
Chapter 2

Preliminaries and Literature

Review

In this chapter, first, we provide some preliminaries regarding the leader election

problem in the distributed systems that are important to understand the leader

election algorithms. Then we perform an in-detailed literature survey on the leader

election problem and identify the several issues and research gaps related to the

existing leader election methods.

2.1 Preliminaries

In a distributed system, electing a node as the system leader among the multiple

nodes is known as the leader election problem. Here, the leader election algorithms

are used to elect the leader for the systems. A leader election algorithm is a dis-

tributed algorithm that runs on the different nodes simultaneously and elects the

leader. A self-stabilizing leader election algorithm helps to maintain system consis-

tency and improve the overall system performance. In this section, we describe the

self-stabilizing conditions, several system models, failure detectors, failure models,

and other related matters regarding the design of the leader election algorithms.

18



Chapter 2. Preliminaries and literature review 19

2.1.1 Self-stabilizing Conditions

A leader election algorithm is said to be self-stabilizing algorithm if it satisfies the

uniqueness, agreement, and termination conditions. Formally, uniqueness, agree-

ment, and termination guarantee the following properties:

Uniqueness: The algorithm satisfies the uniqueness condition if it always elects only

one node as the system leader.

Agreement: The algorithm satisfies the agreement condition if all the nodes agree

with the elected leader.

Termination: An algorithm satisfies the termination condition if it is terminated in

a finite time.

2.1.2 Failure Detection

In a distributed system, at any time, different system components may fail and

hamper the system performance, so failure detection is essential here. A failure

detector is a scheme that helps to detect the failure of the components of a system.

Every node of a distributed system can have a local failure detection module [27]

[17] that works as a failure detector. Each node monitors the other nodes in the

system through its local failure detection module. The failure detection module

is independent, which means that to invoke this module, a node does not need to

depend on the other nodes. There are different approaches to implement a failure

detector [73] [4] [5] [4] [72]. Some of these approaches are:

Polling: When a node i monitors another node j through polling, i sends a query

message to j and stays waiting for an answer to this message from j [73] [74]. If i

does not get an answer after a given time, i will suspect j, i.e., i considers j as a

faulty node.

Heartbeat: In the case of the heartbeat method, it is frequently used to monitor

the availability of nodes [4] [5]. Every supervised node j sends a heartbeat message



Chapter 2. Preliminaries and literature review 20

periodically to monitoring nodes to notify them that it is still alive. If the monitoring

nodes do not receive the expected message from j after a given time, then they will

suspect j as a faulty node.

2.1.3 System Models for Leader Election

A system model is a collection of assumptions that allow defining characteristics and

constraints that a system might exhibit, such as processing time, communication

delay, and failure patterns. One of the critical tasks to design an algorithm is

defining the system model in which the algorithm must work. Consequently, to

execute an algorithm in a real system, it is important to know if that real system

meets the properties of the system model for which it was designed. A distributed

system can be modelled by describing its desirable behaviours. Different system

models can be obtained based on the time assumptions (clock, processing time,

and communication delay) of the distributed systems. These system models are

considered to design several distributed algorithms like the leader election algorithm.

Some of the distributed system models are as follows.

Synchronous model: A synchronous model [55] always follows the explicit bounds

of time. A synchronous distributed system is based on strong boundaries on message

delay and computation time. It meets the following properties:

� The execution time of each step in a process is known and confined. There are

upper and lower time bounds.

� Every sent message is received within a known limited time.

� The deviation of the clocks of a system is bounded and known.

Asynchronous model: An asynchronous system [44] [34] does not follow any

time assumption. An asynchronous distributed system does not depend on the

bound of the message transmission delay and computational delay, which means

there is no upper bound of message transmission delay and computational delay.



Chapter 2. Preliminaries and literature review 21

Here coordination is achieved using event-driven architecture triggered by network

packet arrival, transitions of signals, handshake protocols, and other methods. Some

characteristics of an asynchronous distributed system are:

� There is no concept of global clock and the deviation of the clocks of a system

is not bounded.

� A sent message can not be received within a known limited time.

� The execution time of each step in a process is unknown and not confined.

Partially synchronous model: In a partially synchronous system [78], the com-

ponents have some information about time, although the information might not be

exact. A distributed system is partially synchronous if there are bounds on trans-

mission delay, clock drift, and processing time, but these bounds can be unknown

to the nodes. Basically, we provide some relaxation on the assumptions of the syn-

chronous system model to build a partially synchronous system model, which makes

the system more realistic.

Partially asynchronous model: In a fully asynchronous system, it is impossible

to design distributed algorithms with safety and liveness properties. That is why, in

a partially asynchronous system model [80] [109], some assumptions are considered

over an asynchronous system model that helps build distributed algorithms with

safety and liveness properties. The main feature of this system model is the absence

of a global timing reference and the use of several distinct local clocks, possibly

running at different frequencies.

2.1.4 Failure Models

Distributed systems have the partial failure property. That is, part of the system

can fail while the rest continues to work. Partial failures are not at all rare. Properly

designed applications and algorithms must take them into account. Several failure

models associated with the distributed systems are as follows.



Chapter 2. Preliminaries and literature review 22

Crash-stop failure model: In the crash-stop failure model [24], also known as the

crash failure model, the node that suffers a crash failure stops the execution of its

algorithm, and hence it does not send and receive messages ever again. Basically, in

this model, a faulty node acts as a correct one before it crashes, and after crashing,

it remains inactive forever.

Omission failure model: An omission failure [24] occurs when a node does not

send or receive a message that it is supposed to send or receive. In general, the cause

of omission failure is network congestion, buffer overflow, transmitter malfunction,

collisions at the MAC layer, and receiver out of range. An omission failure can be

classified into send-omission and receive-omission. A node i suffers a send-omission

failure if it executes a send-message instruction, but the message never reaches the

link. On the other hand, a node i suffers a receive-omission when a message is

received at its destination, but the message is never delivered inside this node.

Crash-recovery failure model: In a crash-recovery failure model [24], a dis-

tributed system component such as node, links, and process may fail and recover

from its failure state at any time. When a crashed process recovers, it can af-

fect its ability to remember the previous it had before crashing, i.e., it may lose

all pre-crash information, so it should have to start from scratch after recovering.

Sometimes, processes are associated with permanent storage, a particular type of

memory that holds stored information even if a crash happens. Therefore, a crashed

and recovered process could subsequently get essential information to recover its

operational state correctly.

Arbitrary failure model: In an Arbitrary failure model [70], a node responds with

different responses when different parts of the system communicate with it. It is also

known as Byzantine failure. In this particular kind of failure, a node could respond

one way when one part of the system talks to it and might respond a completely

different way with another part of the system attempts to communicate with it. In

other words, a node can respond with arbitrary messages at completely arbitrary

times.



Chapter 2. Preliminaries and literature review 23

2.2 Literature Review

In this section, we study several existing leader election algorithms to perform a

literature survey and try to find the associated issues with these existing algorithms.

While doing that, to ease out the survey process, we first divide the existing LEAs

into two categories based on network topology. One, algorithms for regular network

topology, and two, algorithms for arbitrary network topology.

2.2.1 Algorithms for Regular Network Topology

A good number of leader election algorithms are designed considering different regu-

lar network topologies. Here we concentrate on studying the LEAs designed for ring,

mesh, and torus network topologies because these are very popular regular network

topologies for designing distributed systems.

2.2.1.1 Algorithms for Ring Network

The first leader election algorithm was designed for the ring network. In 1977, G.

Le Lann proposed this algorithm which is also known as the Ring algorithm [75]. It

works on a asynchronous and unidirectional ring network. Every node in the system

has a unique Id, and all the system nodes are organized as a logical ring. If a node

i realizes that the leader is failed, it generates an election message that contains its

node Id and transmits it to the next alive node. Every node attaches its node Id to

the message and forwards it to the subsequent node. When the message comes back

to i, it chooses the node with the highest node Id in the list as the new system leader.

Finally, node i circulates an announcement message and informs all the nodes about

the elected leader. This algorithm’s message overhead and time overhead are very

high, and this algorithm elects the system leader based on the Ids of the nodes. So

it may not elect a good quality leader for the system.



Chapter 2. Preliminaries and literature review 24

In 1979, Chang et al. improved the Ring algorithm [75] and proposed the LCR

algorithm [28]. This algorithm also works on the unidirectional logical ring network.

After realizing the necessity of a leader in this algorithm, a node sends its node Id

to other nodes in the ring to initiate the election. While a node gets the election

message, it compares the received node Id to its self-Id. If the received node Id is

higher than its self-Id, the node keeps on passing the received election message; if

the received Id is less than its self-Id, it discards the received message; if the received

Id is equal to its self-Id, the node declares itself as the new system leader using a

leader declaration message. According to this algorithm, the only node with the

highest Id outputs the leader. Though this algorithm reduces the message overhead

of the election process, its time overhead is high, and it cannot elect a good quality

leader for the system.

Hirschberg and Sinclair proposed the HS algorithm [59] for bidirectional ring net-

work. This algorithm uses a unique Id to identify each node individually. Here the

leader election process gets operated in phases i.e., 0, 1, 2, . . .. In each phase p, the

election initiating node say i sends a message containing its Id in both directions of

the ring. These messages are intended to travel a 2p distance, then return to their

originating node. If both messages come back safely, the node i continues with the

next phase. However, the messages might not come back safely. While a message is

proceeding in the outbound direction, each other node compares the incoming Id to

its self-node Id. If the received Id is less than its self-node Id, then the node discards

the received message, whereas if the received Id is greater than its self-node Id, then

it relays the message. If a node receives the same Id from both directions of the ring,

the node selects the received Id as the new system leader and declares the elected

leader using a declaration message. This algorithm reduces the time complexity of

the election process from O(N2) to O(N logN), but its time complexity is very high.

This algorithm also cannot elect a good quality leader for the system.

Biswas and Dutta proposed the Timer-based Leader Election Algorithm [19] for the

unidirectional synchronous logical ring network. This algorithm needs a unique Id

to identify every node individually. According to this algorithm, the node with the



Chapter 2. Preliminaries and literature review 25

highest Id becomes the system leader among the nodes which realize the leader fail-

ure. This algorithm introduces the timer concept with the leader election algorithm

that helps to reduce the number of required exchanged messages and time steps to

elect a leader. Here the authors also proof the correctness of the proposed algorithm

using Hoare logic. Based on the node Ids, this algorithm selects a system leader.

It does not consider any quality attribute of the nodes to elect the leader. So this

algorithm also cannot elect a good quality leader for the system.

In [20], T. Biswas et al. proposed an algorithm to elect a suitable leader for a

unidirectional ring network. Every node in the system computes resource strength

values by considering available resources like CPU, memory capacity, and residual

energy. A node with the highest resource strength over the network is elected as

the leader. Though the authors claim that their algorithm improves the message

overhead of the election process, it is a minor improvement.

After studying several existing LEAs designed for ring network [1] [120] [20] [19] [59]

[75] [28], we find that no leader election algorithm has been designed considering the

failure-recovery failure model for the ring network to elect a reliable leader. Most

of the existing algorithms considered that node or link failures or recovery do not

occur during the election. However, in a practical scenario, node or link failures or

recovery can occur during the election.

2.2.1.2 Algorithms for Mesh Network

In 1982, Gracia Molina introduced the Bully algorithm [50] that works on a complete

mesh network. According to this algorithm, every node has a unique Id. If a node i

determines that the current leader is down, i creates and sends an election message

to only the nodes that have a higher Id than i. The node i expects response messages

from them if they are alive. If node i does not get any response message from the

node with a higher Id, it wins the election and broadcasts a victory message to

inform the other nodes that i is the new system leader. If i gets a response from at

least one node with a higher Id, i waits a fixed amount of time for any node with



Chapter 2. Preliminaries and literature review 26

a higher Id to declare itself as the new system leader. If i does not get any victory

message from a node with a higher Id in time, it rebroadcasts the election message.

In this algorithm, when at a time all the nodes realize that the leader is failed, all of

them initiate the election simultaneously. Therefore, heavy traffic is created in the

network.

Kordafshari et al. presented the Modified Bully algorithm [64] to overcome the

drawbacks of the Bully algorithm [50]. If a node i notices that the leader is failed, it

initiates an election and sends an election message to all nodes with a higher Id. The

node with the higher Id sends a response message with its Id number to the node

i. When the node i receives all the response messages, it selects the node with the

highest Id as the new system leader and transmits the grant message to the highest

node. After that, the leader node broadcasts a message and informs all other nodes

about the newly elected leader. If no node with a higher Id responses, the node i

wins the election and becomes the new system leader. The message overhead of this

algorithm is also pretty high.

In [103], G. Singh studied the leader election problem through a new leader election

algorithm. This algorithm was designed for the complete mesh networks considering

the presence of intermittent link failures. The algorithm can tolerate (N2/4−N/2)

links failure and its message complexity is O(N2), where N is the total nodes in the

system.

Abu-Amara proposed a fault-tolerant distributed algorithm [3] for an asynchronous

complete network to elect a leader. Kutten et al. propounded a randomized election

algorithm [68] for asynchronous complete networks which are essentially singularly

optimal. In [51], Gilbert et al. designed a leader election algorithm for a well-

connected network. This algorithm can solve the implicit version of leader election

in any general network with O(
√
n log7/2 n.tm) messages and in O(tm log2 n) time

(where n refers to the number of nodes and tm is the mixing time of a random walk

in the network).



Chapter 2. Preliminaries and literature review 27

2.2.1.3 Algorithms for 2D Torus Network

Only two leader election algorithms have been designed for the 2D torus network.

In 2010, M. Refai et al. [94] proposed a new algorithm named “Leader Election

Algorithm in 2D Torus Networks with the Presence of One Link Failure” that works

on a 2D torus network and can tolerate a single link failure 1. According to this

algorithm, a node can have one of the three states (i.e., Normal, Candidate, or

Leader) during the election. This algorithm consists of four phases. The first phase

starts when the leader crashes. The node that detects the leader failure informs all

the nodes in its row of the failure event. After getting the leader crash information,

a node changes its state from normal to candidate state. In the second phase, the

candidate state nodes start the election process among the nodes in their column.

After the column election, the result (the highest node Id of the column) is sent

to the first node in each column. In the third phase, the nodes in the first row

of the 2D torus start the election among themselves, and one of the nodes herein

is elected as a new system leader. In the fourth phase, a declaration message is

broadcast (using row broadcasting and column broadcasting) to make all the nodes

aware of the system’s newly elected leader. Here, the authors claim that in the

worst case, the message complexity of this algorithm is O(N). However, we got the

worst-case message complexity of this algorithm [94] as O(N
√
N) in our calculation

(Our calculation details are given at the end of this section).

In 2014, M. Refai improved the above-discussed algorithm [94] and proposed the

“Dynamic Leader Election Algorithm in 2D Torus Network with Multi Links Failure”

[8] considering the multiple link failures of the 2D torus network 2. This algorithm

[8] has four phases, and the election process is the same as the above-discussed

algorithm [94]. In [8], the author improved the algorithm by introducing a detour

technique to make the algorithm multiple link failures tolerable. Here, four different

1In the next sections, “Leader Election Algorithm in 2D Torus Networks with the Presence of One Link
Failure” is represented as “LEA with One Link Failure”

2In the next sections, “Dynamic Leader Election Algorithm in 2D Torus Network with Multi Links
Failure” is represented as “Dynamic LEA with Multi Links Failure”



Chapter 2. Preliminaries and literature review 28

detour routings are mentioned for four individual link failures of a node. For every

individual link failure, the corresponding detour routing is shown in Table 2.1.

Table 2.1: The corresponding detour routing for each link failure of a node

The failed link The detour routing

+y (Up) +x (Right), +y (Up), -x (Left)

+x (Right) +y (Up), +x (Right), -y (Lower)

-y (Lower) +x (Right), -y (Lower), -x (Left)

-x (Left) +y (Up), -x (Left), -y (Lower)

From Table 2.1, it is clear that the detour of +y (Up) link failure of a node depends

on the +x (Right) link of that node, and the detour of +x (Right) link failure of a

node depends on the +y (Up) link of that node. This is why, if the +y and +x links

of a node fail simultaneously, this algorithm [8] cannot elect a system leader. Here,

the author also did not consider the node failures and did not mention the failure

model precisely. In this algorithm [8], the author claims that in the worst case, the

message complexity of this algorithm is O(N + F ), where F is the number of failed

links. Here, the authors also claim that in the worst case, the message complexity

of this algorithm is O(N). However, we got the worst-case message complexity of

this algorithm [94] as O(N
√
N) in our calculation. We shall now explain how we

calculated the worst-case message complexity of these algorithms [94] [8].

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 2.1: A T4,4 network, every column of which is arranged in decreasing order
according to the node Id.

Each of these two algorithms [94] [8] has four phases. In the first phase, the node

that detects the leader’s failure informs the other nodes in the same row of the failure

by sending messages through its left and right links. In the worst case (when all the



Chapter 2. Preliminaries and literature review 29

nodes detect the failure of the leader simultaneously), 2N messages are exchanged

in this phase. In the second phase, column-wise election is started, and the node Id

of the best node is stored in the node in the first row of that column. If the nodes

of every column of the 2D torus network are arranged in decreasing order according

to their Identification distinguish (Id) (cf. Figure 2.1), then at least N
√
N + N

messages have to be exchanged to complete the second phase of this algorithm. This

is because in the second phase, (N +
√
N)/2 election messages and (N +

√
N)/2

acknowledgement messages need to be exchanged in order to complete the election

process within each column. In a square 2D torus network, there are
√
N columns.

So, at least
√
N(N +

√
N) = N

√
N +N messages have to be exchanged to complete

the second phase of the algorithm. In the third phase, an election is carried out

among the best nodes of each column. As the best node Ids are stored in the first

row of the network, the leader can be elected by an election among the nodes of

the first row by sending messages. In this phase, at least
√
N election messages

and
√
N acknowledgement messages are required to elect the final leader of the

system. In the fourth phase, N messages are exchanged to declare the elected

leader. Hence, in the worst case, each of these algorithms has to exchange at least

N
√
N + 4N + 2

√
N messages to elect a leader. We have also simulate these two

algorithms and the simulation results also support that their worst-case message

complexity is O(N
√
N).

It is comparatively tough and challenging to design a leader election algorithm con-

sidering the crash-recovery model instead of the permanent link and node failure

model. Exceptionally, no leader election algorithms have been designed on the 2D

torus network considering both the node and link failures and the crash-recovery

failure model. The existing election algorithms for 2D torus network can tolerate a

few links failure and their message and time overhead are pretty high.



Chapter 2. Preliminaries and literature review 30

2.2.2 Algorithms for Arbitrary Network

So far, we have studied the leader election algorithms designed for specific network

topologies. In this section, we study the election algorithms designed for universal

topology or arbitrary network topology.

Mega-Merger [49] [100] is one of the earliest leader election algorithms designed for

arbitrary network topology. Robert Gray Gallager developed it at MIT in 1983.

It constructs a rooted spanning tree of the network, where the root is the elected

leader in the final spanning tree. The rooted spanning trees are merged until a tree

that covers the whole network has been constructed. Here merging of two network

regions happens in three ways i.e., friendly merge, absorption, and Suspension. In

this algorithm it is assumed that no message is lost in transmission. It is deadlock

free and it ensures progress and correctly elect a leader. In the worst case, its

message complexity is O(l + N logN) where l is the number of links and N is the

number of nodes. The design complexity of Mega-Merger is its main drawback, since

it makes any actual implementation difficult to verify.

The Yo-Yo [100] is a leader election algorithm designed for the arbitrary network

topology. Unlike the Mega-Merger algorithm, Yo-Yo has simple specifications, and

its correctness is simple to establish. The Yo-Yo algorithm consists of two parts i.e.,

a preprocessing phase and a sequence of iterations. Each iteration is composed of

phases “YO-” and “-YO”. The preprocessing phase is started with a broadcast. At

awake state, each node sends its Id to all neighbors and orients the edge towards the

higher-degree node. This process creates three categories of nodes i.e., source nodes,

intermediate nodes, and sink nodes. The source nodes and initiate the “Yo-” phase,

and sink nodes initiate the “-Yo” phase. In this algorithm, the pruning optimization

technique plays an important role. Without pruning, the message complexity of

this algorithm is O(l logN), but with pruning, the complexity analysis is an open

research problem.

Recently, Sidik et al. proposed a time-bounded practical agile leader election (PALE)

algorithm [102] for an arbitrary network topology. Though the authors considered a



Chapter 2. Preliminaries and literature review 31

realistic and practical distributed system with weak assumptions, their assumption

regarding clock drift is strong. The authors considered a parameter maxRatio and

assumed that the fastest clock in a region is faster than the slowest one by at most

a factor of maxRatio. The maximum rounds a node in a region needs to execute

the algorithm depend on the maxRatio. So the performance of the PALE algorithm

depends a lot on the maxRatio. A node needs to know the maxRatio in advance to

execute the PALE algorithm. If maxRatio is set to a small value, the algorithm may

not hold uniqueness and agreement properties. On the other hand, if maxRatio is

set to a large value, the algorithm will take an unnecessarily long time and exchange

extra messages to elect the leader. The authors considered a dynamic system where

nodes can leave or join the system frequently while selecting the perfect value of

maxRatio is quite tricky. The authors mentioned that a node with the highest

rank is elected as a leader, and the node’s rank depends on RAM capacity, storage

capacity, computing, power and stability counter. However, the authors did not

detail how the rank will be calculated.

In [21], Blin and Tixeuil proposed a self-stabilizing leader election algorithm for ar-

bitrary networks with O(log d + log log n) bits per node space complexity, where d

is the maximum degree of a node in the network. Dolev et al. introduced uniform

dynamic self-stabilizing leader election algorithm [38] under read-write atomicity.

The time complexity of this is O(dD log n). Vasudevan et al. propounded an elec-

tion algorithm [114] for mobile ad hoc networks which is partially synchronous. The

authors showed that their proposed algorithm is weakly self-stabilizing and termi-

nating. In [79], Malpani et al. presented two election algorithms for mobile ad hoc

networks. One of them can tolerate a single topological change, and another can

tolerate multiple concurrent topological changes. Derhab and Badache presented

the time-interval-based computation concept and designed a self-stabilizing leader

election algorithm [37] to tolerate multiple concurrent topological changes. In [106],

Sudo et al. proposed two election protocols for an arbitrary graph in the population

protocol model. These two election protocols are loosely stabilizing and guarantee

the polynomial convergence time to enter a safe configuration.



Chapter 2. Preliminaries and literature review 32

After studying several existing leader election algorithms, we found that most al-

gorithms are designed to reduce the time complexity, message complexity, and bit

or space complexity of the election process. Some of the algorithms are designed

considering the fairness and link and node failures of the system. No leader election

algorithm is designed considering the requirement of a distributed real-time system.

Several well-known leader election algorithms talked about electing a good quality

leader (according to the system requirements) [104] [20] [102]. However, no precise

and rigorous leader election method has been proposed to elect a good quality leader

based on the system requirements.


