorithm are also given in this section.

Further we show that the proposed algorithm is a self-stabilizing leader election

algorithm. All the experimental results and performance comparison of the proposed

algorithm are given in section 5.3. Section 5.4 summarizes the work of this chapter.

5.1 System Model

We consider a distributed system comprised of N nodes connected through an arbi-

trary network topology for this work, where N is a finite integer and N ≥ 2. Every

node has a unique Id that helps to identify a node uniquely. The links that connect

these nodes are bidirectional. The nodes communicate through message exchanging.

Every node of the system has a local clock, and the local clocks of the nodes need not

be synchronized. We assume that a node knows all the adjacent nodes’ information.

Chapter 5. Preselection based leader election algorithm 99

A graph χ = (Π, L) represents this system; where Π is the set of nodes (|Π| = N)

and L is the set of all network connectivity (links) between the nodes.

5.1.1 Assumptions

The following assumptions are considered for the work described in this chapter.

� Every node has a unique Id. For the sack of simplicity, we assume that the Id

of a node belongs to 0 to N − 1.

� Every node knows its eccentricity.

� Every node knows the highest and lowest values of every property used to

calculate the quality-coefficient.

5.1.2 Definitions

The following definitions are provided for clarity regarding their usage in the rest of

this chapter.

Definition 1 (Win): Making use of the eccentricity [66] of the nodes, we divide

the system into two layers i.e., the inner-layer and the outer-layer. Win refers to

the width of the inner layer, and we represent it as a mathematical function of the

system’s diameter. In this work, we consider Win = ⌊
√
D⌋.

Definition 2 (ILN): It is the set of inner-layer nodes. Ecti is the eccentricity of

a node i. If Ecti < R +Win, the node i belongs to the inner-layer of the system.

Definition 3 (OLN): It is the set of outer-layer nodes. If Ecti ≥ R + Win, the

node i belongs to the outer-layer of the system.

Definition 4 (Qci): It refers to the quality-coefficient of a node i. Depending

on this quality-coefficient, we identify the potential nodes in the system. In this

Chapter 5. Preselection based leader election algorithm 100

0

111098

7654

321
5

6

5

5

5

63

3

4

4

4 4

Figure 5.1: An arbitrary network consisting of 12 nodes and 15 links.

work, we consider four properties (Processing capacity (Pc), Memory capacity (Mc),

Eccentricity (Ect) and Degree (Deg)) of a node to calculate its Qci. A node with

higher processing capacity, higher memory, higher degree, and lower eccentricity is

considered a higher potential node. Measurement units of all these properties are

different. That is why we normalize them using linear max-min data normalization

method [112] and calculate the quality-coefficient using equation 5.1. Here, we

assume that every node knows the highest and lowest values of every property. If

X is a property, then max(X) and min(X) refers to the highest and lowest values

of X, respectively and wX is the weight of X. The weight is used to prioritize the

properties. For example, in equation 5.1, max(Pc) andmin(Pc) refers to the highest

and lowest values of the processing capacity and wPc is the weight of the processing

capacity. In this equation, wPc, wMc, wDeg, wEct ≥ 0 and wPc+wMc+wDeg+wEct = 1.

Qci = wPc
Pci −min(Pc)

max(Pc)−min(Pc)
+wMc

Mci −min(Mc)

max(Mc)−min(Mc)
+wDeg

Degi −min(Deg)

max(Deg)−min(Deg)
+wEct

max(Ect)− Ecti

max(Ect)−min(Ect)
(5.1)

5.1.3 Types of Message

In this work, we use three types of messages to elect a new leader. They are leader crashed

information message (Leader crash[Fl Id]), election message (Emsg[Emc Id, F l Id,Qcc]),

and new-leader declaration message (New leader[El Id,Np List]). When an outer layer

node realizes the leader failure, the node creates a Leader crash[Fl Id] message and sends

it to a nearest inner layer node to inform the inner layer node that the leader has crashed.

This message has only one field (i.e., Fl Id). On the other hand, the election message

(Emsg[Emc Id, F l Id,Qcc]) is used to initiate the election and make the list of potential

Chapter 5. Preselection based leader election algorithm 101

nodes through the election. It has three fields (i.e., Emc Id, Fl Id, and Qcc). New-

leader declaration message (New leader[El Id, T l,Np List]) is used for declaration of a

new leader for the system. It has three fields (i.e., El Id, T l and Np List).

5.2 Proposed Leader Election Algorithm

Unlike the existing algorithm, instead of electing one node, the proposed algorithm iden-

tifies r potential leader capable nodes and designates the highest potential node among

them as the leader. Later on, when the system leader crashes, rather than running the

whole election algorithm, instantly, the system can choose the next leading alive node from

the list of potential leader capable nodes as the provisional leader. So the tasks that need

coordination do not get halted for a long time for the lack of a coordinator. As a result,

the overall system performance gets increased. Afterwards, the system elects the primary

leader invoking the entire election algorithm as per its convenience. In the proposed elec-

tion method, based on the eccentricity of the nodes, we divide the network into two layers,

i.e., inner-layer and outer-layer. Only the inner-layer nodes participate in identifying the

r potential nodes among them. The proposed algorithm identifies r nodes as the list of

potential nodes with the higher quality-coefficient from all the inner layer nodes. In this

algorithm we a function i.e., Create Emsg(). The definition of this function is as follows.

Create Emsg()

1. Emc Id← NIdi

2. Qcc ← Qci

3. Create an election message Emsg[Emc Id, F l Id,Qcc], and send it to all the adjacent

inner layer nodes.

Election initiation: This phase illustrates how an election is initiated in the proposed

election method. Algorithm 8 describes the election initiation steps. The leader failure

detection can be done by the outer-layer node or by the inner-layer node. When a node i

perceives the leader’s failure, it removes the crashed leader’s information from its P Listi.

Then it checks its P Listi and performs the following action.

Chapter 5. Preselection based leader election algorithm 102

Algorithm 8: Election Initiation
// When a node i perceives the leader’s failure and initiates the election.

1 if (the node i realizes the leader’s failure) then
2 Remove Fl Id from the P Listi list.
3 if (P Listi == Empty) then
4 if (node i ∈ OLN) then
5 Create a Leader crash[Fl Id] message, send it to a nearest inner layer node and start timer for

2Tf unit time.

6 else
7 Create Emsg().
8 Append NIdi and Qci into the P Listi, start the timer for 2Tin unit time

9 end

10 else
11 Choose the highest potential alive node from the P Listi list as the provisional system leader,

El Id← the new system leader Id, L Idi ← El Id
12 T l← 1, Pli ← 1, Np List← P Listi, create a New leader[El Id, T l,Np List] message and

broadcast it over the network.
13 end

14 end

1. If the P Listi is empty, and the node i is an outer-layer node, then the node i creates

a Leader crash[Fl Id] message and sends it to the nearest inner-layer node to inform

about the leader’s failure and starts its timer for 2Tf unit time.

2. If the P Listi is empty, and the node i is an inner layer node or it gets a Leader crash[Fl Id]

message, then the node i creates an Emsg[Emc Id, F l Id,Qcc] message and initiates

an election by sending it to all the adjacent inner layer nodes. After that It appends

self information (NIdi and Qci) into the P Listi and starts timer for 2Tin unit time.

3. If the P Listi is not empty, the node i selects the highest potential alive node from

the P Listi list and declares it as the provisional system leader by creating and

broadcasting the New leader[El Id, T l,Np List] message over the network.

Finding potential nodes: This phase explains how the proposed election method iden-

tifies the r potential nodes and lists them. Algorithm 9 describes the steps of finding

the higher quality-coefficient nodes. Suppose a node j gets a Emsg[Emc Id, F l Id,Qcc]

message, then it performs the following actions.

1. If a node j gets the election messages for the first time, the node j makes its P Listj

empty. Then it puts the node Id and quality-coefficient received through the message

in its P Listj and sends the received election message to all the adjacent inner layer

nodes except the election message sender node. If node j is not an election initiating

Chapter 5. Preselection based leader election algorithm 103

Algorithm 9: Potential node finding

// When a node j receives an election messages

(Emsg[Emc Id, F l Id,Qcc]).
1 if (Node j gets an election messages for the first time) then
2 Make the P Listj empty.
3 Put the node Id and quality-coefficient received through the message in the

P Listj .
4 Send the received message to all the adjacent inner layer nodes except its sender.
5 if (Node j is not an election initiating node) then
6 Place the self Id and self quality-coefficient in the P Listj in such a way so

that the P Listj gets arranged in descending order according to the
quality-coefficient.

7 Create Emsg(), start the timer for 2Tin unit time.

8 end

9 else
10 if (Node j already got the same election message.) then
11 Discard the received election message (Emsg[Emc Id, F l Id,Qcc])
12 else
13 if (P Listj == Full) then
14 if (Qcc is less than the lowest quality-coefficient in P Listj) then
15 Discard the received election message (Emsg[Emc Id, F l Id,Qcc])
16 else
17 Remove the entry with the lowest quality-coefficient from the P Listj .
18 Place the node Id and quality-coefficient in the correct position in the

P Listj so that the order gets maintained.
19 Send the received election message to all the adjacent inner layer nodes

except its sender.
20 end

21 else
22 Place the node Id and quality-coefficient received through the message in

the correct position in the P Listj so that the order gets maintained.

23 end

24 end

25 end

node, it places self Id and self quality-coefficient in the P Listj in such a way so

that the entries in the P Listj get arranged in descending order according to the

quality-coefficient. It creates an election message with its self information, sends it

to all the adjacent inner-layer nodes and starts its timer for 2Tin unit time.

2. When node j gets further election messages, it checks whether it has already got

the same election message. If it already got the same election message, it discards

the message. Otherwise it checks whether its P Listj is full. If P Listj is full,

Chapter 5. Preselection based leader election algorithm 104

node j compares the Qcc (received by the election message) with the lowest quality-

coefficient in the P Listj . If Qcc is less than the lowest quality-coefficient in the

P Listj , the node j discards the received election message. Otherwise, it removes

the entry with the lowest quality-coefficient from the P Listj , places the node Id

and quality-coefficient received through the election message in the correct position

in the P Listj so that the order gets maintained. Then it sends the received elec-

tion message to all the adjacent inner layer nodes except the sender of the election

message. On the other hand, if P Listj is not full, node j places the node Id and

quality-coefficient received through the election message in the correct position in

the P Listj . In the case of any tie or symmetry, node Id is considered to break the

tie or symmetry, and the higher node Id gets the preference.

Leader declaration: In this phase, the inner layer nodes declare the newly elected

leader by creating a new-leader declaration message (New leader[El Id, T l,Np List]) and

sending it to all other nodes of the system. Algorithm 10 describes the newly elected leader

declaration steps.

1. After the timer’s timeout, an inner layer node i selects the node with the highest

quality-coefficient from its P Listi as the new system leader. Next, the node i creates

a New leader[El Id, T l,Np List] message (where, El Id contains the newly elected

leader Id, T l = 0 and Np List contains the r potential node Ids), and sends it to all

the adjacent outer layer nodes.

2. When a node j gets a New leader[El Id, T l,Np List] message, it considers El Id as

the new leader, copies Np List into its P Listj and sends the received message to all

the adjacent outer layer nodes. If node j further gets theNew leader[El Id, T l,Np List]

message it discards the message.

5.2.1 Illustrative Example

This section explains the proposed algorithm with the help of an example. Suppose, a

distributed system consists of 12 nodes connected through an arbitrary network topology

Chapter 5. Preselection based leader election algorithm 105

Algorithm 10: Elected leader declaration

// After the time out of a node i.
1 if (timer of node i == timeout) then
2 if (node i ∈ ILN) then
3 Choose the node with the highest quality-coefficient from the P Listi as the

new system leader, El Id← the new system leader Id.
4 L Idi ← El Id, T l← 0, Np List← P Listi, create a

New leader[El Id, T l,Np List] message and send it to all the adjacent outer
layer nodes.

5 else
6 if (node i did not get any new-leader declaration message) then
7 Re-initiate the election.
8 end

9 end

10 end
// Suppose, a node j gets an New leader[El Id, T l,Np List].

11 if (node j gets a New leader[El Id, T l,Np List] message for the first time) then
12 L Idi ← El Id, sends the New leader[El Id, T l,Np List] message to all the

adjacent outer layer nodes except its sender
13 else
14 Discard the message
15 end

(cf. Figure 5.2 (a)). In Figure 5.2, a circle represents a node, and the integer inside the

circle refers to the node Id. The blue-colored integer outside the circle is the eccentricity of

a node. The diameter and radius of the network are 6 and 3, respectively and the width of

the inner layer is 2. All the red-colored nodes belong to the inner layer, and the remaining

nodes belong to the outer layer. Other details of the nodes are given in Table 5.1. In this

example, the minimum and maximum processing capacity, memory capacity, eccentricity

and degree are 1 and 6, 4 and 24, 1 and 11, and 1 and 11 respectively. We want to identify

3 potential nodes through the proposed election method. That means, here r = 3 and the

P Listi can contain information of at most three nodes. In this example, we assume that

a message takes one unit of time to get transmitted from one node to its adjacent node.

Suppose, node 12 was the system leader. When node 12 crashes, node 10 realizes it and

initiates the election creating the Emsg[10, 12, 0.48] message (as node 12 is crashed, we

did not show it in Figure 5.2). Then it puts self Id (10) and self quality-coefficient (0.48)

into the P List10, sends the Emsg[10, 12, 0.48] to node 6 and starts timer for 4 time units.

Node 6 gets the Emsg[10, 12, 0.48] message and it is its first received election message,

Chapter 5. Preselection based leader election algorithm 106

so it places self Id and Id 10 and their corresponding quality-coefficients in the first and

second position of the P List6 respectively. Then node 6 sends the Emsg[10, 12, 0.48] to

nodes 1, 2, 5 and 9. Afterwards, node 6 creates the Emsg[6, 12, 0.61] message, sends it to

nodes 1, 2, 5, 9 and 10 and starts the timer for 4 time unit. When the nodes 1, 2, 5 and

9 get the Emsg[10, 12, 0.48] and Emsg[6, 12, 0.61] message, they store Ids 6, 10 and self

Id and their corresponding quality-coefficients into their respective PNList according to

the descending order of the quality-coefficient. Each of nodes 1, 2, 5 and 9 will send the

Emsg[6, 12, 0.61] message to its all adjacent inner layer nodes except node 6. Afterwards,

each of them creates the election message using self information and sends the same to

each one’s all adjacent inner layer nodes and start the timer for 4 time unit. On the other

hand, when node 10 gets the Emsg[6, 12, 0.61] message, it places node Id 6 and the quality-

coefficient of node 6 (0.61) in the correct position (first position) in its P List10. Next,

when node 6 gets election messages created by nodes 1, 2, 5 and 9, it sends the election

messages created by nodes 1 to nodes 2, 5, 9 and 10, and the election messages created by

5 to nodes 1, 2, 9 and 10. In this way, all the inner layer nodes gets the election messages

created by nodes 6, 1 and 5 and identify nodes 6, 1 and 5 as the three most potential nodes

of the system and select node 6 as the new system leader. After the timer’s time-out of

an inner layer node, the node creates a new-leader declaration message and sends it to its

adjacent outer layer nodes to inform the outer layer nodes about the new system leader

and the identified potential leader capable nodes.

Table 5.1: Details of the arbitrary network shown in Figure 5.2 (a)

Node Id
Processing
capacity

Memory
capacity

Eccentricity Degree Layer of the node Quality-coefficient

0 2.8 20 5 1 Outer 0.44
1 4.1 16 3 3 Inner 0.55
2 3.6 12 4 3 Inner 0.45
3 4.2 16 6 1 Outer 0.43
4 3.2 12 6 1 Outer 0.33
5 3.9 12 4 4 Inner 0.49
6 4.3 16 3 5 Inner 0.61
7 4.3 12 5 3 Outer 0.46
8 2.9 8 5 3 Outer 0.34
9 4.0 8 4 2 Inner 0.40
10 3.6 16 4 2 Inner 0.48
11 4.5 12 5 2 Outer 0.45

Chapter 5. Preselection based leader election algorithm 107

109

65

21

Id Lf

Id Lf

Id Lf

Id Lf

Id Lf

Id Lf
10 .48

109

65

21

Id Lf

Id Lf

Id Lf

Id Lf

Id Lf

Id Lf
10 .48

0

111098

7654

321
5

6

5

5

5

63

3

4

4

4 4

6 .61
10 .48

(b)(a) (c)

(e)(d) (f)

6 .61
10 .48

6 .61

6 .61

6

6

.61

.61

109

65

21

Id Lf

Id Lf

Id Lf

Id Lf

Id Lf

Id Lf

10 .48
6 .61

1 .55
10 .48

5 .49
10 .48

10 .48
9 .40

10 .48
2 .45

6 .61
1 .55

6 .61

6 .61

6

6

.61

.61

109

65

21

Id Lf

Id Lf

Id Lf

Id Lf

Id Lf

Id Lf

10 .48
6 .61

1 .55
5 .49

1 .55
5 .49

10 .48
9 .40

1 .55
10 .48

5 .49

6 .61
1 .55

6 .61

6 .61

6

6

.61

.61

109

65

21

Id Lf

Id Lf

Id Lf

Id Lf

Id Lf

Id Lf

1 .55
6 .61

1 .55
5 .49

1 .55
5 .49

1 .55
5 .49

1 .55
5 .49

5 .49

5 .49

Figure 5.2: (a) is an arbitrary network consisting of 12 nodes and 15 links. (b), (c), (d),
(e) and (f) are the several steps of the proposed algorithm to identify the higher potential

nodes of the inner layer.

5.2.2 Complexity Analysis

In this section, we calculate the time and message complexity of the proposed algorithm.

5.2.2.1 Message complexity

According to the system model, the nodes communicate through message exchanging,

so the message complexity of the algorithm depends on the total number of exchanged

messages during the election.

Best case: When the primary leader crashes and a node is selected as the provisional leader

from the list of potential nodes. It is the best-case scenario of the proposed algorithm. In

the best case, only one node realizes the leader’s failure and selects the highest potential

alive node from the list as the provisional leader, and declares the newly selected leader by

creating and broadcasting a new-leader declaration message. Hence, in the best case, the

Chapter 5. Preselection based leader election algorithm 108

message complexity of the proposed algorithm is O(|L|), where L is the set of all network

connectivity.

Worst case: When the list of r potential nodes needs to be identified through the election,

it becomes the worst case of our algorithm. In this case, at a time, all nodes realize the

leader’s failure and initiate the election. So the outer layer nodes create O(|OLN |) leader

crashed messages. Furthermore, the inner layer nodes exchange O(r · |Lin|) (where Lin is

the set of all network connectivity in the inner layer.) election messages to identify the new

r higher potential nodes of the system. After that, the highest prominent node from the list

is selected and declared as the new leader. The algorithm exchanges O(|Lout|) (where Lout

is the set of all network connectivity of the outer-layer.) messages for the declaration of the

new leader. Hence, in the worst case, the message complexity is O(|OLN |+r·|Lin|+|Lout|).

5.2.2.2 Time complexity

In the case of leader election, time complexity refers to the time steps required to elect a

new system leader. Here, we assume that a message takes c unit time to travel from one

node to its adjacent node, where c is a constant.

Best Case: In the best case, the algorithm takes a maximum of D · c unit time to select

and declare the provisional leader. So, in the best case, the time complexity is O(D).

Worst case: In the worst case, the algorithm takes a maximum of 2D · c unit time to

identify the r higher potential nodes and declare the highest potential node as the system

leader. Hence, in the worst case, the time complexity is also O(D).

5.2.3 Proof of Self-stabilization

Uniqueness, agreement and termination are three necessary conditions of the self-stabilizing

leader election algorithm. Now, we will show that our algorithm satisfies these three con-

ditions.

Lemma 5.1. Every proper execution of the proposed algorithm elects only one node as the

system leader.

Chapter 5. Preselection based leader election algorithm 109

Proof: When an election is conducted to identify the r potential leader capable nodes

from the inner layer nodes, the election messages created by the r nodes with the higher

quality-coefficients get broadcast in the inner layer of the network. Thus all the inner

layer nodes get to know about the r nodes with comparatively higher quality-coefficients

and elect the highest quality-coefficient node as the leader. If every inner layer node has a

distinct quality-coefficient, then the node with the highest quality-coefficient among them

is elected. On the other hand, if multiple nodes have the highest quality-coefficient, then

the node Id is used to break the symmetry, and the node with the highest Id among them

gets the preference to become the system leader. Every node has a unique Id, so the

algorithm always selects only one node as the system leader.

Lemma 5.2. In every proper execution of the proposed algorithm, all the nodes of the

system get to know about the elected leader and agree with it.

Proof: During the election, the election messages created by the r nodes with the compar-

atively higher quality-coefficients get broadcast in the inner layer of the network. Thus all

the inner layer nodes get to know about the r nodes that have the higher quality-coefficients

and the elected leader. The last phase of our algorithm is the leader declaration phase. In

this phase, a leader declaration message informs all the outer layer nodes about the newly

elected leader. So at the end of the election, all the system nodes must know about the

newly elected system leader.

Lemma 5.3. The proposed algorithm is terminated in a finite time.

Proof: The propounded algorithm takes a maximum of 2D hops time to select the r most

prominent nodes and elects a leader. According to the system model, a message gets

exchanged between two nodes within a bounded time. Suppose a message takes c unit of

time to get exchanged from one node to its adjacent node, where c is constant. After the

time out of the timer, a node gets to know about the selected list of r number of potential

nodes and the newly elected leader. So a node terminates the execution of the election

process by 2 ·D ·c unit of time. The system consists of a finite number of nodes (N), so the

diameter D of the network is also finite. Hence the proposed algorithm gets terminated

in a finite time and elects a leader for the system.

Chapter 5. Preselection based leader election algorithm 110

Theorem 5.4. The proposed algorithm is a self-stabilizing leader election algorithm.

Proof: Lemma 5.1, Lemma 5.2 and Lemma 5.3 prove that the proposed algorithm satis-

fies the uniqueness, agreement and termination conditions respectively. That means the

algorithm satisfies all the three conditions of a self-stabilizing leader election algorithm.

Hence, the proposed algorithm is a self-stabilizing leader election algorithm. ■

5.3 Experimental Analysis and Discussion

The network layering concept of the proposed election method helps to reduce the message

complexity and time complexity of the election process. Instead of all the nodes, only the

inner layer’s nodes directly participate in the election in identifying the list of potential

nodes. That is why during the election, the required number of exchanged messages and

time steps get reduced. The existing algorithms elect one node as the leader, whereas

the proposed algorithm identifies the list of r most potential leader capable nodes and

designates the highest potential node as the primary leader. When the system leader

crashes, for the lack of a coordinator, the coordination-based tasks of the system get

halted until a new leader is elected. According to the proposed election method, whenever

a primary leader fails, instantly, the system can choose a provisional leader from the

list so that due to the lack of coordination, the system’s work does not get halted for a

long time. This provisional leader controls and coordinates the system until the primary

leader is being elected by the next election. The provisional leader makes the system more

flexible because the system can wait for a suitable time to conduct a new election without

hampering system performance. Thus The identification of r potential nodes helps to

improve the system performance. Identification of the potential nodes and selecting one

of them as the leader is made based on the quality-coefficient. The quality-coefficient of

a node is calculated considering the processing capacity, memory capacity, eccentricity

and degree of the node. A node gets elected as the leader with comparatively higher

processing capacity, higher memory capacity, higher degree, and lower eccentricity in the

proposed election method. A higher processing and memory capacity leader can perform

its leadership tasks faster, which improves the overall system performance. On the other

Chapter 5. Preselection based leader election algorithm 111

hand, the leader’s higher degree and lower eccentricity reduce network traffic and help

in faster communication between the leader and other nodes. In the proposed method,

the width of the inner layer is changeable. It is favorable to keep the size of the inner

layer small, but if required, we can change the width of the inner layer (Win) by taking

a different mathematical function of D so that the election algorithm can always select a

good quality leader for the system.

Table 5.2: Details of the different arbitrary networks for the simulation.

Sl. no. Total no.
of nodes

No. of inner
layer nodes

No. of outer layer nodes Total no. of edges Diameter

Network 1 12 6 6 15 6
Network 2 20 8 12 29 8
Network 3 40 14 26 56 12
Network 4 60 21 39 81 17
Network 5 80 28 52 106 21
Network 6 100 32 68 127 25

We simulate the proposed leader election algorithm on six different arbitrary network

topologies. We get to know the number of exchanged messages and time steps to elect

the leader in the best and worst-case scenario through this simulation. These arbitrary

networks were constructed by the different number of nodes and links. In our experiment,

we consider r = 5. The networks details are given in Table 5.2 and the simulation results

are shown in Figures 5.3 and 5.4. All experiments were performed on a single machine.

The machine was decorated with Intel core(TM)i5-2410M processor (2.3GHz, 4MB cache,

2.9GHz Turbo Boost), 8GB RAM, 1TB HDD, NVIDIA GeForce graphics, running Ubuntu

Linux Release 16.04 (xenial kernel 4.4). We used python 3.6 as the programming language

and mpi4py as the message passing interface (MPI).

We compare the proposed algorithm with three well-known and highly cited algorithms

known as Mega-Merger [49] [100], Yo-yo [100], and Vasudevan’s algorithm [114]. This

comparison is made in terms of the requirement of the total exchanged messages and total

time to complete the election process, and shown in Figure 5.3 and Figure 5.4. Figure

5.3 (a) and (b) show the number of exchanged messages in the best case and worst case

scenario, respectively. These two graphs show that the proposed algorithm exchanged

fewer messages than Mega-Merger, Yo-yo, and Vasudevan’s algorithm to elect the leader.

On the other hand, Figure 5.4 (a) and (b) show the time to elect the leader in the best case

and worst case scenario, respectively. Here it is clear that the proposed algorithm takes

Chapter 5. Preselection based leader election algorithm 112

N
u

m
b

er
 o

f
ex

ch
a

n
g

ed
 m

es
sa

g
e

Number of nodes

1

10

100

1000

12 20 40 60 80 100

Vasudevan's algorithm
Mega-Merger
Yo-yo
The proposed algorithm

(a)

N
u

m
b

er
 o

f
ex

ch
a

n
g

ed
 m

es
sa

g
e

Number of nodes

1

10

100

1000

10000

12 20 40 60 80 100

Vasudevan's algorithm
Mega-merger
Yo-yo
The proposed algorithm

(b)

Figure 5.3: The total number of exchanged messages required by different algorithms to
complete the election process. (a) and (b) represent the number of exchanged messages
in the best case and worst case, respectively. (c) and (d) represent the required time in

the best case and worst case, respectively

T
im

e
 (

m
il

li
se

co
n

d
)

Number of nodes

1

10

100

1000

10000

100000

12 20 40 60 80 100

Vasudevan's algorithm
Mega-Merger
Yo-yo
The proposed algorithm

(a)

1

10

100

1000

10000

100000

12 20 40 60 80 100

Vasudevan's algorithm
Mega-Merger
Yo-yo
The proposed algorithm

Number of nodes

(b)

T
im

e
 (

m
il

li
se

co
n

d
)

Figure 5.4: The total time required by different algorithms to complete the election
process. (a) and (b) represent the required time in the best case and worst case, respec-

tively

less time than Mega-Merger, Yo-yo, and Vasudevan’s algorithm to elect the leader. After

the simulation, we get to know a limitation of the proposed algorithm. In some cases, it

may happen that after the primary leader crashes, the next chosen provisional leader from

the list might be slightly inferior because of the loss associated with the primary leader

crash in the form of links failure.

Chapter 5. Preselection based leader election algorithm 113

5.4 Summary

This chapter presented a new approach of leader election for a distributed real-time system

consisting of N nodes connected through an arbitrary network topology. We introduce

the concept of a provisional leader that helps to reduce system performance degradation

during the election. The algorithm can identify a list of some most potential leader nodes

and designate the best one from the list as the primary leader initially. After that, when

the primary system leader crashes instantly, the next prominent node of the list is selected

as the provisional leader. This provisional leader controls and coordinates the system until

the next election is electing the primary leader. That means the provisional leader makes

the system more flexible because the system can wait for a suitable time to conduct a

new election without hampering system performance. On the other hand, the concept of

layering the system helps to reduce the required number of exchanged messages and time

steps to elect a system leader. Calculating the quality-coefficient of a node considering

its processing capacity, memory capacity, eccentricity, and degree of a node and electing

the leader based on the quality-coefficient always helps select one of the best nodes as the

leader.

