
Chapter 3

FRLLE: A Failure Rate and

Load-based Leader Election

Algorithm for a Ring Network

This chapter addresses the leader election problem by proposing a new leader election

algorithm (FRLLE) for bidirectional ring networks. The proposed algorithm elects

a node with a minimum failure rate and load so that the system gets a more reliable

leader that can concentrate on leadership roles and activities comfortably. This

algorithm satisfies uniqueness, agreement, and termination conditions, making it a

self-stabilizing leader election algorithm that helps build an efficient and consistent

distributed system. It reduces the message and time complexity of the election

process, which means the algorithm takes fewer time steps and exchanges fewer

messages to elect a leader. We simulate the FRLLE algorithm considering the

different number of nodes, compare the simulation results of the FRLLE algorithm

with the well-known existing leader election algorithms and demonstrate that the

FRLLE algorithm exchanges fewer messages and takes fewer time steps to elect

the leader. We further carried out a priori complexity analysis and compared the

outcome with the simulation results to corroborate our proposal.

33

Chapter 3. A failure rate and load-based leader election algorithm 34

Outline: The rest of the chapter is organized as follows. Section 3.1 details the

system model, assumptions and definitions. Section 3.2 presents the proposed leader

election algorithm. Complexity analysis, proof of self-stabilizing conditions and an

illustrative example are also give in this section. The empirical appraisement and

comparison with other existing algorithms are presented in Section 3.3. Section 3.4

summaries the chapter.

3.1 System Model

We consider a crash-recovery distributed system [24] composed of N nodes, where

N is an finite integer and N ≥ 2. The nodes are connected through a partially

synchronous bidirectional logical ring network and they communicate with one an-

other through message passing [23] and the message transmission delay follows an

upper bound. The communication channels of the system could be unreliable. For-

mally, this system can be represented by a graph G = (Π, L); where Π is the set

of nodes (|Π| = N and Π = {N Id0, N Id1, N Id2, . . . , N IdN−1}, and L is the set

of network connections (links) between the nodes (L = {lij}, where, lij is the link

between N Idi and N Idj; N Idi ̸= N Idj and N Idi, N Idj ∈ Π). According to

the crash-recovery model, a node may fail and get recovered anytime. Failure of a

node occurs when the node stops functioning correctly, and the recovery of a node

is a process that involves restoring the node from an erroneous state to an error-free

state. We also consider the omission fault, because it is a kind of failure-recovery

fault, with one exception [24]. An omission fault ensues when a node does not send

or receive a message that it is supposed to send or receive. In general, omission

faults ensue due to buffering overflows or network congestion.

3.1.1 Assumptions

The following assumptions are considered for the work described in this chapter.

Chapter 3. A failure rate and load-based leader election algorithm 35

� Every node has a unique Id. For the sack of simplicity, we assume that the Id

of a node belongs to 0 to N − 1.

� Every node knows the minimum propagation delay of a message between the

node and its adjacent nodes.

3.1.2 Definitions

The following definitions are provided for clarity regarding their usage in the rest of

this chapter.

Definition 1 (Fri): It represents the failure rate [84] [48] [43] of a node i. The

failure rate is the frequency with which a system, a node or a component fails,

expressed in failures per unit of time. In general, Weibull distribution [14] [95] is

used for failure analysis because of its flexibility in describing failure rate as it can

represent all three regions of the bathtub curve. According to two-parameter Weibull

distribution, the unreliability FXi
(t) and the failure density function fXi

(t) of a node

can be written as

FXi
(t) = 1− e

−
(t

ηi

)βi

(3.1)

where ηi > 0 is called the scale parameter, βi > 0 is the shape parameter, and t

denotes time.

fXi
(t) =

d

dt
FXi

(t) =
βi

ηi

(t

ηi

)(βi−1)
e
−
(t

ηi

)βi

(3.2)

So, the failure rate of a node i between times t0 and t1 is

Fri =

∫ t1

t0

fXi
(t)dt (3.3)

Chapter 3. A failure rate and load-based leader election algorithm 36

Here, βi < 1 means the failure rate is a decreasing function of time; βi = 1 means the

failure rate is constant, and βi > 1 means the failure rate is an increasing function

of time.

Definition 2 (Pi): It indicates the message processing delay of the ith node. The

message processing delay implies the time that a node takes to process the election

message.

Definition 3 (Pij): It represents the minimum message propagation delay between

ith and jth nodes. The propagation delay refers the time taken by an election message

to propagate from the ith node to the jth node.

Definition 4 (Lrti): It refers to the time-stamp when the ith node got the last

response from the leader. That means every node stores the up-to-date response

time-stamp of the leader in its Lrti.

Definition 5 (T tdi): It represents the sum of the propagation delay (Pij) and the

processing delay (Pi) of an election message.

Suppose i, j and k are three subsequent nodes in the ring (cf. Figure 3.1). Node

i initiates the election by creating an election message and sends it to the node j.

Initially Ttdi = Pij + Pi and Ttdi is sent to node j through the election message.

Before sending the received election message to node k, node j modifies the total

time delay as follows: Ttdj = Ttdi + Pjk + Pj.

Definition 6 (Emati): It implies the time-stamp of an election message when it

arrives at the node i.

Definition 7 (Recovery condition): Recovery condition (Ematj−Ttdi < Lrtj)

is the condition that helps to identify whether the recently crashed leader has re-

covered from its failure state.

Suppose i and j are two subsequent nodes in the ring (cf. Figure 3.1). Node j gets

an election message from node i. If (Ematj − Ttdi < Lrtj) is satisfied, that means

the node j has got respond from the leader after the election initiation. Thus, the

Chapter 3. A failure rate and load-based leader election algorithm 37

leader is alive, which means the recently failed leader has recovered from its failure

state. If (Ematj − Ttdi < Lrtj) is not satisfied, then the node j has no information

about the recovery of the crashed leader.

Definition 8 (Lci): It represents the leader coefficient of a node i. We calculate

the leader coefficient of a node by considering its average CPU utilization (A Cui),

average memory utilization (A Mui), average bandwidth utilization(A Bui) and its

failure rate (Fri). The following formula is used to compute the value of Lci.

Lci = w(A Cui) + x(A Mui) + y(A Bui) + z(Fri) (3.4)

where, w + x+ y + z = 1 and w, x, y, z ≥ 0

We can directly measure the average CPU, memory, and bandwidth utilization of a

node using some commands. According to our requirement, we can take the different

values of w, x, y, and z to give the different priorities of the average CPU utilization,

memory utilization, bandwidth utilization, and the failure rate. The smaller value

of the leader coefficient of a node indicates the higher potentiality of the leadership.

Definition 9 (M Lci): It represents the minimum leader coefficient of a node

maintained by the ith node. Initially the ith node stores its self leader coefficient into

M Lci. After that, the node i updates M Lci depending upon the received election

messages. If the leader coefficient of the received message creator node is less than

M Lci, the node i updates M Lci by the leader coefficient of the received message

creator node.

Definition 10 (Eini): If a node initiates the election by creating an election

message, then the node is an election initiating node (election initiator). If the ith

node is an election initiator then Eini = True. If the ith node is not an election

initiating node, Eini = False.

Definition 11 (Fremi): It is used to identify whether the ith node receives an

election message for the first time during the election. If the ith node gets an election

Chapter 3. A failure rate and load-based leader election algorithm 38

message for the first time from any other node, then Fremi = True, otherwise

Fremi = False.

3.1.3 Types of Message

The proposed algorithm uses three types of messages to elect the system leader.

One of these is the election message, which has four fields, i.e., the election message

creator node Id (Emc Id), the recently failed leader Id (Fl Id), the leader coefficient

(Lcc) of the message creator node and the total time delay (Ttdi) of the election

message. The election message is used to initiate the election. It is represented by

msg[Emc Id, F l Id, T tdi, Lcc]. The second type of message is the leader recovery

message, which has a single field i.e., the recently failed leader Id (Fl Id). This

message is used to inform the other nodes about the recovery of the recently failed

leader during the election. This message is represented by lrmsg[Fl Id]. The third

type of message is the newly elected leader declaration message, which also has a

single field named newly elected leader Id (El Id). This message is used to declare

the newly elected leader, and it is represented by nldmsg[El Id].

3.2 Proposed Algorithm

The proposed leader election algorithm (FRLLE) elects one of the system’s potential

nodes. The potential of a node is measured in terms of the failure rate and load of

the node. As we consider a crash-recovery distributed system, so a node may fail

and get recovered anytime. Hence, the recently failed leader may or may not get

recovered during the election. The FRLLE algorithm is designed considering both

the cases. Firstly, our algorithm checks the recovery condition to identify whether

the leader is recovered. If the leader is recovered, there is no need to elect a new

leader. On the other hand, if the leader is not recovered, the algorithm elects the

node with the minimum leader coefficient among the existing nodes in the system

as the new leader. If more than one node has the minimum leader coefficient, the

Chapter 3. A failure rate and load-based leader election algorithm 39

algorithm selects the node with the maximum Id among them as the leader. Now,

we describe the FRLLE algorithm in detail. In this algorithm, we use two functions

i.e., Create ele msg() and Modify msg(). Function Create ele msg() is used to

create the election message, and Modify msg() is used to modify the received elec-

tion message. We describe functions Create ele msg() and Modify msg() below

by considering that h, i, j and k are subsequent nodes in a ring (cf. Figure 3.1).

Create ele msg(Emc Id,F l Id,Lcc, T tdi)

// When a node i calls this function.

1. Create an election message msg[Emc Id, F l Id, T tdi, Lcc] and send it in both

directions of the ring.

2. N Id Mlci ← Emc Id.

3. M Lci ← Lcc

Modify msg(Emc Id,F l Id,Lcc, T tdi)

// When a node j gets an election message from a node i, the node j

calls this function to modify and send the message to the adjacent node

k.

1. N Id Mlcj ← Emc Id, M Lcj ← Lcc

2. Ttdj ← (Ttdi + Pjk + Pj)

3. Forward the modified election message msg[Emc Id, F l Id, T tdj, Lcc] to the

next node.

This algorithm consists of four phases:

� Election initiation

� Election message processing

Chapter 3. A failure rate and load-based leader election algorithm 40

i

h
k

j

Figure 3.1: All the nodes are connected through a bidirectional ring topology. h, i, j
and k are four subsequent nodes in this ring.

� Leader recovery message processing

� Newly elected leader declaration

Here, we consider that a node i perceives that the leader is failed, so it initiates an

election by creating an election message.

Algorithm 1: Election Initiation

// A node i perceives that the leader is failed and creates an election

message.

1 if (a node i realizes the leader failure) then
2 Emc Id← N Idi
3 Lcc← Lci
4 Create ele msg(Emc Id, F l Id, Lcc, T tdi)

5 end

Election initiation: This phase (Algorithm 1) is all about how a node initiates an

election. Whenever a node realizes that the current system leader is failed, the node

creates an election message to initiate the election and sends it in both directions

of the ring. Suppose, a node i realizes that the current system leader is failed,

so the node i creates the election message msg[Emc Id, F l Id, T tdi, Lcc], (where

Emc Id ← N Idi, Lcc ← Lci) and sends this message to the nodes j and h. Node

i copies self-Id and Lci into its N Id Mlci and M Lci respectively.

Election message processing: This phase (Algorithm 2) explains how a node

processes a received election message. Suppose, a node j gets an election message

from its adjacent node i. The node j first checks the recovery condition (Ematj −

Ttdi < Lrtj) to know whether it has any information about the recovery of the

Chapter 3. A failure rate and load-based leader election algorithm 41

Algorithm 2: Election Message Processing

// When a node j receives the election message

msg[Emc Id, F l Id, T tdi, Lcc] from a node i.
1 if (Ematj − Ttdi < Lrtj) then
2 Discard the received election message.
3 Create a lrmsg[Fl Id] and send it to node i.

4 else
5 if (M Lcj < Lcc) then
6 if (Fremj == True and Einj == False) then
7 Emc Id← N Idj , Lcc← Lcj
8 Create ele msg(Emc Id, F l Id, Lcc, T tdj)
9 Fremj ← False

10 end
11 Discard the received message.

12 else
13 if (M Lcj == Lcc) then
14 if (Fremj == True and Einj == False) then
15 if (N Idj > Emc Id) then
16 Emc Id← N Idj , Lcc← Lcj
17 Create ele msg(Emc Id, F l Id, Lcc, T tdj)

18 else
19 Modify msg(Emc Id, F l Id, Lcc, T tdi).
20 end
21 Fremj ← False

22 else
23 if (N Id Mlcj < Emc Id) then
24 Modify msg(Emc Id, F l Id, Lcc, T tdi)
25 else
26 if (N Id Mlcj == Emc Id) then
27 Elect the received message creator node as the leader.
28 El Id← Emc Id
29 L Idj ← El Id
30 Create a leader declaration message nldmsg[El Id] and send it

in both directions of the ring.
31 else
32 Discard the received message.
33 end

34 end

35 end

36 else
37 Modify msg(Emc Id, F l Id, Lcc, T tdi)
38 end

39 end

40 end

Chapter 3. A failure rate and load-based leader election algorithm 42

failed leader. If it is true, that means the leader is alive, so the node discards the

received election message, creates a leader recovery message lrmsg[Fl Id] and sends

it to the adjacent node (i.e., node i) which sent the election message. By sending a

leader recovery message, the node j informs that the leader is alive. If the recovery

condition is false, the node j compares M Lcj with the leader coefficient (Lcc)

of the election message creator. If M Lcj is greater than Lcc, the node j copies

the election message creator Id and Lcc into N Id Mlcj and M Lcj respectively,

calculates the Ttdj (i.e., Ttdj = Ttdi+Pjk +Pj) and forwards the modified election

message (msg[Emc Id, F l Id, T tdj, Lcc]) to the next node (node k). If M Lcj is

less than Lcc, the node j discards the received election message. Along with that,

if the node j itself is not an election initiating node, and the received message is

its first received election message, then the node j creates a new election message

(msg[Emc Id, F l Id, T tdj, Lcc], where Emc Id ← N Idj and Lcc ← Lcj), and

sends it in both directions of the ring.

Whenever a node gets the same election message from both directions of the ring,

it elects the election message creator node as the new system leader. Then the node

creates a newly elected leader declaration message (nldmsg[El Id], where El Id←

Emc Id) and sends it in the both directions of the ring.

Algorithm 3: Leader Recovery Message processing

// Suppose a node j receives a leader recovery message lrmsg[Fl Id] from

a node k
1 if (the node j itself is a leader recovery message creator node) then
2 Discard the received leader recovery message (lrmsg[Fl Id]).
3 else
4 if (received leader recovery message==the first received leader recovery message)

then
5 L Idj ← Fl Id
6 Forward the leader recovery message lrmsg[Fl Id] to the next node.

7 else
8 Discard the received leader recovery message lrmsg[Fl Id].
9 end

10 end

Leader recovery message processing: This phase (Algorithm 3) is about the

Chapter 3. A failure rate and load-based leader election algorithm 43

leader recovery message processing method. Suppose, a node j gets a leader re-

covery message from a node k. After receiving this message (lrmsg[Fl Id]), the

node j identifies that the recently failed leader gets recovered from its failure state.

Therefore, the leader will be the same as earlier and there is no need to elect a new

leader. Hence, the L Idj should be updated by the previous leader Id (Fl Id). If the

node j itself is not a leader recovery message creator and receives a leader recovery

message for the first time, the node forwards the received leader recovery message

to the next node. Otherwise, it discards the received leader recovery message.

Algorithm 4: Newly Elected Leader Declaration Message processing

// Suppose a node j receives a newly elected leader declaration message

nldmsg[El Id] from a node k
1 if (received leader declaration message==the first received leader declaration

message) then
2 L Idj ← El Id
3 Forward the leader declaration message nldmsg[El Id] to the next node.

4 else
5 Discard the received leader declaration message nldmsg[El Id].
6 end

Newly elected leader declaration message processing: This phase (Algorithm

4) denotes how a node processes the leader declaration message. Suppose, a node

j gets a newly elected leader declaration message (nldmsg[El Id]) from a node k.

After receiving nldmsg[El Id] message, the node j copies El Id into L Idj and

forwards the message to the next node. In this way, all the nodes know about the

newly elected leader. Whenever a node gets the leader declaration message from

both directions of the ring, it discards the message.

3.2.1 Proof of Self-stabilization

This section proves that the proposed algorithm satisfies the uniqueness, agreement,

and termination conditions that make the algorithm a self-stabilizing leader election

algorithm.

Chapter 3. A failure rate and load-based leader election algorithm 44

Lemma 3.1. Every proper execution of the FRLLE algorithm elects only one node

as the system leader.

Proof: When the recently failed leader gets recovered from its failure state, the

algorithm retains the previous leader instead of electing a new one. So, in this case,

there is only one leader in the system. But, when the leader fails, the node with

the least leader coefficient among the existing nodes gets elected. Now two cases

may occur: (1) all the nodes have different leader coefficients, (2) more than one

node has the same leader coefficient. Assume that, at a time, two nodes i and j

are elected as the system leader. So, node i has the least leader coefficient (Lci), as

well as node j also has the least leader coefficient (Lcj) among the existing nodes

in the system. In case (1), all the nodes have different leader coefficients, and at

a time nodes i and j are elected as the system leader. So, Lci < Lcj as well as

Lcj < Lci. This scenario cannot happen because all the nodes have different leader

coefficients. Hence, our assumption is wrong. So, the nodes i and j cannot get

elected as the system leader concurrently. In case (2), more than one node may have

the minimum leader coefficient, and at a time, both nodes i and j are elected as the

system leaders. So, nodes i and j have the least leader coefficient, i.e. Lci and Lcj

respectively and Lci = Lcj. In this case, the propounded algorithm elects the node

with maximum Id among the nodes which have the least failure rate. If the node i

is elected as the system leader, then N Idi > N Idj. If the node j is also elected as

the system leader, then N Idj > N Idi. According to our system model, every node

has a distinct node Id. Hence, at a time N Idi > N Idj and N Idj > N Idi is not

possible. So, in this case, our assumption is also wrong. Therefore, at a time, the

FRLLE algorithm elects only one node as the system leaders. Hence the uniqueness

condition is met here. ■

Lemma 3.2. In every proper execution of the FRLLE algorithm, all the nodes of

the system get to know about the elected leader and agree with it.

Proof: When a node i gets an election message from both adjacent nodes (both

directions of the ring), it gets to know the received election message creator node

Chapter 3. A failure rate and load-based leader election algorithm 45

is the newly elected leader. The node then stores the newly elected leader Id into

its L Idi, creates a newly elected leader declaration message (nldmsg[El Id]), and

sends it in both directions of the ring. When a node gets the nldmsg[El Id] message,

it copies the elected leader Id (El Id) into its L Id and forwards the message to

the next node. In this way, after N/2 hops, all the nodes get the nldmsg[El Id]

message and know about the newly elected leader. Thus all the nodes copy the

elected leader Id into their L Id and agree with the elected leader. So the FRLLE

algorithm satisfies the agreement condition. ■

Lemma 3.3. The FRLLE algorithm elects a leader for the system and gets termi-

nated in a finite time.

Proof: An election process starts through creating election message(s) by the

node(s). Only the message with the highest leader coefficient retains in the net-

work. When a node gets that message from both directions of the ring, it gets to

know who the newly elected leader is, i.e., none other than the node, which created

the election message with the highest leader coefficient. Then that receiver node

creates a leader declaration message and sends it to both directions of the ring to

declare the newly elected leader. Every node will get this leader declaration mes-

sage. When a node gets this declaration message from both directions, the election

message gets terminated. The FRLLE algorithm takes N/2 time steps to propagate

the election messages and another N/2 time steps to propagate the leader declara-

tion message. So, a total of N time steps are required to elect a new leader. In a

synchronous system, it takes a finite time to propagate a message from one node to

another node. If one time step takes maximum c units of time (where c is constant),

then the FRLLE takes maximum cN units of time to complete the whole election

process. According to our system model N is finite. Hence, the FRLLE algorithm

must terminate in a finite time. ■

Theorem 3.4. The FRLLE algorithm is a self-stabilizing leader election algorithm.

Proof: Lemma 3.1, Lemma 3.2 and Lemma 3.3 prove that the FRLLE algorithm

satisfies the uniqueness, agreement and termination conditions respectively. That

Chapter 3. A failure rate and load-based leader election algorithm 46

means the FRLLE algorithm satisfies all the three conditions of a self-stabilizing

leader election algorithm. Hence, the FRLLE algorithm is a self-stabilizing leader

election algorithm. ■

3.2.2 Complexity Analysis

In this section, we analyze the time complexity and message complexity of the

FRLLE algorithm.

3.2.2.1 Message Complexity

In the proposed system model, the nodes communicate with one another through

message passing, so message complexity depends on how many messages have been

exchanged to elect the leader.

Best Case: Suppose a node realizes that a leader has failed. Meanwhile, its adjacent

two nodes realize that the leader is alive. This is the best case scenario of this

algorithm. In this case, the former node starts the election process and sends the

election messages to its two adjacent nodes. But they already know that the leader

is alive. So, after receiving election messages, they create leader recovery messages

and send those (two messages) to the former node which initiated the election. So,

in this whole process, only four messages are needed. Here, the message complexity

becomes O(1).

Worst Case: Suppose all the nodes simultaneously realize that the leader has failed,

and it is not recovering. It is the worst-case scenario of the FRLLE algorithm. In

this situation, all the nodes start the election process by creating election messages.

Among all these messages, the message with the highest leader coefficient retains

in the network, and others get discarded. After (k + 1)th steps (where k is an

integer), a node gets the election message with the highest leader coefficient from

both sides. This is the time when the node gets to know the newly elected leader

that is none other than the creator of the message with highest leader coefficient.

Chapter 3. A failure rate and load-based leader election algorithm 47

Then this node creates a leader declaration message and sends it to the other nodes.

If N is odd, then k = (N − 1)/2 and the total number of required messages is

3 + 5 + 7 + 9 + + kth term + 2N + N = (N2 + 14N − 3)/4. If N is

even then k = (N − 2)/2 and the total number of required exchanged messages is

4 + 6 + 8 + + kth term + 2N + N = (N2 + 14N − 8)/4. Therefore, in the

worst case, the message complexity of this algorithm is O(N2).

3.2.2.2 Time Complexity

Time complexity refers to the total time an election algorithm takes to complete the

entire election process.

Best Case: In the best case, only four messages are needed to establish that the

former leader is alive, and no new leader election is required. This process takes just

two time steps. If one time step takes c units of time (where c is constant), then,

in the best case, 2c units of time are required. Here, the time complexity of the

FRLLE algorithm becomes O(1).

Worst Case: In the worst case, the FRLLE algorithm takes N/2 time steps to

propagate the election messages and N/2 time steps to propagate the leader decla-

ration message to elect the new leader. So, a total of N time steps are required to

elect a new leader. If one time step takes c units of time (where c is constant), then,

in this case, cN units of time are required. Hence, the time complexity is O(N).

3.2.3 An Illustrative Example

In this section, we illustrate the FRLLE algorithm with the help of an example.

First, we detail the case where the recently failed leader gets recovered during the

election.

Consider Figure 3.2(a); there are ten nodes in the system with distinct node Ids

from 0 to 9. Here, a circle represents a node and integer inside the circle is its Id.

Chapter 3. A failure rate and load-based leader election algorithm 48

6

4

2

7

1

5

8

0

3

9

L Id7 = 9

L Id1 = 9

L Id6 = 9 L Id9 = 9

L Id5 = 9

L Id8 = 9

L Id0 = 9

L Id3 = 9
L Id4 = 9

L Id2 = 9

0.17

0.13

0.16

0.11

0.06

0.10

0.12

0.18

0.12

0.14

(a) There are 10 nodes in this system with node
Ids from 0 to 9. Node 9 is the system leader.

6

4

2

7

1

5

8

0

3

9

0.16

0.06

0.13

0.17

0.12

0.11

0.18

0.14

0.12

0.10

Node 4 realizes that
the leader is crashed.

So, it creates an
election message.

N Id Mlc4 = 4

msg[4, 9, T td4, 0.11]
Where, Ttd4 = P42 + P4

msg[4, 9, T td4, 0.11]
Where, Ttd4 = P43 + P4

(b) Node 4 perceives that the leader is failed, so it
generates an election message to initiate the election.

6

4

2

7

1

5

8

0

3

9

0.16

0.06

0.13

0.17

0.12

0.11 0.18

0.14

0.12

0.10

N Id Mlc2 = 4

N Id Mlc4 = 4

N Id Mlc3 = 4

msg[4, 9, T td2, 0.11] Where,
Ttd2 = Ttd4 + P27 + P2

msg[4, 9, T td3, 0.11] Where,
Ttd3 = Ttd4 + P30 + P3

(c) There are 10 nodes in this system with
node Ids from 0 to 9. Node 9 is the system
leader.

6

4

2

7

1

5

8

0

3

9

0.16

0.06

0.13

0.17

0.12

0.11

0.18

0.14

0.12

0.10

N Id Mlc2 = 4

N Id Mlc4 = 4

N Id Mlc3 = 4

Node 7 has the leader
recovery information,
so it creates a leader
recovery message

Node 0 has the leader
recovery information,
so it creates a leader
recovery message

lamsg[9]

lamsg[9]

(d) Node 4 perceives that the leader is failed, so it generates
an election message to initiate the election.

Figure 3.2: Illustrative example of the proposed election algorithm when failed leader
recovers during the election.

The leader coefficient of every node is also shown in this figure. For example, the

leader coefficient of node 1 is 0.17. Suppose that the node 9 is the system leader,

and the node 4 realizes that the leader is failed, and it creates an election message

msg[4, 9, T td4, 0.11] to initiate an election. The node 4 copies its self-Id into its

N Id Mlc4, and sends the election message to the nodes 2 and 3 (cf. Figure 3.2(b)).

In between, the node 9 gets recovered from the failure state, and nodes 0 and 7 get

the recovery information of node 9.

The nodes 2 and 3 have no recovery information about the recently failed leader

Chapter 3. A failure rate and load-based leader election algorithm 49

(i.e., node 9), and their leader coefficient is higher than the leader coefficient of node

4. So, after receiving the election message msg[4, 9, T td4, 0.11], nodes 2 and 3 copy

the node Id 4 into N Id Mlc2 and N Id Mlc3 respectively. They calculate Ttd2

and Ttd3, and send the modified election message to nodes 7 and 0 respectively (cf.

Figure 3.2(c)).

After receiving the election message created by the node 4, the nodes 7 and 0 check

the recovery inequality to identify whether the recently failed leader has been recov-

ered. As the leader is recovered and nodes 7 and 0 have that information, therefore

recovery inequality will be satisfied. That’s why nodes 7 and 0 discard the received

election message, create a leader recovery message lrmsg[9] and send it to the nodes

2 and 3 respectively (cf. Figure 3.2(d)).

After receiving the leader recovery message, nodes 2 and 3 copy the node Id 9 into

LID2 and LID3 respectively, and forward the leader recovery message lrmsg[9] to

node 4. After receiving the leader recovery message lrmsg[9] the node 4 copies the

node Id 9 into its LID4, and discards both the leader recovery messages received

from nodes 2 and 3.

Now we detail the case where the failed leader does not get recovered during the

election. In this example, we assume that the node 3 has the minimum leader

coefficient, i.e., 0.08. The system leader (node 9) is failed, and the node 4 realizes it.

To initiate the election, the node 4 creates an election message msg[4, 9, T td4, 0.11],

copies self-Id into its N Id Mlc4, and sends the election message to the nodes 2 and

3 (cf. Figure 3.2(b)).

As the recently failed leader does not get recovered during the election, so no node

will have the leader recovery information; therefore, recovery inequality will not be

satisfied. The leader coefficient of the node 2 is higher than that of the node 4,

so after receiving the message msg[4, 9, T td4, 0.11], the node 2 copies the node Id

4 into its N Id Mlc2, calculates Ttd2 (where, Ttd2 = Ttd4 + P27 + P2), forwards

the modified message (msg[4, 9, T td2, 0.11]) to node 7. When the node 3 receives

the message msg[4, 9, T td4, 0.11], it discards this message and creates a new election

Chapter 3. A failure rate and load-based leader election algorithm 50

6

4

2

7

1

5

8

0

3

0.16

0.13

0.17

0.12

0.11
0.08

0.14

0.12

0.10

0.08 < 0.11, so, node 3
discards the received
election message and
create a new election

message

msg[3, 9, T td3, 0.08] where,
Ttd3 = Ttd4 + P30 + P3

msg[3, 9, T td3, 0.08] Where,
Ttd3 = Ttd4 + P34 + P3

N Id Mlc2 = 4

N Id Mlc3 = 3
N Id Mlc4 = 4

msg[4, 9, T td2, 0.11] where
Ttd2 = Ttd4 + P27 + P2

(a) Node 2 copies the node Id 4 and for-
wards the received message to node 7. Node
3 discards the received election message,
creates a new election message, and sends
it to the nodes 4 and 0.

6

4

2

7

1

5

8

0

3

0.16

0.13

0.17

0.12

0.11
0.08

0.14

0.12

0.10

msg[3, 9, T td0, 0.08] Where,
Ttd0 = Ttd3 + P08 + P0

msg[3, 9, T td4, 0.08] Where,
Ttd4 = Ttd3 + P42 + P4

N Id Mlc2 = 4

N Id Mlc7 = 4

L Id1 = 9

N Id Mlc0 = 3

N Id Mlc3 = 3
N Id Mlc4 = 3

msg[4, 9, T td7, 0.11] Where,
Ttd7 = Ttd2 + P71 + P7

(b) Nodes 4 and 0 copy the node Id 4, modify the re-
ceived message and forwards it to the nodes 2 and 8
respectively. Node 7 copies the node Id 4 and forward
the modified message to node 1.

6

4

2

7

1

5

8

0

3

0.16

0.13

0.17

0.12

0.11
0.08

0.14

0.12

0.10

msg〈3, 9, TTD5, 0.08〉
where,

TTD5 = TTD8+P56+P5

msg[3, 9, T td7, 0.08]
Where,

Ttd7 = Ttd2 + P71 + P7

N Id Mlc2 = 3

N Id Mlc7 = 3

L Id1 = 4

N Id Mlc6 = 4

N Id Mlc5 = 3

N Id Mlc8 = 3

N Id Mlc0 = 3

N Id Mlc3 = 3
N Id Mlc4 = 3

msg[4, 9, T td6, 0.11] Where,
Ttd6 = Ttd1 + P65 + P6

After receiving the
message

msg[4, 9, T td6, 0.11]
node 5 discards it.

(c) Node 5 discards the received election message (created
by node 4) and forwards the election message (created by
node 3) to node 6. Node 7 copies node Id 3 and forwards
the election message (created by node 3) to node 1.

6

4

2

7

1

5

8

0

3

0.16

0.13

0.17

0.12

0.11
0.08

0.14

0.12

0.10

LID2 = 3

LID7 = 3

L Id1 = 3

L Id6 = 3

LID5 = 3

LID8 = 3

LID0 = 3

LID3 = 3
LID4 = 3

nldmsg[3]

nldmsg[3]

nldmsg[3]

nldmsg[3]

nldmsg[3]

nldmsg[3]

nldmsg[3]

nldmsg[3]

nldmsg[3]

(d) Node 6 gets the election message (created
by node 3) from both directions of the ring, so it
creates a leader declaration message and sends
the message to all the nodes to declare the node
3 as the newly elected leader of the system.

Figure 3.3: Illustrative example of the proposed election algorithm when failed leader
does not recover during the election.

message msg[3, 9, T td3, 0.08] because its leader coefficient is less than that of node

4. It sends the newly created message to nodes 0 and 4, copies self-Id into its

N Id Mlc3 (cf. Figure 3.3(a)).

After receiving the message msg[3, 9, T td3, 0.08], the node 4 copies the node Id 3

into its N Id Mlc4 and forwards the message to the node 2 because the node 3

has the minimum leader coefficient. At the same time, node 7 gets the message

Chapter 3. A failure rate and load-based leader election algorithm 51

msg[4, 9, T td2, 0.11]. It copies node Id 4 into its N Id Mlc7, calculates Ttd7, for-

wards the modified message, i.e. msg[4, 9, T td7, 0.11] to node 1. When node 0 gets

the message msg[3, 9, T td3, 0.08], it copies node Id 3 into its N Id Mlc0, calculates

Ttd0, forwards msg[3, 9, T td0, 0.08] to the next node i.e., node 8 (cf. Figure 3.3(b)).

After getting the election message created by the node 4, nodes 1 and 6 perform

the same procedure as node 7. Likewise, after receiving the message created by the

node 3, the nodes 8 and 5 follow the same procedure as node 0. When the message

msg[4, 9, T td6, 0.11] comes to the node 5, it discards this message because the node

5 has already got the election message that is created by the node 3, which has

the minimum failure rate. On the other hand, after receiving the election message

which is created by the node 3, the nodes 2 and 7 copy the node Id 3 and forward

the message to the next node (cf. Figure 3.3(c)).

Finally, when the node 6 or/and 1 gets the same election message (created by the

node 3) from both directions of the ring, they create a leader declaration message

(nldmsg[3]) to declare the node 3 as the new leader and sends that message to every

node of the ring. After getting the leader declaration message (nldmsg[3]), each

node gets to know about the newly elected leader (cf. Figure 3.3(d)).

3.3 Empirical Appraisement

This section describes the simulation details of the propounded algorithm. By con-

sidering some practical scenarios, we simulate and assess the efficiency of our pro-

posed algorithm.

3.3.1 Experiment Setup

All experiments were performed on a single machine. The machine has an Intel

Core(TM) i5-2410M processor (2.3GHz, 4MB cache, 2.9GHz Turbo Boost), 8GB

RAM 1TB HDD, NVIDIA GeForce graphics, running Ubuntu Linux Release 16.04

Chapter 3. A failure rate and load-based leader election algorithm 52

(xenial kernel 4.4). For the C programming environment, we use GCC version 5.4.0,

and for the message passing interface (MPI), we use MPICH version 3.2.

We can use our algorithm for solving the different problems, including managing the

data inconsistency of the replicated servers, clock synchronization, job scheduling,

atomic commitment, and load balancing. We simulate our algorithm for managing

the data inconsistency of the replicated servers. Nowadays, replicated servers are

used to increase the system fault tolerance, performance, reliability, and availability.

The replicated servers could be situated in different places, and every replicated

server of the system contains identical copies of the same data. This kind of system

may face some data inconsistency at the time of data modification in the servers. The

data inconsistency arises only as a consequence of the execution of multiple writing

commands in a different order in different servers. To overcome this problem, we

elect a server as a leader that helps to sequence the data modification commands

that come from the clients. Whenever a server gets the data modification commands,

it sends the command to the leader server. The leader server performs ordering of

the commands in proper sequence and sends them to all the servers to process the

commands in the same order.

By considering the above scenario, we have simulated the proposed algorithm (FR-

LLE) and some existing algorithms to observe the number of exchanged messages

and time steps to elect a new system leader with a different number of nodes like

10, 20, 30,, 100. The obtained results are shown using the Figures 3.4 and 3.5.

Figures 3.4 (a) and (b) show the number of exchanged messages of different algo-

rithms to elect a leader in the best case and worst case respectively. Figures 3.5 (a)

and (b) show the election time of the different algorithms to elect a leader in the

best case and worst case respectively.

3.3.2 Performance Comparison and Discussion

We compare the performance and efficiency of the FRLLE algorithm with that of

five familiar ring based leader election algorithms such as the Ring [75], the LCR

Chapter 3. A failure rate and load-based leader election algorithm 53

[28], the HS [59], the Timer-based [19] and Abraham et al. [2] algorithms using

two comparison parameters i.e., the required amount of time steps and exchanged

messages. The ring can be embedded into complete mesh topology [85]. So, we

also compare the performance of the FRLLE algorithm with that of well-known

complete mesh topology based algorithms like Bully algorithm [50] and Modified

Bully algorithm [64]. Tables 3.1 and 3.2 show a priori analysis [33] [101] of the

time and message complexity of the different election algorithms. The required

amount of time steps and exchanged messages are calculated in terms of N (where

N is the number of nodes in the system), and the time and message complexity are

represented by O-notation [33] [101]. On the other hand, Figures 3.4 and 3.5 show

the simulation results (i.e., election time and the number of exchanged messages) of

different algorithms.

After the analysis of Tables 3.1 and 3.2 and Figures 3.4 and 3.5, we get that in the

best case scenario, the message complexity and time complexity of Ring, LCR, HS,

and Timer-based algorithm is O(N). In contrast, the message and time complexity

of the FRLLE algorithm is O(1). That means the FRLLE algorithm reduces the

message complexity as well as time complexity from O(N) to O(1). Even if, in the

best case, the performance of the FRLLE algorithm is better than that of Bully

and Modified Bully algorithms when the number of message passing is concerned.

Because the message complexity of the Bully and Modified Bully is O(N), but that

of the FRLLE is O(1). In the worst-case scenario the FRLLE algorithm exchanges

(7N2−14N+8)/4, (N2−8N+8)/4, (3N2−10N+4)/4, (N2−4N+8)/4, (N2−12N+

8)/4, and (5N2 − 8N + 8)/4 numbers of fewer messages than that of Ring, LCR,

Bully, Modified Bully, Timer-based, and Abraham et al. algorithms respectively. In

the worst case, when the number of nodes in the system is less than 230, the FRLLE

algorithm exchanges fewer messages than that of the HS algorithm, but when the

number of system nodes is greater than 230, HS algorithm exchanges fewer messages

than that of FRLLE algorithm. It is because, the message required by the HS and

FRLLE algorithms are expressed by 4
[∑(⌈log2 N⌉)

k=1 2k ∗ ⌈N/(2k−1 + 1)⌉
]
+ 5N and

(N2 + 14N − 8)/4 respectively, where N is the number of nodes. When N ≤ 230,

Chapter 3. A failure rate and load-based leader election algorithm 54

then (4
[∑(⌈log2 N⌉)

k=1 2k ∗ ⌈N/(2k−1 + 1)⌉
]
+ 5N) is greater than (N2 + 14N − 8)/4.

And when N > 230, then (4
[∑(⌈log2 N⌉)

k=1 2k ∗ ⌈N/(2k−1 + 1)⌉
]
+ 5N) is less than

(N2 + 14N − 8)/4. When we analyze the required time steps, we find that in the

worst case, the FRLLE algorithm takes N , 2N−1, 5N−2, and 2N fewer time steps

than that of Ring, LCR, HS, and Abraham et al. algorithms respectively. That

means our algorithm is faster than the Ring, LCR, and HS algorithm. On the other

hand, the time complexity of the Bully and Modified Bully algorithms is better than

that of the FRLLE algorithm. To execute the algorithms like Bully, Modified Bully

and Timer-based, a node needs to know the global information of the system (i.e.,

the total number of nodes in the system and their Ids). Whereas, to execute the

FRLLE algorithm, instead of knowing the total nodes and their Ids, a node only

needs to know the information of its neighbor nodes. Additionally, in FRLLE a

node needs its self-information only to calculate the average CPU, memory, and

bandwidth utilization. When the number of nodes in the system is greater than

230, the HS algorithm exchanges fewer messages than the FRLLE algorithm, but it

is near about 6 times slower than the FRLLE algorithm. A distributed system gets

another vital advantage from the proposed algorithm (FRLLE) than the existing

algorithms. The FRLLE algorithm elects the node with the minimum failure rate

and the minimum load among the existing nodes in the system as the new leader.

So, the elected leader’s failure probability and load are also minimum, which means

the FRLLE algorithm produces a more reliable leader for the system. As the load

of the elected leader is minimum, so the leader is able to manage the system more

efficiently.

Chapter 3. A failure rate and load-based leader election algorithm 55

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100

N
o

.
o

f
E

x
c
h

a
n

g
ed

 M
e
ss

a
g

es

Number of Nodes

(a) Best Case

Ring LCR HS Timer Based

Bully Modified Bully Abraham et al. FRLLE

1

10

100

1000

10000

100000

10 20 30 40 50 60 70 80 90 100
N

o
.

o
f

E
x

c
h

a
n

g
ed

 M
e
ss

a
g
es

Number of Nodes

(b) Worst Case

Ring LCR HS Timer Based

Bully Modified Bully Abraham et al. FRLLE

Figure 3.4: In the best and worst cases, the total number of exchanged messages of
different leader election algorithms.

1

10

100

1000

10 20 30 40 50 60 70 80 90 100

T
im

e

Number of Nodes

(a) Best Case

Ring LCR HS Timer Based

Bully Modified Bully Abraham et al. FRLLE

1

10

100

1000

10 20 30 40 50 60 70 80 90 100

T
im

e

Number of Nodes

(b) Worst Case

Ring LCR HS Timer Based

Bully Modified Bully Abraham et al. FRLLE

Figure 3.5: In the best and worst cases, the total election time of different leader election
algorithms.

Chapter 3. A failure rate and load-based leader election algorithm 56

T
a
b
l
e

3
.1
:
M
es
sa
ge

co
m
p
le
x
it
y
in

te
rm

s
of

O
-n
o
ta
ti
o
n
o
f
N

a
n
d
n
u
m
b
er

o
f
ex
ch
a
n
g
ed

m
es
sa
g
es

in
te
rm

s
o
f
N
,
w
h
er
e
N

is
th
e
to
ta
l

n
u
m
b
er

o
f
n
o
d
es
.

M
es
sa
ge

co
m
p
le
x
it
y

N
u
m
b
er

of
to
ta
l
ex
ch
an

ge
d
m
es
sa
g
es

A
lg
or
it
h
m

B
es
t
ca
se

W
or
st

ca
se

B
es
t
ca
se

W
or
st

ca
se

R
in
g
[7
5]

O
(N

)
O
(N

2
)

2
N

2
N

2

L
C
R

[2
8]

O
(N

)
O
(N

2
)

2
N

(N
2
+
3
N
)/
2

H
S
[5
9]

O
(N

)
O
(N

lo
g
N
)

4
[∑ (

⌈l
o
g
2
(N

/
2
)⌉
−
1
)

k
=
0

2
k
] +

3
N

4
[∑ (

⌈l
o
g
2
N
⌉)

k
=
1

2k
∗
⌈n

/(
2k
−
1
+
1
)⌉
] +

5
N

T
im

er
-b
as
ed

[1
9]

O
(N

)
O
(N

2
)

N
(N

2
+

N
)/
2

B
u
ll
y
[5
0]

O
(N

)
O
(N

2
)

N
N

2
+

N
−

1

M
o
d
ifi
ed

B
u
ll
y
[6
4]

O
(N

)
O
(N

2
)

N
(N

2
+
5
N
)/
2

A
b
ra
h
am

et
al
.
[2
]

O
(N

2
)

O
(N

2
)

N
2
+
2
N

(3
N

2
+
3
N
)/
2

F
R
L
L
E

O
(1
)

O
(N

2
)

4
(N

2
+
14

N
−

8
)/
4

Chapter 3. A failure rate and load-based leader election algorithm 57

Table 3.2: Time complexity in terms of O-notation of N and number of required time
steps in terms of N , where N is the total number of nodes.

Time complexity Required time steps
Algorithm Best case Worst case Best case Worst case

Ring [75] O(N) O(N) 2N 2N

LCR [28] O(N) O(N) 2N 3N − 1

HS [59] O(N) O(N) 4N − 2 6N − 2

Timer-based [19] O(N) O(N) N N

Bully [50] O(1) O(1) 3 5

Modified Bully [64] O(1) O(1) 3 4

Abraham et al. Algorithm [2] O(N) O(N) 3N 3N

FRLLE Algorithm. O(1) O(N) 2 N

3.4 Summary

In this chapter, we have devised and illustrated a leader election algorithm for a

crash-recovery partially synchronous distributed system by considering the failure

rate and average load of the nodes. Here, we introduce the concept of the leader

coefficient to elect a reliable and competent leader. Such a leader can utilize the

resources appropriately and improve overall system performance. Till now, the exist-

ing algorithms that work on ring networks have O(N) message and time complexity

in the best case scenario. On the other hand, this proposed algorithm has O(1) mes-

sage and time complexity in the best case. In the worst case scenario, the FRLLE

algorithm exchange fewer messages than the Ring, LCR, Timer-based, Abraham et

al. algorithms that work on ring network and it is 2, 3, 3 and 6 times faster than Ring,

LCR, Abraham et al. and HS algorithms respectively. We have also proved that the

FRLLE algorithm satisfies the uniqueness, agreement and termination conditions

that help to build a consistent distributed system.

