
Chapter 4

Lea-TN: A Leader Election

Algorithm Considering Node and

Link Failures in a Torus Network

Torus network topology offers many advantages such as higher speed, lower latency,

better fairness, and lower energy consumption. For these kinds of benefits, nowadays,

it is used to construct many parallel and distributed systems like IBM Blue Gene,

IBM Sequoia, Mira, and Sugon TC8600. In this chapter, first, we introduce a lower

bound Ω(N log3N) of message complexity on a comparison-based leader election

for a 2D torus network (where N is the number of nodes in the network). Next,

we propose a leader election algorithm (Lea-TN) for a 2D torus network. The Lea-

TN algorithm is designed considering both the node and link failures of the torus

networks. It is a deterministic algorithm that can elect a leader even there are some

link or node failures in the system. We consider the number of non-faulty links and

the subsisting nodes’ failure rate to elect a reliable leader. The algorithm chooses

a node with a higher number of non-faulty links and the least failure rate among

the subsisting nodes as the leader. We introduce new patterns for sending messages

that help reduce the number of exchanged messages and the execution time of the

election process. The proposed algorithm (Lea-TN) enables a node to identify its

58

Chapter 4. A leader election algorithm considering node and link failures 59

link failures during the election also. Further, we simulate the Lea-TN algorithm

and compare its performance with the well-known existing algorithms.

Outline: The rest of this chapter is organized as follows. Section 4.1 details the

system model for which we design the leader election algorithm. Section 4.2 presents

a lower bound message complexity of the leader election problem. Section 4.3 de-

scribes the proposed leader election method. The complexity analysis, proof of

self-stabilization and fault tolerability of the proposed election method are also pro-

vided in this section. Section 4.4 present the empirical evaluation of our election

method and section 4.5 summaries the chapter.

4.1 System Model

We consider a crash-recovery distributed system [24] consisting of N nodes. The

underlying network of this system is a synchronized 2D torus with n rows and n

columns (where N is a finite integer, N ≥ 9, n ≥ 3, and N = n× n). Figure 4.1(a)

shows a 4 × 4 2D torus network. Every node has a unique node identifier (node

Id) of O(logN) bits to identify the node uniquely. All the links in this system are

bidirectional, and the nodes communicate with each other by sending messages [91]

[23]. In this system, nodes take steps at perfectly synchronized rounds. All messages

sent in a round are received at the end of that round. Every perfect node has exactly

four edges that connect that node to its adjacent four nodes. Figure 4.1(b) shows a

node and its four links. A node i has a send-buffer and a receive-buffer associated

with each link of the node. Any system node or link may fail independently and

recover from the failure state to the working state. We assume that initially, the

system has no node or link failures. Formally, a graph Tn,n = (Π, L) represents

this system, where Π denotes the set of nodes (|Π| = N and Π = {N Idi} where

i = 0, 1, 2,, N − 1). If there is no link failure, the degree of a node N Idi is 4. L

denotes the set of network connectivity between the nodes and |L| = 2N .

Chapter 4. A leader election algorithm considering node and link failures 60

(a) A 4× 4 2D torus network.

Down (-y)

Left (-x) Right (+x)

Up (+y)

(b) A node is connected to its adjacent right, left, upper,
and lower nodes through the +x, -x, +y, and -y links,
respectively.

Figure 4.1: Details of a 2D torus network.

Node and Link Failures: We consider a crash-recovery distributed system ab-

straction [24] for designing a new leader election algorithm. In this abstraction, a

node or a link can crash and may subsequently recover. Failure of a node or a link

occurs when either stops functioning correctly, and recovery consists in restoring it

from an erroneous state to an error-free state. Let’s assume that a node or a link

does not fail again within a reasonable amount of time after it recovers from the

failure state. A link cannot create or alter messages. Whenever a node recovers

from the failure state to the working state, it updates itself by collecting the cur-

rent system information from its adjacent nodes. If a node is recovered during the

election, we exclude it from participating in the election. At the end of the election,

this node collects the elected leader information from its adjacent nodes.

4.2 Lower Bound

This section proposes a lower bound [42] [77] of the message complexity of a comparison-

based leader election for a synchronous 2D torus network. The lower bound of the

message complexity states that the leader cannot be elected by exchanging fewer

messages than that bound. We calculate this lower bound for the worst-case sce-

nario of the leader election problem. When all the nodes of a distributed system

Chapter 4. A leader election algorithm considering node and link failures 61

realize the leader failure and initiate election (a node starts election by creating

an election initiating message) simultaneously, it is the worst-case scenario of the

comparison-based leader election problem. Depending on the system’s criteria, one

node (either the node having the maximum value of the comparison parameter

or the minimum value of the comparison parameter) gets elected as the leader in

the comparison-based leader election. We assume that the node with the highest

comparison parameter value will be elected. Hence, the election initiating message

created by the node with the highest comparison parameter value must be sent to

all the nodes by exchanging the minimum number of messages. On the other hand,

the election initiating messages created by the other nodes have to be discarded as

soon as possible. Here, a node with a higher value of the comparison parameter has

a higher priority. That is why a node discards an election message created by a node

with a lower value of the comparison parameter than itself.

A spanning tree with N nodes enables a message to be broadcast from one node to

all other nodes with only N − 1 edge traversals [81]. So, the spanning-tree protocol

broadcasts information from one node to all other nodes using the least number of

message exchanges. To find a lower bound message complexity, we first generate a

spanning ternary tree from a 2D torus network (cf. Figure 4.2). A ternary tree is

nothing but a k-ary tree [113] [65] (also known as m-ary tree) where k = 3. If the

message created by the node with the highest value of the comparison parameter

is broadcasted following the ternary tree, then the minimum number of messages

will be exchanged for broadcasting. On the other hand, when the ternary tree is a

complete ternary tree, and the value of every parent’s comparison parameter is higher

than that of its child nodes, then the election initiating messages created by other

nodes will be discarded as quickly as possible. In this situation, an election initiating

message created by a node traverses only its parent node and the descendant nodes.

Assume h is the height of a complete ternary tree of N nodes, and the total number

of messages required to elect a leader is TM .

Chapter 4. A leader election algorithm considering node and link failures 62

6 4 9 1

2 0 3 7

8 5 10 13

12 11 14 15

15

14 13 12

11 10 9 8 7 6

5 4 3 2 1

0

Figure 4.2: Building a ternary tree from a (4× 4) 2D torus network

h = ⌈log3N⌉ (4.1)

TM =
h∑

i=0

Sum of the number of parent and descendant nodes for each node of the

tree’s ith level.

=
h∑

i=0

3i(
3h+1−i − 1

2
)

≥
h−1∑
i=0

3i(
3h−i − 1

2
)

=
h−1∑
i=0

1

2
(3h − 3i)

=
h−1∑
i=0

1

2
(3h)−

h−1∑
i=0

1

2
(3i)

=
1

2
h(3h)− 1

4
(3h − 1)

=
1

2
h(3h)− 1

4
3h +

1

4

=
1

2
3h(h− 1

2
) +

1

4

=
1

2
3⌈log3 N⌉(⌈log3N⌉ −

1

2
) +

1

4

≥ 1

2
3log3 N(log3N −

1

2
) +

1

4

=
1

2
N(log3N −

1

2
) +

1

4

=
1

2
N log3N −

1

4
N +

1

4
= Ω(N log3N)

Thus we can state that the lower bound of the message complexity of a comparison-

based leader election for a synchronous 2D torus network is Ω(N log3N).

Chapter 4. A leader election algorithm considering node and link failures 63

4.3 Proposed Methodology

Our goal is to devise a new leader election algorithm that can (1) tolerate multiple

link and node failures (2) elect a comparatively more reliable leader from among the

subsisting nodes (3) satisfy uniqueness, agreement, and termination properties (4)

exchange fewer messages and take less time to elect the leader (5) help to identify

the link failures during the election.

Before taking the algorithm any further, we first explain assumptions, definitions,

types of message, and new patterns for sending the message.

4.3.1 Assumptions

We consider the following assumptions for this system:

� The nodes are homogeneous, but their failure rates may be different.

� Each node has its own timer, and a node can send and receive election messages

simultaneously.

� It takes one unit of time to complete a round.

4.3.2 Definitions

The definitions are provided according to their usage in the following work.

Definition 1 (Fri): It denotes the failure rate[84] [48] of a node i. The failure rate

refers to how often something fails, such as a component, a node or an engineered

system. We usually express it in failures per unit of time. In general, Weibull

distribution [14] [95] is used for failure analysis because of its flexibility in describing

failure rate as it can represent all three regions of the bathtub curve. According to

two-parameter Weibull distribution, the unreliability FXi
(t) and the failure density

function fXi
(t) of a node can be written as

Chapter 4. A leader election algorithm considering node and link failures 64

FXi
(t) = 1− e

−
(t

ηi

)βi

(4.2)

where ηi > 0 is called the scale parameter, βi > 0 is the shape parameter, and t

denotes time.

fXi
(t) =

d

dt
FXi

(t) =
βi

ηi

(t

ηi

)(βi−1)
e
−
(t

ηi

)βi

(4.3)

So, the failure rate of a node i between times t0 and t1 is

FRi =

∫ t1

t0

fXi
(t)dt (4.4)

Here, βi < 1 means the failure rate is a decreasing function of time; βi = 1 means the

failure rate is constant, and βi > 1 means the failure rate is an increasing function

of time.

Definition 2 (Lfi): It refers to the link failure indicator where Lfi ⩾ 0. If

an election message creator node has no link failure, then Lfi is initialized by 0.

Otherwise, it is initialized by 1. After that, when the election message goes through

a node which has some link failure, then Lfi is incremented by 1. If the message

goes through a node which has no link failure and Lfi ̸= 0, Lfi is decremented by

1.

Definition 3 (Nnfi): It represents the number of non-faulty links of a node i. In

a network, a node is considered as an important node if it has a higher number of

non-faulty links, i.e., it is directly connected to many system nodes. In the case of

a 2D torus network Nnfi ∈ N, and Nnfi ≤ 4.

Definition 4 (Lfacti): It refers to the leader factor of a node i. We use this

factor to elect a reliable and efficient leader for the system. We define a function

by combining the number of non-faulty links (Nnfi) and the failure rate (Fri) of a

Chapter 4. A leader election algorithm considering node and link failures 65

node i to calculate the leader factor of the node. A node with a higher number of

non-faulty links has a higher number of communication paths to communicate with

the other nodes in the network. Hence, the node elected as the system leader should

have a higher number of non-faulty links. As such, once it is the leader, it can easily

communicate with the other nodes by balancing the network traffic through different

communication paths. Thus, the leader factor of a node should be proportional to

the number of non-faulty links of the node i.e.,

Lfacti ∝ Nnfi (4.5)

Reliability is the ability of a system or component to perform its required functions

under specified conditions for a period of time. A lower failure rate of a node

indicates the higher reliability of this node. Hence, the elected system leader should

have a lower failure rate, ensuring that the leader will have a long life and that

the system will not need to run the election algorithm frequently. Thus, the leader

factor of a node should be inversely proportional to the failure rate of the node i.e.,

Lfacti ∝
1

Fri
(4.6)

Lfacti = x(Nnfi) + y(
1

Fri
) (4.7)

From the relations (4.5) and (4.6), we build the equation (4.7) to calculate the leader

factor of a node i, where x + y = 1 and x, y ≥ 0. According to the requirement, in

this equation, we can choose different values between 0 and 1 for x and y to prioritize

the number of non-faulty links (Nnfi) and the failure rate (Fri) differently. After

combining the equations (4.4) and (4.7), we get

Lfacti = x(Nnfi) + y(
1∫ t1

t0
fXi

(t)dt
) (4.8)

Chapter 4. A leader election algorithm considering node and link failures 66

Definition 5 (M Lfacti): It is used to store the maximum leader factor of a node

by a node i. Initially, node i hoards its own leader factor in M Lfacti. Then, node

i updates M Lfacti according to the received election messages. Node i replaces

the lower M Lfacti by the higher one if the leader factor of the received message

generator node is greater than M Lfacti.

Definition 6 (N Id Mlfi): During the election, a node i uses the N Id Mlfi

to store the Id of a node that has the maximum leader factor. A node i updates

N Id Mlfi according to the received election messages. Node i replaces the Id

N Id Mlfi by the Id of the received message generator node if the leader factor

of the received message generator node is greater than that of the node stored in

N Id Mlfi.

Definition 7 (F listi): A node i uses the list Flisti to store node and link failures

of its adjacent nodes and links. This list contains the node status of a node and its

adjacent nodes as well as the link status of all the links associated with these nodes.

For example in Table 4.1, we show the Flisti of a node i for a particular instant of

time. Here, 1 denotes the aliveness of a node or link, and 0 denotes the failure of a

node or link. Whenever a node gets failure or recovery information of the adjacent

nodes and links, it updates its Flisti accordingly. A node i sets the value of its Nfli

according to the link status information of its Flisti.

Table 4.1: List for store the information of adjacent node and link failures of a node i

Link Status
Node Node Status +y +x -y -x

Self (node i) 1 1 0 1 1

Upper node 1 1 1 1 1

Right node 0 0 0 0 0

Lower node 1 1 1 1 1

Left node 1 1 1 1 1

4.3.3 Types of Message and Message Sending Pattern

In our proposed algorithm, we use three types of messages i.e., election message,

acknowledgement message, and failure information message. The election message

Chapter 4. A leader election algorithm considering node and link failures 67

is used to start the election. It has five fields, namely the Election message creator

Id (Emc Id), the Failed leader Id (Fl Id), the Leader Factor (Lfactc) of the mes-

sage creator node, the Link failure indicator (Lfi), and the Message sending pattern

(Msp). This message is represented by Msg[Emc Id, F l Id, Lfactc, Lfi,Msp]. An

acknowledgement message is used to know the proper delivery of the election mes-

sage. When a node sends an election message to its adjacent node, it expects an

acknowledgement from that adjacent node. The acknowledgement message has two

fields. The first field is the Id of the node that creates the acknowledgement message

(Amc Id), and the second field is the received election message creator Id (Remc Id).

The acknowledgement message is represented by Ack[Amc Id,Remc Id]. A node

uses the failure information message to inform its adjacent node about its link failure.

After sending an election message through a link, a node waits for an acknowledge-

ment. If the node does not get the acknowledgement through that link during a

time out period, it detects that the link is failed. The node then generates a failure

information message and sends it to its adjacent nodes. This message has three

fields i.e., the failure information message generator Id (Fimc Id), the link status

bits (Lsb), and the Id of the election message creator that helped to identify the

link failure (Emc Lf Id). We use four bits as the link status bits (Lsb) to represent

the link status of a node. First, second, third, and fourth bits (from left to right)

refer to the status of +y link, +x link, -y link, and -x link, respectively. 0 indicates

the link failure, and 1 indicates the link aliveness. For example 1011 indicates that

+x is failed and the rest of the links are alive. The failure information message is

represented by Fim[Fimc Id,Emc Lf Id, Lsb].

Now, we introduce three specific message sending patterns (pattern 1, pattern 2,

and pattern 3) and one particular message sending pattern sequence (pattern 2 –

pattern 3 – pattern 1) to transmit the election message. We use these patterns and

sequence of patterns to reduce the number of message exchanges during the election.

Pattern 1: When a node receives an election message, and the message sending

pattern is 1, then the node sends the message to the front node regarding the in-

coming link and direction of the message. In Figure 4.3 (c), node 1 gets an election

Chapter 4. A leader election algorithm considering node and link failures 68

message from node 5 through the −x link, and the message sending pattern is 1.

Node 1 sends the message to node 3, because as per the −x link and the direction

of the incoming message, node 3 is the front node of node 1.

Pattern 2: If a node receives an election message, and the message sending pattern

is 2, then the node transmits the message to the front and right nodes as per the

incoming link and direction of the message. For example, in Figure 4.3 (a), node

1 receives an election message from node 5 through the −x link and the message

sending pattern is 2. The node then sends the message to nodes 3 and 4, because as

per the −x link and the direction of the incoming message, node 3 is the front node

and node 4 is the right node of node 1.

Pattern 3: If a node receives an election message, and the message sending pattern

is 3, the node transmits the message to all its adjacent nodes except the node that

sent the election message. For example, in Figure 4.3 (b), node 1 receives an election

message from node 5 through the −x link, and the message sending pattern of the

message is 3, then node 1 sends the message to nodes 2, 3 and 4 but not to node 5

because node 1 received the message from node 5.

1

2

3

4

5 1

2

3

4

5 1

2

3

4

5

Pattern 2 Pattern 3 Pattern 1
(a) (b) (c)

Figure 4.3: Message sending patterns

Pattern sequence: Using the above-discussed message sending patterns (pattern

1, pattern 2, and pattern 3), we introduce a particular sequence i.e., pattern 2 –

pattern 3 – pattern 1 to send the election message. Whenever a node detects the

leader’s failure, it creates an election message and transmits this message to all its

adjacent nodes to initiate the election. After that, if there is no link failure, the

Chapter 4. A leader election algorithm considering node and link failures 69

message is broadcast following this message sending pattern sequence (pattern 2 –

pattern 3 – pattern 1) repeatedly.

After getting an election message, if a node finds that the message field Lfi is 0 and

the node itself has no link failure, it follows the message sending pattern sequence

and transmits the election message according to the value of the Msp of the received

message. If the Lfi is not equal to 0 or the node itself has any link failure, then the

node transmits the election message to all its adjacent nodes except the node that

sent the election message.

4.3.4 Description of Lea-TN

Throughout the Lea-TN algorithm, we use three procedures: Create Msg(),

Check Link Failure() and Send Msg(). Procedure Create Msg() creates an elec-

tion message. Procedure Check Link Failure() checks the Flisti, finds the num-

ber of link failures and sets the election message sending pattern (value of Msp).

Whereas, procedure Send Msg() sends the election message according to the mes-

sage sending pattern. We describe Create Msg(), Check Link Failure() and Send Msg()

below.

Create Msg()

1. Emc Id← N Idi, Lfactc ← Lfacti, N Id Mlfi ← N Idi and

M Lfacti ← Lfacti

2. If Nfli == 0, then Msp← 2 and Lfi← 0

3. If Nfli ̸= 0, then Msp← 3 and Lfi← 1

4. Create an election message Msg[Emc Id, F l Id, Lfactc, Lfi,Msp] and send it

to all the adjacent nodes.

Check Link Failure(Nfli, Lfi)

Chapter 4. A leader election algorithm considering node and link failures 70

1. If Nfli ̸= 0, then Msp← 3 and Lfi← Lfi+ 1.

2. If Nfli == 0 and Lfi ̸= 0, then Msp← 3 and Lfi← Lfi− 1.

Send Msg(Emc Id,F l Id,Lfactc, Lfi,Msp)

1. If Msp == 3 and Lfi > 0, then Msp← 3 and send the election message

Msg[Emc Id, F l Id, Lfactc, Lfi,Msp] according to Pattern 3.

2. If Msp == 3 and Lfi == 0, then Msp← 1 and send the election message

Msg[Emc Id, F l Id, Lfactc, Lfi,Msp] according to Pattern 3.

3. If Msp == 2, then Msp← 3 and send the election message

Msg[Emc Id, F l Id, Lfactc, Lfi,Msp] according to Pattern 2.

4. If Msp == 1, then Msp← 2 and send the election message

Msg[Emc Id, F l Id, Lfactc, Lfi,Msp] according to Pattern 1.

The leader election algorithm is composed of three phases:

� Election commencement

� Received message processing

� Elected leader identification

Algorithm 5: Election commencement

// How a node i starts the election.

1 if (A node i realizes that the leader is crashed) then
2 Create Msg()
3 Start timer for 2(Td + 3) rounds.

4 end

Election commencement: When a node perceives that the current leader is

crashed, it starts the election by making an election message, transmits this message

to all the adjacent nodes, and expects an acknowledgement from each adjacent node

in the next round. Let us assume that a node i detects that the leader is crashed.

Chapter 4. A leader election algorithm considering node and link failures 71

Algorithm 6: Message Processing
// Execution of a round by a node i. In a round, a node i may get a maximum of three types

message i.e., Msg[Emc Id, F l Id, Lfactc, Lfi,Msp], Ack[Amc Id,Remc Id], and

Fim[Fimc Id,Emc Lf Id, Lsb]
1 if (Node i gets atleast one election message) then
2 Create an acknowledgement message (Ack[Amc Id,Remc Id]) regarding every received election message

and send it to the respective nodes.
3 if (The Lfactc of all the received messages is the same) then
4 Choose the message (Msg[Emc Id, F l Id, Lfactc, Lfi,Msp]) that has the maximum Emc Id among

all the received election messages.
5 else
6 Choose the message (Msg[Emc Id, F l Id, Lfactc, Lfi,Msp]) that has the maximum Lfactc among

all the received election messages.
7 end
8 Discard the other received election message(s).
9 if (N Id Mlfi == Fl Id) then

10 if (Lfacti < Lfactc) then
11 N Id Mlfi ← Emc Id, M Lfacti ← Lfactc
12 Check Link Failure(Nfli, Lfi)
13 Send Msg(Emc Id, F l Id, Lfactc, Lfi,Msp)

14 else
15 if (Lfacti == Lfactc) then
16 if (N Idi > Emc Id) then
17 Discard the received election message.
18 Create Msg()

19 else
20 N Id Mlfi ← Emc Id
21 Check Link Failure(Nfli, Lfi)
22 Send Msg(Emc Id, F l Id, Lfactc, Lfi,Msp)

23 end

24 else
25 Discard the received election message.
26 Create Msg()

27 end

28 end
29 Start timer for 2(Td + 3) rounds.

30 else
31 if (M Lfacti < Lfactc) then
32 N Id Mlfi ← Emc Id, M Lfacti ← Lfactc
33 Check Link Failure(Nfli, Lfi)
34 Send Msg(Emc Id, F l Id, Lfactc, Lfi,Msp)

35 else
36 if (M Lfacti == Lfactc) then
37 if (N Id Mlfi ≥ Emc Id) then
38 Discard the received election message.
39 else
40 N Id Mlfi ← Emc Id
41 Check Link Failure(Nfli, Lfi)
42 Send Msg(Emc Id, F l Id, Lfactc, Lfi,Msp)

43 end

44 else
45 Discard the received election message.
46 end

47 end

48 end

49 end
50 if (Node i does not get all the expected acknowledgement message(s)) then
51 Modify the Flisti and Nfli, and set each bit value of Lsb according to the acknowledgement message(s)

that it was supposed to get but did not.
52 Create the link failure information message and send it to the adjacent nodes.
53 Set Msp← 3 and Lfi← 3 of the election message generated by the node N Id Mlfi and send the

message to the adjacent node(s), which did not get this election message before.
54 end
55 if (Node i gets at least one link failure information message) then
56 Modify the Flisti and Nfli according to the received link failure information messages’ Lsb.
57 Compare the Emc Lf Id of each link failure information message with the N Id Mlfi
58 if (N Id Mlfi == Emc Lf Id) then
59 Set Msp← 3 and Lfi← 3 of the election message generated by the node N Id Mlfi and send the

message to the adjacent node(s), which did not get this election message before.
60 end

61 end
62 if (Node i gets a request from an adjacent node that recovered from the failure state during the election) then
63 Send the current system information to that node and prohibit it from taking part in the running election.
64 end

Chapter 4. A leader election algorithm considering node and link failures 72

Algorithm 7: Elected leader identification

// How a node i identifies the elected leader.

1 if (The allocated time of the timer of a node i is out.) then
2 L Idi ← N Id Mlfi
3 if (N Idi == L Idi) then
4 Statusi ← Leader
5 else
6 Statusi ← Non-leader
7 end
8 The node Id stored in L Idi is elected as the new leader.
9 Send the newly elected leader’s information to the adjacent node(s) that recovered

from the failure state during the election.
10 end

First, node i checks the list that contains the adjacent node and link failures (Flisti)

to identify the number of its failed link(s) (Nfli) and sets the values of Msp and

Lfi according to the value of Nfli. If node i has no link failure, i.e., Nfli == 0,

the values of Msp and Lfi are set to 2 and 0, respectively. Otherwise, the values

of Msp and Lfi are set to 3 and 1, respectively. Next, node i creates an elec-

tion message Msg[Emc Id, F l Id, Lfactc, Lfi,Msp], (where EMCID ← N Idi,

Lfactc ← Lfacti) and transmits it to all the adjacent nodes. Node i copies its own

Id into its N Id Mlfi, takes part in the election as a contender and starts its timer

for 2(Td + 3) time units.

Received message processing: We now explain how, in a round, a node i

processes different types of received messages and progresses the election. In a

round, a node can get three types of message (election message, acknowledge-

ment message, and failure information message). First, node i checks whether it

has got an election message(s). If it has, it creates an acknowledgement message

(Ack[Amc Id,Remc Id]) regarding every received election message and send them

to the respective nodes that sent the election message(s). Node i then chooses the

election message that has maximum Lfactc among all the received election mes-

sages and discards the other. In a round, if a node receives all the messages with

the same Lfactc, the message with the highest Emc Id among them will get pref-

erence. Assume node i chooses the message Msg[Emc Id, F l Id, Lfactc, Lfi,Msp]

Chapter 4. A leader election algorithm considering node and link failures 73

whose Lfactc is maximum among all the received messages. It then compares its

N Id Mlfi with the message’s Fl Id. If N Id Mlfi == Fl Id, that means node i is

not an election initiator and it has received the election message for the first time. In

this case, the node compares its Lfacti with the leader factor of the message-creator

node (Lfactc). If Lfactc > Lfacti or ‘Lfactc == Lfacti and Emc Id > N Idi’,

then the node i copies the values of Emc Id and Lfactc into its N Id Mlfi and

M Lfacti, respectively. It then sets the values of Msp and Lfi based on the number

of failed links of its own. After that, node i transmits this processed message accord-

ing to the message sending pattern of that message and starts the timer for 2(Td+3)

time units. If Lfactc < Lfacti or ‘Lfactc == Lfacti and Emc Id < N Idi’, then

node i constructs a new election message, and transmits it to all the adjacent nodes

and starts the timer for 2(Td + 3) time units. If node i is an election initiator or

it has already processed at least one message, then it compares its M Lfacti with

the received message’s Lfactc. If Lfactc > M Lfacti or ‘Lfactc == M Lfacti

and Emc Id > N Idi’, the node i copies the values of Emc Id and Lfactc into it’s

own N Id Mlfi and M Lfacti, respectively. It then sets the values of Msp and

Lfi based on the number of its own failed links. It then transmits this processed

message according to the message sending pattern of that message. Otherwise, the

node i discards the message.

In a round, if a node i sends an election message to its adjacent node(s), it expects

acknowledgement message(s) from that (those) adjacent node(s) in the next round.

If a node does not get all the expected acknowledgement message(s) of a round,

then it realizes that some of its links are failed. The node then modifies the Flisti

and Nfli, and sets each bit value of Lsb based on the expected acknowledgement

message(s) that it did not get from the adjacent node(s). After that, it creates a

link failure information message (Fim[Fimc Id,Emc Lf Id, Lsb]) and sends this

message to all the adjacent nodes. At the same time, node i sets the value of

Msp and Lfi of the election message generated by the node whose Id is stored in

N Id Mlfi and sends the message to the adjacent node(s) that did not get this

election message before.

Chapter 4. A leader election algorithm considering node and link failures 74

In a round, if a node i gets link failure information message(s), it modifies the Flisti

and Nfli according to the link status bits Lsb of the received link failure information

messages(s). After that, the node compares the failure information message genera-

tor Id (Fimc Id) of each message with its N Id Mlfi. If Fimc Id == N Id Mlfi,

node i sets the value of Msp and Lfi of the election message generated by the node

whose Id is stored in N Id Mlfi and sends the message to the adjacent node(s) that

it did not get this election message before.

Elected leader identification: Finally, when a timer’s (timer of node i) preset

time is out (“Session Time Out”), then node i gets to know about the newly elected

leader. It recognizes the node whose Id is stored in its N Id Mlfi as the elected

leader. It then copies the node Id stored in its N Id Mlfi into L Idi. If N Idi ==

L Idi, the node sets its status as a leader (Statusi ← Leader). Otherwise, the node

sets its status as a non-leader (Statusi ← Non-leader).

Lemma 4.1. If there is no link failure in Tn,n, the proposed message sending method

(message sending patterns and message sending pattern sequence) takes a maximum

of
√
N rounds to send an election message to all the nodes in the system.

Proof: According to our system model, in a round, a node can send and receive

messages simultaneously. When a node initiates the election, it creates an election

message and transmits it to its four adjacent nodes. After that, the message is

broadcast following the message sending pattern sequence (pattern 2 – pattern 3 –

pattern 1) repeatedly. We observe that a maximum 4 adjacent nodes of the message

generator node get the election message at the end of the first round. At the end of

the second round, 8 more nodes get the election message. At the end of the third

round, 12 more nodes get the election message. In this way, the election message

continues to be broadcast up to the ⌊
√
N/2⌋ rounds. After the

√
N/2

th
round, in

each round, the number of nodes that get the election message is reduced by 4 than

the number of nodes of the previous round. We thus observe that a total 5 nodes

(including the election message generator node) get the message at the end of the first

round. At the end of the second round, a total of 13 nodes get the election message.

Chapter 4. A leader election algorithm considering node and link failures 75

At the end of the third round, a total of 25 nodes get the election message and so

on. That means the election message is broadcast over the network following the

centered square number sequence. We now obtain the following sequence (sequence

(4.9)), where N is the total number of nodes of a Tn,n network, and an odd integer.

In this sequence, the ith term represents the total number of nodes that get the

election message after the ith round. So, the total number of terms of this sequence

represents the total number of rounds required to broadcast the election message all

over the network.

{5, 13, 25, 41,, (N +1)/2, (N +4
√
N − 3)/2,, (N − 12), (N − 8), (N − 4), N}

(4.9)

Sequence (4.9) consists of two sequences i.e., sequence (4.10) and sequence (4.11)

{5, 13, 25, 41,, (N + 1)/2} (4.10)

and

{N, (N − 4), (N − 8),, (N + 4
√
N − 3)/2} (4.11)

Assume sequences (4.10) and (4.11) have y and z number of terms, respectively.

The general term of the sequence (4.10) is 2x2 + 2x + 1. Hence, the yth term is

2y2 + 2y + 1. As the last term is (N + 1)/2 we get the total number of terms (y) in

the sequence (4.10) from the following equation:

2y2 + 2y + 1 = (N + 1)/2 (4.12)

From equation (4.12), we get

4y2 + 4y − (N − 1) = 0 (4.13)

Chapter 4. A leader election algorithm considering node and link failures 76

If we solve the quadratic equation (4.13), we get y = (
√
N−1)/2 or y = −(

√
N+1)/2.

However y = −(
√
N + 1)/2 is not acceptable, because the total number of terms of

a sequence cannot be a negative number. So, y = (
√
N − 1)/2. On the other hand,

the general term of the sequence (4.11) is N − (2x2 − 2x). Hence, the zth term is

N − (2z2 − 2z). As the last term is (N + 4
√
N − 3)/2 we get the total number of

terms (z) in the sequence (4.11) from the following equation:

N − (2z2 − 2z) = (N + 4
√
N − 3)/2 (4.14)

If we solve the quadratic equation (4.14), we get z = (
√
N − 1)/2. So, the total

number of terms in sequences (4.10) and (4.11) is y+ z = (
√
N − 1). That means, if

N is odd, an election message takes (
√
N − 1) rounds to reach all the nodes in the

system. Likewise, if N is even, we obtain the following sequence (sequence (4.15)).

{5, 13, 25, 41,, (N/2−
√
N+1), (N/2+

√
N−1),, (N−13), (N−5), (N−1), N}

(4.15)

In the same way as we find out the number of terms in sequence (4.9), we can prove

that sequence (4.15) has
√
N number of terms. That means, if N is even, an election

message takes
√
N rounds to reach all the nodes in the system. So, we can conclude

that if there is no link failure in Tn,n, the proposed message sending method (message

sending patterns and message sending pattern sequence) takes a maximum of
√
N

rounds to send an election message to all the nodes in the system. ■

Lemma 4.2. Let us consider a Tn,n, where n is even, n > 2 and N − 2
√
N links

are removed (link failures) in the following manner: (1) we divide the Tn,n network

into four identical parts i.e., Parts 1, 2, 3, and 4. Each part contains N/4 nodes,

and the diameter of each part is
√
N − 2. (2) From the Tn,n, all the wrap-around

links (2
√
N − 4 links) that connect the nodes of first and last rows and first and last

columns, except the wrap-around links connecting the four corner nodes are removed.

Chapter 4. A leader election algorithm considering node and link failures 77

(3) From each part, we remove all the internal horizontal links (N/4− 3
√
N/2 + 2

links). (4) The (2
√
N − 4) links connecting these four parts (Parts 1, 2, 3, and 4)

are removed, except the link connecting the four central nodes of network Tn,n. Now,

we prove that this N − 2
√
N number of link removals (link failures) from the Tn,n

does not change the diameter of the remaining Tn,n.

Proof: The remaining Tn,n is a symmetric network and has four identical parts as in

Figure 4.4 (In this figure, we consider a T8,8 network and delete 48 links from the T8,8

by following the manner as described above and get the remaining T8,8 network). The

diameter of each identical part is
√
N − 2 and every part contains N/4 nodes. Two

extreme diagonal nodes (red colored nodes in Figure 4.4) of each identical part are

connected to the other identical parts of the remaining Tn,n network. A maximum of

two hops is needed to go from these extreme diagonal nodes of one part of the network

to any other part. A node uses the path that goes through the nearest extreme

diagonal node to send a message to any other node of the different parts of the

network. In other words, half the nodes of an identical part use one extreme diagonal

node and the rest of the nodes use another extreme diagonal node. So, the maximum

graph distance between any two nodes will be (
√
N −2)/2+(

√
N −2)/2+2 =

√
N .

Hence, the diameter of the remaining Tn,n network is
√
N . Even the removal of all

the internal vertical links instead of all internal horizontal links from each identical

part of the Tn,n network, the diameter of the remaining Tn,n network will remain the

same. ■

Lemma 4.3. Let us consider a Tn,n, where n is odd, n > 2 and N − 2
√
N − 3

links are removed (link failures) as follows (1) we divide the Tn,n network into four

identical parts i.e., Parts 1, 2, 3, and 4. Each part contains (N + 1)2/4 nodes, and

the diameter of each part is 2⌊
√
N/2⌋. These four parts have at least one and at

most ⌈
√
N/2⌉ common nodes. (2) From the Tn,n, we remove all the wrap-around

links (2
√
N − 6 links) that connect the nodes of the first and last rows and the first

and last columns except the wrap-around links that connect the four corner nodes

and the middle nodes of the first and last rows and the first and last columns. (3)

From each part, we remove all the internal horizontal links ((N−4
√
N+3)/4 links).

Chapter 4. A leader election algorithm considering node and link failures 78

Part 1

P
a
rt

1

Part 2

P
a
rt

2

Part 3 Part 4

P
a
rt

3

P
a
rt

4

Figure 4.4: Example of the remaining T8,8 network, after deleting 48 links from the T8,8

network in the manner described above.

We prove that this N − 2
√
N − 3 number of link removals (link failures) from the

Tn,n does not change the diameter of the remaining Tn,n.

Proof: The remaining Tn,n is a symmetric network. It has four identical parts as

in Figure 4.5 (In this figure, we consider a T9,9 network and delete 60 links from

the T9,9 by following the manner as described above and get the remaining T9,9

network), and the diameter of each part is 2⌊
√
N/2⌋. There is at least one and at

most ⌈
√
N/2⌉ common nodes between any two parts of the remaining Tn,n network.

In Figure 4.5, blue colored nodes are common nodes. No extra hop is needed to go

from one part to another part of the network through these common nodes. Each

part of the remaining Tn,n network has four extreme diagonal nodes. Among these

four nodes, three are directly connected to the other parts of the network, while the

fourth node (red colored node in Figure 4.5) is directly connected to two parts and

indirectly connected to another part of the network. So, a maximum of two hops

is needed to go from these nodes to any other part of the network. Any two parts

of the remaining Tn,n network have some common nodes. The nodes of any two

parts that are a maximum of (
√
N − 1)/2 graph distance away from a particular

common node can communicate using the path that goes through that particular

common node. Now consider any two parts that have only one common node (Parts

1 and 4 or Parts 2 and 3). The nodes that are a maximum of (
√
N − 1)/2 graph

distance away from this common node can communicate using the path that goes

Chapter 4. A leader election algorithm considering node and link failures 79

through this common node. So, the maximum graph distance between any two

among these nodes is (
√
N − 1)/2 + (

√
N − 1)/2 = (

√
N − 1). The nodes that are

beyond the (
√
N−1)/2 graph distance away from the common node are a maximum

of (
√
N − 1)/2 − 1 graph distance away from any one of the three other extreme

diagonal nodes. So, these nodes can communicate using the path that goes through

the nearest extreme diagonal node. Hence, the maximum graph distance between

any two among these nodes is (
√
N − 1)/2− 1 + (

√
N − 1)/2− 1 + 2 = (

√
N − 1).

Likewise, we can prove that the maximum graph distance between any two nodes

of two different parts that have ⌈
√
N/2⌉ common nodes is also (

√
N − 1). If N is a

square number, then (
√
N − 1) = 2⌊

√
N/2⌋. Thus, the diameter of the remaining

Tn,n network is 2⌊
√
N/2⌋. From each identical part of the Tn,n network, instead

of removing all the internal horizontal links, if all the internal vertical links are

removed, then the diameter of the remaining Tn,n network is not changed. ■

Part 2Part 1

Part 3 Part 4

P
ar
t
1

P
ar
t
3

P
ar
t
4

P
ar
t
2

Figure 4.5: Example of the remaining T9,9 network, after deleting 60 links from the T9,9

network in the manner described above.

Lemma 4.4. If the link failures or/and node failures in the Tn,n do not change the

diameter of the Tn,n, the proposed message sending method (message sending patterns

and message sending pattern sequence) takes a maximum of (
√
N+3) rounds to send

an election message to all the nodes in the system.

Proof: In lemma 4.1, we proved that if there is no link failure in Tn,n, the proposed

Chapter 4. A leader election algorithm considering node and link failures 80

message sending method takes a maximum of
√
N rounds to send an election mes-

sage to all the nodes in the system. In the case of link failure, if a node receives its

link failure information in advance, instead of following the message sending pattern

sequence, the node transmits the election message to all the adjacent nodes except

the node that sent the election message. As the link or/and node failures do not

change the Tn,n network’s diameter, a maximum of
√
N rounds is required to broad-

cast a message all over the system. On the other hand, if a node does not receive

its link failure information in advance, it can detect link failure during the election

too. In a round, after sending an election message through a particular link, if a

node does not get an acknowledgement through that specific link in the next round,

then the node identifies that the connection is failed. Whenever a node determines

link failure(s), it creates a failure information message and sends it to the adjacent

nodes connected through the active links. At the same time, the node sends the

election message to the adjacent node(s) that did not get the election message be-

fore, and that are connected through an active link. A node thus needs three extra

rounds to handle the link failure situation. In a round, the nodes that participate

in the election’s progress can receive, process, and send the message simultaneously.

Hence, a total of (
√
N + 3) rounds is required to send a message to all the nodes in

the system. ■

Theorem 4.5. The proposed algorithm can tolerate N −2
√
N or N −2

√
N −3 link

failures under the following condition.

LFTpa =

N − 2
√
N, if N is even and the link failures occur as described in Lemma 4.2.

N − 2
√
N − 3, if N is odd and the link failures occur as described in Lemma 4.3.

Proof: To prove this lemma, we have to show that the proposed algorithm can

elect a node as the system leader, even if there are N − 2
√
N (if N is even) or

N − 2
√
N − 3 (if N is odd) link failures in the system. In Lemma 4.1, we have

proved that if there is no link failure in the system, then
√
N rounds are required

to broadcast a message all over the system. On the other hand, in Lemma 4.4, if

the link or/and node failures in the Tn,n do not change the diameter of Tn,n, then a

Chapter 4. A leader election algorithm considering node and link failures 81

maximum of (
√
N+3) rounds is required to broadcast a message all over the system.

In Lemmas 4.2 and 4.3, we have proved that N−2
√
N (if N is even) or N−2

√
N−3

(if N is odd) link failures do not change the diameter of the remaining Tn,n network.

So, a maximum of (
√
N +3) rounds is required to broadcast an election message all

over the system. A situation where only one node can initiate the election, and the

node with the maximum leader factor is
√
N hops away from the election initiator.

In this case, a maximum of 2(
√
N +3) rounds is required to elect the node with the

maximum leader factor as the system leader. According to the proposed algorithm,

a node starts its timer for 2(
√
N +3) rounds. So, the Lea-TN algorithm can elect a

leader even if there are N − 2
√
N (if N is even) or N − 2

√
N − 3 (if N is odd) link

failures in the system. ■

4.3.5 Proof of Self-stabilization

Uniqueness, agreement, and termination are three essential conditions of a self-

stabilizing leader election algorithm that help build a consistent system. Here we

prove that the Lea-TN algorithm satisfies these three conditions. We prove the

uniqueness and agreement properties by using the contradiction method.

Lemma 4.6. Every proper execution of the Lea-TN algorithm elects only one node

as the system leader until the failure of nodes and/or links increases the network’s

diameter.

Proof: After the leader crashes, the Lea-TN algorithm elects the node that has the

highest leader factor in the system as the new leader. Here, two cases may appear:

(1) every node has a distinct leader factor, (2) multiple nodes have the same leader

factor. Assume that two nodes i and j get elected as leaders simultaneously. So, node

i contains the highest leader factor (Lfacti), while node j also contains the highest

leader factor (Lfactj). That means Lfacti > Lfactj as well as Lfacti < Lfactj.

The first scenario cannot occur because every node has a distinct leader factor.

Hence, in this case our assumption is wrong. In the second case, multiple nodes

may have the highest leader factor. Here, nodes i and j are elected simultaneously

Chapter 4. A leader election algorithm considering node and link failures 82

so Lfacti = Lfactj, where Lfacti and Lfactj are the leader factors of nodes i

and j, respectively. In this situation, the Lea-TN algorithm elects the node with

the maximum node Id among these nodes that has the highest leader factor. As

node i gets elected as the leader so N Idi > N Idj. On the other hand, node j

also gets elected as the leader so N Idi < N Idj. Our system model states that

every node has a unique node Id. Hence, N Idi > N Idj and N Idi < N Idj are

not possible simultaneously. So, in the second case also our assumption is wrong.

Therefore, nodes i and j cannot be elected as the system leaders simultaneously,

and the uniqueness condition is met. ■

Lemma 4.7. In every proper execution of the Lea-TN algorithm, all the system

nodes agree with the elected leader until the failure of nodes and/or links increases

the network’s diameter.

Proof: As stated in the Lea-TN algorithm, when a system leader crashes, the node

with the highest leader factor gets elected as the new leader. When a node initiates

the election or receives an election message for the first time, it starts its timer

for 2(Td + 3) rounds. After the time out, a node gets to know about the newly

elected leader. During the election, the election message created by the node with

the highest leader factor gets spread over the whole network, and the rest message(s)

gets discarded. An election message takes (Td + 3) rounds to spread over the whole

network. In the worst case scenario, every node gets the election message created

by the node with the highest leader factor within 2(Td + 3) rounds. Hence, after

the time out of the timer, every node gets the node’s information with the highest

leader factor (elected leader Id) and agrees with the elected leader by storing the

elected leader Id into its L Id. ■

Lemma 4.8. The Lea-TN algorithm is terminated in a finite time.

Proof: After the leader crashes, when a node commences the election or receives

an election message for the first time, it starts its timer for 2(Td + 3) rounds. After

the time out, a node is informed of the newly elected leader. As our system is

synchronous, there is a known upper bound of message processing delay and message

Chapter 4. A leader election algorithm considering node and link failures 83

transmission delay (from one node to another node). It thus takes finite time units

to complete a round. Here, Td represents the diameter of the T(n, n) network. So

Td = 2⌊
√
N/2⌋ and 2(Td + 3) = 2(2⌊

√
N/2⌋ + 3). According to our system model,

N is a finite integer. So 2(2⌊
√
N/2⌋+3) is also a finite number. If the upper bound

of completion of a round is c time units (where c is a constant), then a leader gets

elected within 2c(2⌊
√
N/2⌋+ 3) time units that is finite. So, the Lea-TN algorithm

is terminated in a finite time. ■

Theorem 4.9. The Lea-TN algorithm satisfied the self-stabilizing conditions of a

leader election algorithm until the failure of nodes and/or links increases the net-

work’s diameter.

Proof: Lemma 4.6, Lemma 4.7 and Lemma 4.8 prove that the Lea-TN algorithm

satisfies the uniqueness, agreement and termination conditions respectively. That

means the Lea-TN algorithm satisfies all the three conditions of a self-stabilizing

leader election algorithm until the failure of nodes and/or links increases the net-

work’s diameter. Hence, the Lea-TN algorithm acts as a self-stabilizing leader

election algorithm until the failure of nodes and/or links increases the network’s

diameter. ■

4.3.6 Performance Analysis

When a distributed algorithm’s performance and efficiency are concerned, param-

eters like message complexity, time complexity, and space complexity have to be

measured.

4.3.6.1 Message Complexity

According to our system model, the nodes communicate with one other by exchang-

ing messages, so message complexity depends on the total number of exchanged

messages during the election. Here, we calculate the message complexity consider-

ing two different scenarios, i.e., without link failures and with link failures.

Chapter 4. A leader election algorithm considering node and link failures 84

Best Case: If the only node with the highest leader factor among all the nodes

realizes the leader failure and starts the election, then this is the best case of the

propounded algorithm. If there are no link failures in the system, then the elec-

tion message created by the highest leader factor’s node takes
√
N rounds to be

broadcasted over the network. In the first round, the election initiating node creates

an election message and transmits it to all the adjacent nodes. Next, the election

message is spread following the message sending pattern sequence (i.e., pattern 2

– pattern 3 – pattern 1) until the message reaches every node in the system. Ac-

cording to the message sending pattern 2, pattern 3, and pattern 1, a node sends

2, 3, and 1 messages, respectively. So on average, in each pattern, two messages are

sent. Whenever a node gets an election message, it creates an acknowledgement and

sends it to the node which sent the election message. If N is odd, the total number

of exchanged messages during the election is 2[4 + 2× 2{4+ 8+ 12++ (
√
N −

1)/2)th term}] = 4N + 4. Likewise, if N is even, the total number of exchanged

messages is 2[4+ 2× 2{4+ 8+ 12++ ((
√
N/2)− 1)th term}+ {4+ 2

√
N − 6}]

= 4N − 4
√
N + 4. Hence, in the best case, message complexity is O(N).

According to the Lea-TN algorithm, if a node identifies a link failure during the

election, it sends a failure information message and election message to the adjacent

nodes to handle the failure situation. Here, a node exchanges a maximum of 3 failure

information messages and 3 election messages. Hence, after identification of a link

failure, a maximum of 6 messages needs to be exchanged. The Lea-TN algorithm

can tolerate a maximum of N−2
√
N link failures. A maximum of 6N−12

√
N extra

messages needs to be exchanged to handle the link failure situation. That means a

maximum of 10N − 8
√
N +4 messages are exchanged to elect a leader. In this case,

message complexity is also O(N).

Worst Case: First, we consider that there is no link failure in the system. In this

situation, after the leader crashes, if all the nodes initiate the election simultaneously,

it becomes the worst-case scenario of the proposed algorithm. Here, the algorithm

takes
√
N rounds to complete the election. In the first round, every node creates

an election message and transmits it to all the adjacent nodes. So, 4N messages

Chapter 4. A leader election algorithm considering node and link failures 85

are exchanged in the first round. From the second round, the election messages are

spread following the message sending pattern sequence. In the second round, N − 1

nodes participate in exchanging the election messages. After that, in each round the

number of nodes that participate in exchanging the election messages is decreased

by 4(s − 2) (where s the round number) until it reaches round ⌈
√
N/2⌉. After

⌈
√
N/2⌉ rounds, in each round the number of nodes that participate in exchanging

the election messages is decreased by 4(
√
N − s). Whenever a node gets an election

message, it creates an acknowledgement and sends it to the node which sent the

election message. As we discussed earlier, on average, in each pattern, two messages

are sent. If N is odd, the total number of messages exchanged is 8N + 4{(N − 1) +

(N − 5)+ (N − 13)++((
√
N +1)/2)th term}+4{4+12+24++((

√
N −

3)/2)th term}=(6N
√
N + 19N − 34

√
N − 39)/3. If N is even, the total number of

messages exchanged is 8N+4{(N−1)+(N−5)+(N−13)+.......+(
√
N/2)th term}+

4{5 + 13 + 25 + + ((
√
N/2) − 1)th term}=(12N

√
N + 39N − 27

√
N − 48)/6.

Thus, in the worst case, message complexity of the Lea-TN algorithm is O(N
√
N).

As we mentioned earlier, the Lea-TN algorithm can tolerate a maximum of N−2
√
N

link failures. A maximum of 6N − 12
√
N extra messages needs to be exchanged to

handle the link failure situation. So, in the worst-case scenario with link failures,

message complexity is also O(N
√
N).

4.3.6.2 Time Complexity

Time complexity denotes the time required for completion of the election process.

Best & Worst Cases: Whenever a node starts the election or receives an election

message for the first time, it sets and starts its timer for 2(Td + 3) rounds. After

that, when this preset time ends (Session Time Out), the node can detect the newly

elected leader. Here, Td represents the diameter of the T(n, n) network. So Td =

2⌊
√
N/2⌋ and 2(Td + 3) = 2(2⌊

√
N/2⌋+ 3). As our system is synchronous, there is

a known upper bound of message processing delay and message transmission delay.

Thus, there is an upper bound of time to complete a round. If the upper bound of

Chapter 4. A leader election algorithm considering node and link failures 86

completion of a round is c time units (where c is a constant), then a leader is elected

within 2c(2⌊
√
N/2⌋+3) time units. So, 2c(2⌊

√
N/2⌋+3) time units are required to

elect a new system leader. Hence, in the best-case and worst-case, time complexity

is O(
√
N).

4.3.6.3 Space Complexity

The space complexity of an algorithm quantifies the amount of space or memory

taken by the algorithm to run as a function of the input length. Here, we quantify

the required amount of space to run the Lea-TN algorithm in a particular node. To

execute this algorithm, every node stores the information of its four adjacent nodes.

If there are N nodes in the system, then O(logN) bits are required to represent node

Id to identify each node uniquely. So, each node needs O(logN) bits to store the

information of its four adjacent nodes. On the other hand, three types of message

are used in the proposed election process and O(logN) bits are required for each

type of message. Hence, space complexity of the Lea-TN algorithm is O(logN).

4.3.7 Illustrative Example

To better understand the Lea-TN algorithm, we explain the election process with

an illustrative example. Here, we take a 5 × 5 2D torus network that has some

link failures and node failures. A node does not know the failures of its links or

adjacent nodes in advance. Figure 4.6 (a) shows the network where each rectangle

represents a node, and the number inside the rectangle is the node Id. Here, the

dotted orange line represents a failed link. We assume that node 21 and the former

system leader node 18 have failed, and node 17 has detected the leader failure first.

To make it simpler, we also assume that node 12 has the highest leader factor and

that node 17 has the second highest in the same. In the first round of the election,

node 17 constructs an election message and transmits it to all its adjacent nodes

i.e., 12, 16, 22 (cf. Figure 4.6 (b)). Node 17 stores its own node Id into N Id Mlf17

and sets and starts its timer for 2(4 + 3) = 14 time units (Here, we assume that a

Chapter 4. A leader election algorithm considering node and link failures 87

message needs one time unit to be processed and transmitted from one node to an

adjacent node). When a node commences the election or gets the election message

for the first time, it starts its timer for 14 time units.

In the second round, each of the nodes 12, 16, and 22 creates an acknowledgement

message regarding the received election message created by node 17 and sends this

acknowledgement message to node 17 (cf. Figure 4.6 (c)). Node 12 discards the

received message created by node 17, because node 12 has a higher leader factor

than that of node 17. Then, node 12 creates an election message and sends it to its

adjacent nodes i.e., 7, 11, 13, and 17 (cf. Figure 4.6 (c)). Node 12 stores its own node

Id into N Id Mlf12. On the other hand, after getting the election message created

by node 17, nodes 16 and 22 copy the node Id 17 into N Id Mlf16 and N Id Mlf22,

respectively. After that, node 16 and node 22 transmit the received election message

(created by node 17) to nodes 11, 15, 21 and nodes 2, 21, 23, respectively. Before

transmitting a received message, every node updates two message fields (i.e., Lfi

andMsp) according to its link failure status. In the third round, each of the nodes 7,

11, 13, and 17 creates an acknowledgement message regarding the received election

message created by node 12 and sends it to node 12 (cf. Figure 4.6 (d)). Then, node

17 updates its N Id Mlf17 by node Id 12, and nodes 7, 11, and 13 copy the node Id

12 into their respective NIDMLF and all four nodes then transmit this message as

per the message sending pattern. Likewise, each of the nodes 15, 2, and 23 creates

the acknowledgement regarding the received election message created by node 17

and sends it to node 16 and node 22, respectively. At the end of this round, node 16

is supposed to get the acknowledgement message from nodes 11, 15, and 21, but it

only receives this message from node 15. Node 16 can thus understand its +y and

-y link failures. Likewise node 22 can understand its -x link failure. That is why in

the fourth round, nodes 16 and 22 create the failure information message and send

this message to the adjacent nodes that are connected through live links. When a

node is informed of its link failure(s) or receives the failure information message(s),

it transmits the election message (created by the node whose Id is stored in its

NIDMLF) to the adjacent node(s) to which the message was not sent before.

Chapter 4. A leader election algorithm considering node and link failures 88

When a node receives the message created by node 17 after getting the message

created by node 12, it discards the latter message. However, when a node receives

the message created by node 12 after getting the message created by node 17 it

updates it NIDMLF by node Id 12 and transmits the message (created by node

12) to the adjacent nodes as per the message sending pattern. Thus, at the end of

the sixth round, the message created by node 12 finally prevails in the network and

node 12 is elected as the new leader (cf. Figure 4.6 (e), (f), (g), and (h)). When

a timer’s preset time (here 14 time units) runs out, then the node that started the

timer is informed of the newly elected leader (node 12). In Figure 4.6, the blue

colored arrow indicates the transmission of the message created by node 17, and the

red colored arrow indicates the transmission of the message created by node 12.

0 1 2

5 6 7

10 11 12

4

9

14

3

8

13

20 21 22 2423

15 16 17 1918

0 1 2

5 6 7

10 11 12

4

9

14

3

8

13

20 22 2423

15 16 17 19

0 1 2

5 6 7

10 11 12

4

9

14

3

8

13

20 22 2423

15 16 17 19

(a) (b) (c)

0 1 2

5 6 7

10 11 12

4

9

14

3

8

13

20 22 2423

15 16 17 19

0 1 2

5 6 7

10 11 12

4

9

14

3

8

13

20 22 2423

15 16 17 19

0 1 2

5 6 7

10 11 12

4

9

14

3

8

13

20 22 2423

15 16 17 19

(d) (e) (f)

0 1 2

5 6 7

10 11 12

4

9

14

3

8

13

20 22 2423

15 16 17 19

(g)

0 1 2

5 6 7

10 11 12

4

9

14

3

8

13

20 22 2423

15 16 17 19

(h)

Represent the election message
created by node 17.

Represent the election message
created by node 12.

Represent the acknowledgement
message of the election message
created by node 17.

Represent the acknowledgement
message of the election message
created by node 12.

Represent the failure
information message.

Figure 4.6: Different steps of the election process of the Lea-TN algorithm explained
on a 5× 5 2D torus network with some link and node failures.

Chapter 4. A leader election algorithm considering node and link failures 89

4.4 Empirical Evaluation

In this section, we simulate the Lea-TN algorithm and evaluate its performance. This

section also describes the experimental setup and the implementation according to

our system model.

4.4.1 Experiment Setup

A single machine was used for all the experiments. The machine was equipped

with an Intel (R) Core(TM) i7-3770 processor (3.40GHz, 8MB cache), 26GB DDR3

RAM, 1TB 5400rmp HDD, NVIDIA GeForce graphics, running Ubuntu Linux Re-

lease 16.04 (xenial kernel 4.4). GCC version 5.4.0 was used for the C programming

environment, and MPICH version 3.2 was used for the message passing interface

(MPI). Here, we consider a process as a node, and such N nodes form a cluster by

connecting themselves through a 2D torus network. Now, for task scheduling, load

balancing, and clock synchronization, a node needs to be chosen as a cluster-head

(the leader). Here, we have implemented the “Lea-TN algorithm”, the “LEA with

One Link Failure” [94] and the “Dynamic LEA with Multi Links Failure” [8] to com-

pare their performances for choosing the cluster-head. While simulating, we have

considered different numbers of nodes such as 9, 16, 25,, 576 to get the number of

exchanged messages and time steps required to elect the cluster-head for the clus-

ter of different sizes. First, we simulated these algorithms without considering the

link failures, and the results are shown in Figure 4.8. We then considered the link

failures: the results are shown in Figure 4.9.

4.4.2 Performance Comparison and Discussion

In this section, we first compare the performance of the Lea-TN algorithm with

the well-known algorithms that work on the 2D torus network. This comparison is

made based on time consumption, message consumption and number of link failures

tolerability of these algorithms. We then compare the performance of the Lea-TN

Chapter 4. A leader election algorithm considering node and link failures 90

algorithm with the other existing algorithms that work on different networks in a

tabular form.

Only two existing leader election algorithms i.e., “LEA with One Link Failure” [94]

and “Dynamic LEA with Multi Links Failure” [8] work on a 2D torus network. In

[94] and [8], the authors claim that in the worst case, the message complexity of

these algorithms is O(N) and O(N +F), respectively (where N is the total number

of nodes and F is the number of failed links). However, we got the worst-case

message complexity of these algorithms [94] [8] as O(N
√
N) in our calculation. In

section 4.2, we proved that the lower bound message complexity (in the worst-case)

of a comparison-based leader election for a 2D torus network is Ω(N log3N). So in

the worst case, the message complexity of these two algorithms [94] [8] cannot be

O(N) or O(N+F). We shall now explain how we calculated the worst-case message

complexity of these algorithms [94] [8].

Each of these two algorithms [94] [8] has four phases. In the first phase, the node

that detects the leader’s failure informs the other nodes in the same row of the failure

by sending messages through its left and right links. In the worst case (when all the

nodes detect the failure of the leader simultaneously), 2N messages are exchanged

in this phase. In the second phase, column-wise election is started, and the node Id

of the best node is stored in the node in the first row of that column. If the nodes

of every column of the 2D torus network are arranged in decreasing order according

to their Identification distinguish (Id) (cf. Figure 4.7), then at least N
√
N + N

messages have to be exchanged to complete the second phase of this algorithm. This

is because in the second phase, (N +
√
N)/2 election messages and (N +

√
N)/2

acknowledgement messages need to be exchanged in order to complete the election

process within each column. In a square 2D torus network, there are
√
N columns.

So, at least
√
N(N +

√
N) = N

√
N +N messages have to be exchanged to complete

the second phase of the algorithm. In the third phase, an election is carried out

among the best nodes of each column. As the best node Ids are stored in the first

row of the network, the leader can be elected by an election among the nodes of the

first row by sending messages. In this phase, at least
√
N election messages and

√
N

Chapter 4. A leader election algorithm considering node and link failures 91

acknowledgement messages are required to elect the final leader of the system. In the

fourth phase, N messages are exchanged to declare the elected leader. Hence, in the

worst case, the algorithm has to exchange at least N
√
N + 4N + 2

√
N messages to

elect a new leader. Even the simulation result of these two algorithms also supports

that their worst-case message complexity isO(N
√
N). In [94] and [8], the third phase

of the election is started by the node (0, 0). However, there is no clear explanation

as to, if the node (0, 0) crashes, which node will start the third phase. On the

contrary, the Lea-TN algorithm can elect a new system leader even after the node

(0, 0) crashes. We also observe that the Lea-TN algorithm can tolerate multiple

node failures until the node failures increase the 2D torus network’s diameter. After

analyzing the graphs in Figures 4.8 (a) and (b), we can conclude that the Lea-TN

algorithm exchanges more messages than the “LEA with One Link Failure” [94] and

“Dynamic LEA with Multi Links Failure” algorithms to elect a new system leader

both in the best and worst case scenarios. On the other hand, the graph in Figure

4.8 (c) shows that the Lea-TN algorithm takes fewer time steps (about twice as few

time steps) than these two algorithms to elect a new leader both in the best and

worst case scenarios. One more significant point is that the “LEA with One Link

Failure” can tolerate only a single link failure, whereas the Lea-TN algorithm can

tolerate N − 2
√
N − 3 (if N is odd) or N − 2

√
N (if N is even) link failures. In

[8], the authors only mention that their algorithm can tolerate F link failures but

they did not mention any relation between F and N . So it is not possible to find

out how many maximum link failures the “Dynamic LEA with Multi Links Failure”

[8] can tolerate. That is why it is impossible to compare the performance of the

“Dynamic LEA with Multi Links Failure” and the Lea-TN algorithm considering the

maximum link failure tolerability. Hence, we only simulate the Lea-TN algorithm by

considering N − 2
√
N − 3 (if N is odd) or N − 2

√
N (if N is even) link failures: the

simulated results are shown in Figure 4.9. Here we consider two cases, case 1: only

the node with the highest leader factor initiates the election; case 2: all the nodes

initiate the election simultaneously. The graphs in Figure 4.9 (a) show the number

of exchanged messages by the Lea-TN algorithm to elect a leader in case 1 and case

2. The graph in Figure 4.9 (b) shows the time required by the Lea-TN algorithm

Chapter 4. A leader election algorithm considering node and link failures 92

to elect a leader both in case 1 and case 2. Furthermore, we simulate the Lea-TN

algorithm considering the different number of link failures: the simulated results are

shown in Figure 4.10. Here, we simulate the algorithm taking six different N i.e.,

N = 225, N = 256, N = 289, N = 324, N = 361, and N = 400. Figure 4.10

(a) represents the simulation result where the node with the highest leader factor

initiates the election, and Figure 4.10 (b) represents the simulation result where all

the nodes initiate the election simultaneously.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 4.7: A T4,4 network, every column of which is arranged in decreasing order
according to the node ID.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

9

2
5

4
9

8
1

1
2

1

1
6

9

2
2

5

2
8

9

3
6

1

4
4

1

5
2

9

LEA with One Link Failure

Dynamic LEA with Multi Links Failure

Lea-TN algorithm

Number of Nodes
(c)

Ti
m

e
 (

m
ill

is
e

co
n

d
)

1

10

100

1000

10000

100000

9

2
5

4
9

8
1

1
2

1

1
6

9

2
2

5

2
8

9

3
6

1

4
4

1

5
2

9

LEA with One Link Failure

Dynamic LEA with Multi Links Failure

Lea-TN algorithm

Number of Nodes
(b)

N
u

m
b

e
r

o
f

Ex
ch

an
ge

d
 M

e
ss

ag
e

s

1

10

100

1000

10000

9

2
5

4
9

8
1

1
2

1

1
6

9

2
2

5

2
8

9

3
6

1

4
4

1

5
2

9

LEA with One Link Failure

Dynamic LEA with Multi Links Failure

Lea-TN algorithm

Number of Nodes
(a)

N
u

m
b

e
r

o
f

Ex
ch

an
ge

d
 M

e
ss

ag
e

s

Figure 4.8: These figures represent the simulation results of the “LEA with One Link
Failure [94]”, the “Dynamic LEA with Multi Links Failure [8]” and the “Lea-TN algo-
rithm” without considering the link failures. Figures (a) and (b) represent the graph of
the number of messages exchanged in the best case and worst case, respectively, whereas

(c) depicts the time taken to conduct the election.

Along with these advantages, the Lea-TN algorithm always elects a leader with a

higher number of non-faulty links and a lower failure rate. The lower the failure rate

of the leader, the more it is reliable, meaning that the Lea-TN algorithm provides

a more reliable leader. The leader node controls and coordinates various system

activities, so all other nodes need to communicate with the leader frequently. The

Chapter 4. A leader election algorithm considering node and link failures 93

1000

2000

4000

8000

9

1
6

2
5

3
6

4
9

6
4

8
1

1
0

0

1
2

1

1
4

4

1
6

9

1
9

6

2
2

5

2
5

6

2
8

9

3
2

4

3
6

1

4
0

0

4
4

1

4
8

4

5
2

9

5
7

6

Lea-TN algorithm (Both case 1 and case 2)

Number of Nodes
(b)

Ti
m

e
 (

m
ill

is
e

co
n

d
)

0

5000

10000

15000

20000

25000

30000

35000

40000

1
6

2
5

3
6

4
9

6
4

8
1

1
0

0

1
2

1

1
4

4

1
6

9

1
9

6

2
2

5

2
5

6

2
8

9

3
2

4

3
6

1

4
0

0

4
4

1

4
8

4

5
2

9

5
7

6

Lea-TN algorithm (case 1)

Lea-TN algorithm (case 2)

N
u

m
b

e
r

o
f

Ex
ch

an
ge

d
 M

e
ss

ag
e

s

Number of Nodes
(a)

Figure 4.9: These figures represent the simulation results of the Lea-TN algorithm
considering N−2

√
N−3 (if N is odd) or N−2

√
N (if N is even) link failures. Here, case 1

represents the scenario where one node with the highest leader factor initiates the election,
and case 2 represents the scenario where all nodes initiate the election simultaneously.
Graphs in (a) represent the number of exchanged messages by the Lea-TN algorithm to
elect a leader in case 1 and case 2. The graph in (b) depicts the time taken to conduct

the election both in case 1 and case 2.

0

5000

10000

15000

20000

25000

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

N
u

m
b

e
r

o
f

Ex
ch

an
ge

d
 M

e
ss

ag
e

s

Number of Link Failures
(b)

N=225 N=256
N=289 N=324
N=361 N=400

0

500

1000

1500

2000

2500

3000

0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

N
u

m
b

e
r

o
f

Ex
ch

an
ge

d
 M

e
ss

ag
e

s

Number of Link Failures
(a)

N=225 N=256

N=289 N=324

N=361 N=400

Figure 4.10: These figures represent the simulation results of the Lea-TN algorithm
considering the different number of link failures. Here, the x-axis represents the number
of link failures, and the y-axis represents the number of exchanged messages to elect the
leader. In these figures, N refers to the total number of nodes in a system. Graph (a)
represents the simulation result where the node with the highest leader factor initiates
the election. Graph (b) represents the simulation result where all the nodes initiate the

election simultaneously.

higher number of non-faulty links of the leader provides a higher number of different

communication paths between the leader and the other nodes that helps balance

the system’s network congestion. If a system has more than one leader at any one

time, it may move to an inconsistent state. So, uniqueness and agreement properties

must be fulfilled by a leader election algorithm. This means that in every proper

execution of the algorithm, it should elect only one node as the system leader. Since

it has already been proved that the Lea-TN algorithm is a self-stabilizing algorithm,

our algorithm always produces a single leader for the system that helps build a

Chapter 4. A leader election algorithm considering node and link failures 94

consistent distributed system.

In Table 4.2, we present a comparative study between the Lea-TN algorithm and

other well-known algorithms that work on different networks. Ring [75], LCR [28],

and Timer-based [19] leader election algorithms work on a unidirectional ring net-

work. In the worst case, their message complexity is greater than that of the

Lea-TN algorithm (O(N2) > O(N
√
N)). In the best and worst cases, the time

complexity of these three algorithms is also greater than that of the Lea-TN algo-

rithm (O(N) > O(
√
N)). So, the proposed algorithm exchanges fewer messages

and takes fewer time steps than those of these three algorithms. When we com-

pare the Lea-TN algorithm with the HS algorithm [59], we find that in the worst

case the HS algorithm exchanges fewer messages than the Lea-TN algorithm be-

cause O(N logN) < O(N
√
N), but the HS algorithm takes more time steps than

the Lea-TN algorithm because O(N) > O(
√
N). Bully, H. Abu-Amara’s [3], and G.

Singh’s [103] algorithms work on a complete network and exchange more messages

than the Lea-TN algorithm because O(N2) > O(N
√
N), but Bully and G. Singh’s

[103] algorithms take fewer time steps than the Lea-TN because O(1) < O(
√
N)

and O(log∗N + 2) < O(
√
N). In the best case, H. Abu-Amara’s algorithm [3] takes

fewer time steps than the Lea-TN algorithm, but in the worst case H. Abu-Amara’s

algorithm takes more time steps than the Lea-TN algorithm to elect a new leader

because O(N) > O(
√
N). Among all these algorithms, the authors of the Ring,

LCR, Timer-based, HS, and Bully algorithms did not provide any details of link and

node failures. On the other hand, H. Abu-Amara’s [3] algorithm can tolerate fewer

link failures than the Lea-TN algorithm because ⌊(N/2)− 3⌋ < (N − 2
√
N), but G.

Singh’s [103] algorithm can tolerate more link failures than the Lea-TN because of

(N2/4−N/2) > (N − 2
√
N).

Chapter 4. A leader election algorithm considering node and link failures 95

T
a
b
l
e

4
.2
:
T
h
is

ta
b
le

re
p
re
se
n
ts

a
co
m
p
ar
at
iv
e
st
u
d
y
b
et
w
ee
n
th
e
L
ea
-T

N
a
lg
o
ri
th
m

a
n
d
th
e
o
th
er

ex
is
ti
n
g
a
lg
o
ri
th
m
s
th
a
t
w
o
rk

o
n

d
iff
er
en
t
n
et
w
or
k
s.

C
om

p
ar
is
on

p
ar
am

et
er
s
ar
e
m
es
sa
g
e
co
m
p
le
x
it
y,
ti
m
e
co
m
p
le
x
it
y,
n
et
w
o
rk

to
p
o
lo
g
y,
to
ta
l
n
u
m
b
er

o
f
li
n
k
s,
a
n
d
m
a
x
im

u
m

li
n
k
fa
il
u
re

to
le
ra
b
il
it
y.

H
er
e,

N
is

th
e
to
ta
l
n
u
m
b
er

o
f
n
o
d
es

in
th
e
sy
st
em

,
a
n
d
co
m
p
le
x
it
ie
s
a
re

re
p
re
se
n
te
d
u
si
n
g
B
ig

O
-n
o
ta
ti
o
n
.

M
es
sa
g
e
co
m
p
le
x
it
y

T
im

e
co
m
p
le
x
it
y

N
a
m
e
o
f

a
lg
o
ri
th
m

B
es
t

ca
se

W
o
rs
t

ca
se

B
es
t
ca
se

W
o
rs
t
ca
se

N
et
w
o
rk

to
p
o
lo
g
y

T
o
ta
l
n
u
m
b
er

o
f
li
n
k
s

M
a
x
im

u
m

n
u
m
b
er

o
f
li
n
k

fa
il
u
re

to
le
ra
b
il
it
y

R
in
g
[7
5
]

O
(N

)
O
(N

2
)

O
(N

)
O
(N

)
U
n
id
ir
ec
ti
o
n
a
l
R
in
g

N
-

L
C
R

[2
8
]

O
(N

)
O
(N

2
)

O
(N

)
O
(N

)
U
n
id
ir
ec
ti
o
n
a
l
R
in
g

N
-

T
im

er
B
a
se
d

[1
9
]

O
(N

)
O
(N

2
)

O
(N

)
O
(N

)
U
n
id
ir
ec
ti
o
n
a
l
R
in
g

N
-

H
S
[5
9
]

O
(N

)
O
(N

lo
g
N
)

O
(N

)
O
(N

)
B
id
ir
ec
ti
o
n
a
l
R
in
g

N
-

B
u
ll
y
[5
0
]

O
(N

)
O
(N

2
)

O
(1
)

O
(1
)

C
o
m
p
le
te

N
et
w
o
rk

(N
2
−

N
)/
2

-

M
o
d
ifi
ed

B
u
ll
y

[6
4
]

O
(N

)
O
(N

2
)

O
(1
)

O
(1
)

C
o
m
p
le
te

N
et
w
o
rk

(N
2
−

N
)/
2

-

H
.

A
b
u
-A

m
a
ra
’s

[3
]

O
(N

)
O
(N

2
)

O
(1
)

O
(N

)
C
o
m
p
le
te

N
et
w
o
rk

(N
2
−

N
)/
2

⌊(
N
/
2
)
−

3
⌋

G
.
S
in
g
h
’s

[1
0
3
]

O
(N

)
O
(N

2
)

O
(l
og
∗
N

+
2
)

O
(l
og
∗
N

+
2
)

C
o
m
p
le
te

N
et
w
o
rk

(N
2
−

N
)/
2

N
2
/
4
−

N
/
2

L
E
A

w
it
h
O
n
e

L
in
k
F
a
il
u
re

[9
4
]

O
(N

)
O
(N
√
N
)

O
(√

N
)

O
(√

N
)

2
D

T
o
ru
s

2
N

O
n
e
L
in
k

D
y
n
a
m
ic

L
E
A

w
it
h
M
u
lt
i

L
in
k
s
F
a
il
u
re

[9
4
]

O
(N

)
O
(N
√
N
)

O
(√

N
)

O
(√

N
)

2
D

T
o
ru
s

2
N

M
u
lt
ip
le

li
n
k
s
(d
o
es

n
o
t
m
en
ti
o
n
th
e

n
u
m
b
er

o
f
li
n
k

fa
il
u
re
s
in

te
rm

s
o
f

N
)

L
ea
-T

N
O
(N

)
O
(N
√
N
)

O
(√

N
)

O
(√

N
)

2
D

T
o
ru
s

2
N

(N
−
2
√
N
−
3
)
(i
f
N

is
o
d
d
)
o
r

(N
−

2
√
N
)
(i
f
N

is
ev
en

)

Chapter 4. A leader election algorithm considering node and link failures 96

4.5 Summary

Throughout this chapter, we proposed a new fault-tolerant leader election algorithm

(Lea-TN) for a synchronous distributed system whose underlying network is a 2D

torus. Here, we introduced a lower bound of message complexity, i.e., Ω(N log3N) of

a comparison-based leader election for a synchronous torus network. We introduced

new message sending patterns that help reduce the number of exchanged messages

and necessary time steps of the election process. This Lea-TN algorithm always

chooses a leader with a higher number of non-faulty links and a lower failure rate.

Such an elected leader is more reliable and easily accessible from the other nodes

of the system. The Lea-TN algorithm fulfills three self-stabilizing conditions, i.e.,

uniqueness, agreement, and termination, which help in constructing a consistent

system. The algorithm can also tolerate multiple link and node failures until the

link and node failures increase the network’s diameter. Additionally, at the end of

every proper execution of this algorithm, a node gets to know about its link failures

and its adjacent nodes’ link failures.

