
Chapter 1

Introduction

“What is not started will never get finished”. - Johann Wolfgang von Goethe

Now we are in the era of distributed computing [67] [108], and this thesis is con-

cerned with an important issue known as leader election in distributed computing.

Every day, knowingly or unknowingly, we use the distributed computing and enjoy

its benefits. For example, when someone accesses the internet and performs a Google

search, s(he) uses the distributed computing. From scientific research to everyday

applications, everywhere we are using distributed computing. It has become an inte-

gral part of our professional life as well as personal life. The distributed computing

is an area of computer science that makes use of distributed systems for orchestra-

tion of distribution of the computing load, aggregation of computing results, and

presenting a single system image for processes and users. A distributed system is

a collection of independent computers or nodes located in different places, inter-

connected by a network, and work together to achieve a common goal. It appears

to its users as a single coherent system. Figure 1.1 shows a classical architecture

of a distributed system. Distributed computing helps improve the performance of

large-scale projects by combining the power of multiple machines. In this computing

paradigm, to complete an enormous task fast, the task is partitioned into a set of

possible sub-tasks and allocated to multiple system nodes. Then the nodes execute

their assigned sub-tasks in a concurrent and consistent manner to complete the task

1



Chapter 1. Introduction 2

in a faster way. On the other hand, it is much more scalable and allows users to

add nodes according to growing workload demands. Since the nodes of a distributed

system are placed in multiple geographical locations, the system can serve its user

request through the closest node, resulting in low latency and better performance. In

other words, the distributed systems are easily scalable, cost-effective, fault-tolerant,

highly available, highly reliable, and provide high-performance computing environ-

ment. Nowadays, for harnessing such benefits of the distributed systems, people

are very much inclined to use distributed computing. Several fields such as the

banking system, e-learning platforms, manufacturing industry, artificial intelligence,

e-commerce, transport, health care, agriculture, defense system are adopting the dis-

tributed computing. Distributed system architectures are also shaping many busi-

ness areas and providing countless services with ample computing and processing

power. Recently, some modern technologies like Blockchain, IoT, Cloud Computing,

Machine Learning (ML), and Deep Learning (DL) are also adopting the benefits of

distributed computing. Handling massive growth of data, led by rapid development

in technologies, to train a model in a short time, machine learning and deep learn-

ing require a large-scale computational platform. ML and DL fulfill the need for

a large-scale computational platform using distributed computing and emerges the

concept of Distributed Machine Learning (DML) and Distributed Deep Learning

(DDL) to handle massive data efficiently. In DML or DDL, multiple nodes work

simultaneously on a vast dataset to train a machine learning model in a distributed

manner. The distributed computing can provide a fault-tolerant, reliable, and large-

scale computational platform with Big Data handling support for machine learning

or deep learning, decreasing the training time. On the other hand, cloud computing

is a distributed computing paradigm that provides computing services to the users,

cloud based database platforms, virtual machines, cloud storage, etc [9].

Though the distributed systems provide various facilities, however, several issues are

associated with these systems. Some of them are:

� System management



Chapter 1. Introduction 3

Figure 1.1: The classical architecture of a distributed system

� Synchronization

� Coordination and consistency

� Resource utilization

� Heterogeneity and interoperability

� Security and privacy

System management: System management is one of the critical issues of a dis-

tributed system. In a centralized system, a central node controls and manages the

whole system, but no such central node exists in a truly distributed system. A dis-

tributed system is constructed by multiple independent nodes located at different

places and connected through a network. A node may not have global knowledge of

the system, making distributed system management more complex and challenging.

Synchronization: Clock and event synchronization is another important issue in a

distributed system. It is often important to know when events occurred and in what

order they occurred. Clock synchronization deals with understanding the ordering

of events produced by concurrent processes. In a centralized system, time is unam-

biguous because the system has a single clock, and the events occurred following

this clock. On the other hand, in a distributed system, the nodes are independent,

and they have their own clocks. A clock always runs at a constant rate because

its quartz crystal oscillates at a well-defined frequency. However, due to differences



Chapter 1. Introduction 4

in the crystals, the rates at which two clocks run are normally different from each

other. The difference in the oscillation period between two clocks might be tiny, but

the difference accumulated over many oscillations leads to an observable difference

in the times of the two clocks, no matter how accurately they were initialized to the

same value. On the other hand, events can be created by the different nodes and the

times of different clocks can be different. So the clock and event synchronization in

distributed computing is also an vital issue. In centralized systems, critical section,

mutual exclusion, and other synchronization problems are solved using semaphore.

However, the concept of semaphore does not work in distributed systems because it

implicitly relies on the shared memory concept.

Coordination and consistency: One of the main goals of the distributed com-

puting is to complete a task in a faster manner by combining the power of multiple

machines. Here, multiple independent nodes work together, so coordination and con-

sistency maintenance is inevitable to complete a task successfully. In a distributed

system, nodes are independent and connected through links that may be unreliable.

The nodes and links may fail and recover independently, and there is no shared mem-

ory concept. So the nodes communicate and coordinate through messages passing,

and the concept of semaphore does not work to maintain consistency. So coordi-

nation and consistency maintenance is not straightforward in a distributed system.

On the other hand, unpredictable communication delay also makes coordination and

consistency maintenance more challenging.

Resource utilization: Resource sharing is another important objective of a dis-

tributed system. Resource sharing means that several nodes in the system can access

the existing resources of the system. The concept of resource sharing helps to build

a cost-effective and fault-tolerant computing environment. Efficient resource uti-

lization improves the performance of the system. A distributed system can have

multiple resources situated at different places, and they can be heterogeneous. A

node may not have global knowledge of the resources and their status. On the other

hand, multiple nodes may try to access the same resource(s) simultaneously. So

efficient resource management and utilization are difficult in a distributed system.



Chapter 1. Introduction 5

Heterogeneity and interoperability: It is a crucial design issue of a distributed

system. The distributed system contains many different kinds of hardware and soft-

ware working together cooperatively to solve problems. There may be many different

representations of data and different instructions sets in the system. Different nodes

may follow the different architecture and have different operating systems, program-

ming languages, and communication media and protocols. Attempts to provide a

universal canonical form of information are challenging. So interoperability among

nodes is also difficult and challenging.

Security and Privacy: How to apply the security policies to the interdependent

nodes is a great issue in distributed systems. Since distributed systems deal with

sensitive data and information, the system must have robust security and privacy

measurement. In this environment, users can access local and remote resources in

order to run processes. Here nodes are connected through a network, so network se-

curity is also associated with a distributed system. Protection of distributed system

assets, including base resources, storage, communications and user-interface, and

higher-level composites of these resources, like processes, files, messages, and more

complex objects, are important issues in a distributed system.

A coordinator or leader can solve several above explained issues such

as system management, synchronization, coordination and consistency

maintenance, and resource utilization of a distributed system. The

leader election methods help to elect a leader or coordinator among

the nodes of the system. In this thesis, we address several distributed

systems’ issues by proposing different leader election algorithms for the

distributed systems.

OUTLINE: The rest of this chapter is organized as follows. Section 1.1 presents a

brief background of distributed system and Section 1.2 defines the problem statement

and the main research goals of this thesis. In Section 1.3, we present the motivation

of the thesis. The significant contributions of this work are presented in Section 1.4.

Finally, Section 1.5 finishes the chapter by detailing the structure of this thesis.



Chapter 1. Introduction 6

1.1 Background

Before presenting an overview of the development of solutions to the leader election

problem, we want to present a general overview of the distributed systems.

The first distributed system named ARPANET [96], one of the predecessors of the

internet was invented in 1967, and E-mail became the most successful distributed

application of the ARPANET in the early 1970s. Since the invention of ARPANET,

several distributed architectures have been evolved. Over time two distributed ar-

chitectures became popular and have been started to use widely. They are -

� Client-server architecture

� Peer-to-Peer architecture

Client-server architecture: The Client-server architecture is a distributed com-

puting architecture in which the server(s) hosts, delivers, and manages most of the

resources and services to be consumed by the clients. In this architecture, client

computers are connected to the server(s) over a network or internet connection.

The clients’ request for services and servers provide services regarding the clients’

requests. Figure 1.2 depicts a client-server architecture of a distributed system.

Figure 1.2: The client-server architecture of a distributed system



Chapter 1. Introduction 7

Peer-to-Peer architecture: Peer-to-peer architecture is a type of distributed ar-

chitecture in which there is no division or distinction of abilities amidst the various

nodes of a network. Every node has the same responsibilities and can perform the

same set of actions. In this architecture, every node can act as both the server

and the client as needed. All the decision-making and responsibilities are split up

amongst the nodes involved. Figure 1.3 depicts a peer-to-peer architecture of a

distributed system.

Figure 1.3: The peer-to-peer architecture of a distributed system

In both of these distributed computing architectures, the leader election concept

helps reduce the complexity of a distributed system by effectuating control through

a leader node elected by an appropriate leader election algorithm and improves

overall system performance.

Different building blocks including node, communication link, protocol, middleware,

and distributed algorithm are essential components to construct a distributed sys-

tem. A brief description of some building blocks of a distributed system is as follows.

Node: A node can be defined as an abstract computational entity able to execute

computations in a distributed system. Sometimes a process is also considered as a

node. This thesis considers distributed systems composed of N nodes where N is a

finite integer and N > 1. If a node behaves according to its specification, then it is



Chapter 1. Introduction 8

called a correct node. On the other hand, if a node does not behave according to its

specification or suffers a failure, it is called an incorrect node.

Communication link: Multiple nodes need to be connected through a network

to build a distributed system. Communication links or channels represent a high-

level abstraction of connections that connect the nodes in the construction of the

distributed systems. The nodes of a system communicate through these links by the

exchange of messages. The communication links can be two types i.e., unidirectional

and bidirectional. In our works, we consider bidirectional communication links.

Protocol: A protocol is an established set of rules that govern the data transmitted,

processing, and communication between different nodes in the network. Essentially,

it allows connected nodes to communicate with each other, regardless of any differ-

ences in their internal processes, structure or design.

Middleware: Middleware is software that provides common services and capa-

bilities to applications outside of what is offered by the operating system. Data

management, application services, messaging, authentication, and API management

are all commonly handled by middleware. It acts as the connective tissue between

applications, data, and users and helps developers build applications more efficiently.

Clock: In a distributed system, each node has a logical clock that enables mea-

suring time passage. However, it is not always possible that every clock remains

synchronized with the rest of the clocks.

Distributed algorithm: A distributed algorithm can be defined as a collection

of deterministic automata [91]. It is an algorithm designed to run on computer

hardware constructed from interconnected loosely coupled nodes. The distributed

algorithm is responsible for running different or same parts of the algorithm on dif-

ferent nodes simultaneously. Usually, two classes of properties are used to prove the

correctness of distributed algorithms: Safety and Liveness [69] [63]. Both proper-

ties are often adopted in the design and specification of fault-tolerant distributed

systems. Formally, safety and liveness guarantee the following properties:



Chapter 1. Introduction 9

Safety: This property states that some particular bad thing never happens. This

property ensures that the algorithm should not do anything wrong.

Liveness: It states that some particularly good things will eventually happen, i.e.,

the algorithm will eventually produce the expected result.

1.2 Research Goals and Problem Statement

The leader election plays a vital role in addressing several issues of the distributed

systems such as system management, synchronization, coordination and consistency,

and resource utilization by electing a node among the nodes of the system as the

system leader. Though many leader election methods have been introduced so far,

there are still some research questions regarding the leader election problem.

RQ-1: Is it possible to design self-stabilizing leader election algorithms that can

reduce the time and message overhead of the election process? If it is possible, then

how?

RQ-2: Is it possible to design leader election algorithms that can tolerate more

number of links and nodes failures than the algorithms known previously? If it is

possible, then how?

RQ-3: Is it possible to design leader election algorithms that can elect a good

quality leader according to the system requirement? If it is possible, then how?

In this thesis, we are interested in answering all these exciting research questions

regarding the leader election problem in distributed systems by proposing some new

leader election methods. The main objectives of this thesis are as follows.

� Study the several existing leader election methods and identify the various

issues of these methods that need to be addressed to improve the overall system

performance and management.



Chapter 1. Introduction 10

� Design some leader election methods to resolve the identified issues so that the

system performance and management get improved.

� Analysis, simulation, and characterization of the newly designed election meth-

ods and comparison with the existing algorithms to show how this compares

with the known representative algorithms.

The problem statement of this thesis can hence be defined as follows.

Design, analysis, and characterization of some new leader election

methods for distributed systems to address various issues and chal-

lenges of existing leader election methods.

1.3 Motivations

With the ever-growing technological expansion of the world, distributed systems are

becoming popular and widespread. Several significant issues associated with the dis-

tributed systems, such as system management, synchronization, coordination and

consistency maintenance, resource utilization, and task allocation, are addressed by

electing a node as the system leader. A central node controls and manages the whole

system in a centralized system, but no such central node exists in a truly distributed

system. A distributed system consists of multiple independent nodes. So the ques-

tion is which node will take responsibility for managing the system, synchronizing

the clocks and events, allocating the task, and maintaining the coordination among

the nodes. Here concept of leader election comes into the scenario and answer all

these questions. A node is elected among all the nodes in the system as the system

leader that takes responsibility for managing the system, synchronizing the clocks

and events, allocating the task, and maintaining the coordination among the nodes.

Thus leader election plays a significant role in the distributed systems, and we are

interested in working on this problem.



Chapter 1. Introduction 11

A good number of leader election algorithms have already been introduced by re-

searchers in the past decades. However, there are still some issues and research gaps

that are challenging and need to be addressed. We have performed a literature sur-

vey in the second chapter of this thesis. This literature survey helps us identify some

issues and research gaps associated with the leader election in distributed systems.

These issues and research gaps form the motivation of this thesis. The identified

issues research gaps are as follows.

� Many leader election algorithms have been introduced based on the ring net-

work topology. These algorithms are designed considering a system model

where either no link and node failures occur during the election or the failures

are permanent. However, in a real scenario, the link and node failures can

happen during the election, and the failures can be transient, which means

the failed node can recover during the election. So it is required to design

algorithms considering the failure-recovery model for a ring network.

� The leader manages the system, coordinates the nodes, and utilizes the system

resources. So the overall performance of the system depends a lot on the quality

of the elected leader. Most existing algorithms elect a node with maximum or

minimum node Id, which is not very practical for electing a good quality leader.

They did not consider any quality attribute of the nodes. So the node with

minimum or maximum Id may not be an excellent qualitative node. They only

concentrated on reducing the time complexity and message complexity of the

election process. So it is required to design algorithms that can elect a good

quality leader for the system with minimum time and message overhead.

� Torus network topology offers many advantages such as higher speed, lower

latency, better fairness, and lower energy consumption. For these kinds of ben-

efits, nowadays, it is used to construct many parallel and distributed systems

like IBM Blue Gene, IBM Sequoia, Mira, and Sugon TC8600. However, very

few algorithms are designed for the torus network. These algorithms’ message

and time overhead are high, and they can tolerate very few links and nodes



Chapter 1. Introduction 12

failures. The existing algorithms for the 2D torus network cannot even tolerate

a node’s two links failures. So it is required to design algorithms for the torus

network that can have lower message and time overhead and tolerate more

links and node failures than the existing algorithms.

� Many leader election algorithms have been designed for different types of dis-

tributed systems. However, best of our knowledge, no leader election algorithm

is designed considering a distributed real-time system. Nodes in this kind of

system cooperate to achieve a common goal within specified deadlines. The

correctness of such (DRTS) system behavior depends not only on the logical

results of the computations but also on the time when the results are produced.

Missing the deadline may have disastrous consequences. So it is required to de-

sign algorithms that can instantly elect another node as a leader after crashes

the leader.

1.4 Contributions

This thesis is committed to developing several leader election methods to resolve

various research gaps of the existing leader election methods to address several issues

in distributed systems. This section provides the thesis’s important contributions,

including the algorithm design, implementation, and comparative analysis of the

proposed methods for addressing the leader election problem in distributed systems.

The significant contributions are:

� In the past four decades, many algorithms have been proposed to solve the

leader election problem. In this thesis, first, we study the related works re-

garding the leader election problem and find some major issues, research gaps,

and challenges of the existing leader election methods.

� We propose a self-stabilizing leader election algorithm named “FRLLE: A Fail-

ure Rate and Load-based Leader Election Algorithm” for a failure-recovery



Chapter 1. Introduction 13

bidirectional ring network. We prove that the FRLLE algorithm is self-stabilized,

and it elects a reliable and low-loaded node as the system leader. Besides, we

calculate the time complexity and message complexity of the FRLLE algo-

rithm, simulate the FRLLE algorithm, compare the simulated results with the

relevant existing algorithms and show that the message and time overhead of

the FRLLE algorithm is lesser than the existing algorithms.

� We design a self-stabilizing leader election algorithm entitled “Lea-TN: A leader

election algorithm considering node and link failures in a torus network” for

a failure-recovery 2D torus network. We propose a lower bound Ω(N log3N)

of message complexity on a comparison-based leader election for a 2D torus

network (where N is the number of nodes in the network). We introduce new

patterns for sending messages that help reduce the number of exchanged mes-

sages and the execution time of the election process. The proposed algorithm

(Lea-TN) can tolerate more links and nodes failures than the existing algo-

rithms designed for 2D torus network and it enables a node to identify its link

failures during the election also. Further, we simulate the Lea-TN algorithm

and compare its performance with that of the well-known existing algorithms

that corroborate that the message and time overheads of the Lea-TN algorithm

are lesser than the relevant existing algorithms.

� We propose a self-stabilizing leader election algorithm for the distributed real-

time systems. Here, we introduce the concept of the primary and provisional

leaders, which helps reduce system performance degradation during the elec-

tion. Our algorithm not only elects a leader but also makes a list of r best

leader capable nodes. Whenever a leader fails, instantly, the system can choose

a provisional leader from the list so that due to the lack of coordination, the

system’s work does not get halted for a long time. We reduce the message and

time complexity of the election process by dividing a distributed system into

two layers (i.e., inner-layer and outer-layer) based on the eccentricity of the

nodes. Only the inner-layer nodes identify the list of potential nodes and elect



Chapter 1. Introduction 14

the new system leader. This work also introduces the leader factor concept to

elect a good quality leader for the system.

� We proposed a leader election algorithm that introduce the concept of qual-

ity factor to elect a suitable leader according to the system requirements in

a dynamic distributed environment. This algorithm is designed for an arbi-

trary network topology so that it can also work on a regular topology also.

We involve multiple experts to identify the appropriate attributes of a good

quality leader (according to the system requirements) and assign weight to

identified attributes according to their importance to elect the suitable leader.

To calculate the quality factor, we modify the concept of the TOPSIS (Tech-

nique for Order of Preference by Similarity to Ideal Solution) multi-criteria

decision-making method so that it can be be implemented in a distributed en-

vironment. Besides electing a good quality leader, the proposed algorithm is

message-effective and time-effective also.

1.5 Thesis Outline

Throughout this research work, various research issues regarding leader election

in distributed systems are identified. To address the identified issues, several leader

election methods are proposed, and research papers are written. This thesis contains

seven chapters. Chapter 1 is an introductory chapter. Chapter 2 presents the

literature survey. For better understanding and clear view, the core work of this

thesis (derived from our own research papers) is presented in Chapter 3, Chapter

4, Chapter 5, and Chapter 6. Finally Chapter 7 summarizes the thesis. Figure 1.4

depicts the organization of this thesis. A brief description of every chapter in this

thesis is as follows.

Chapter 1: This chapter briefly describes the distributed system and its impor-

tance. It also explains the role of leader election in the distributed systems. This

chapter provides the motivations behind the thesis by explaining some research issues



Chapter 1. Introduction 15

Chapter 1
Introduction

(motivations, research
goals, contributions)

Chapter 2
Preliminaries and
Liturature Review

Chapter 3
A Failure Rate and
Load-based Leader
Election Algorithm

Chapter 7
Conclusion and Future

Directions

Chapter 4
A LEA Considering

Node and Link Failures
in a Torus Network

Chapter 6
Multi-attribute Based
Self-stabilizing Leader
Election Algorithm

Chapter 5
Preselection Based
Leader Election in

Distributed Systems

Figure 1.4: Thesis Structure.

in the existing leader election methods. Further, it provides our research objectives

and contributions. At the end of this chapter, we describe the thesis organization.

Chapter 2: This chapter first presents the preliminaries regarding leader election al-

gorithms. Then it performs a literature survey related to the leader election problem

and identifies the issues and research gaps in the existing leader election methods.

Chapter 3: In this chapter, we propose a self-stabilizing leader election algorithm

entitled “FRLLE: A Failure Rate and Load-based Leader Election Algorithm” for

a failure-recovery bidirectional ring network. The proposed algorithm elects a node

with a minimum failure rate and minimum load as the system leader. That is why

the system gets a reliable leader who can comfortably concentrate on leadership

roles and activities. This chapter also includes a complexity analysis, simulation of

the proposed algorithm, and comparison of the FRLLE algorithm with the existing

algorithms.



Chapter 1. Introduction 16

Chapter 4: In this chapter, first, we propose a lower bound message complexity

on a comparison-based leader election for a 2D torus network. Next, we sketch a

new leader election algorithm (Lea-TN) considering both the node and link failures

for a 2D torus network. Then we show that the Lea-TN is a deterministic and

self-stabilizing algorithm that elects a leader for a partially synchronous distributed

system. The algorithm chooses a leader, even when there are some link or node

failures in the system. We consider the number of non-faulty links and the subsisting

nodes’ failure rate to elect a reliable leader. We introduce new patterns for sending

messages that help reduce the number of exchanged messages and the execution time

of the election process. The proposed algorithm (Lea-TN) enables a node to identify

its link failures during the election also. Finally, we simulate the Lea-TN algorithm

and compare its performance with that of the well-known existing algorithms.

Chapter 5: In this chapter, we design a leader election algorithm for a distributed

real-time system. Here, we introduce the concept of the primary leader and the pro-

visional leader that helps to an instant selection of a leader. The proposed algorithm

identifies r comparatively higher potential leader capable nodes in the system and

designates the highest potential node among them as the primary leader. The other

r − 1 higher potential leader capable nodes are kept in reserve so that while the

primary leader fails, another leader capable node from these nodes can be selected

instantly. To reduce the time complexity and the message complexity of the election

process, based on the eccentricity of the nodes, we divide a distributed system into

two layers (i.e., inner-layer and outer-layer). Only the inner-layer nodes take part

to identify the list of potential nodes. We introduce the concept of the quality-

coefficient to identify the potential nodes of the system. The quality-coefficient of

a node is calculated by combining the eccentricity, processing capacity, Memory ca-

pacity, Degree and Eccentricity of the node. Our algorithm always tries to elect a

node with the highest quality-coefficient as the leader so that the system gets a high

quality leader. We show that the algorithm proposed herein satisfies the uniqueness,

agreement, and termination conditions that make it a self-stabilizing one. We also



Chapter 1. Introduction 17

simulate the proposed algorithm on several arbitrary network topologies and com-

pare the results with the well-known existing algorithms to evaluate the algorithm’s

performance.

Chapter 6: This chapter proposes a novel multi-attribute based self-stabilizing

leader election method for a dynamic distributed system. First, based on the system

requirements, a group of experts identifies the quality attributes of the nodes for

electing a suitable leader and assign weight according to their importance. Next,

a modified TOPSIS MCDM method is used to calculate the quality factor of every

node, and based on the quality factor, the leader is elected for the system. Here,

we give an illustrative example of the proposed election method and prove that the

algorithm is self-stabilized and can tolerate multiple nodes and link failures. Further,

we analyze the time complexity, message complexity, and bit complexity of the

proposed algorithm. We simulate the proposed election method and compare it with

the existing methods to evaluate and validate the proposed method’s performance

and the elected leader’s quality.

Chapter 7: This chapter concludes the thesis by summarizing the main findings of

the works done herein with some possible future research directions.


