
Preface

With the ever-growing technological expansion in the world, distributed comput-

ing is becoming popular and widely used in several fields. From scientific research

to everyday life applications, everywhere we are using distributed computing and

enjoying the benefits of this computing paradigm. Distributed computing helps im-

prove the performance of large-scale projects by combining the power of multiple

computing devices. Distributed systems are the backbone of distributed computing.

A distributed system is a collection of multiple independent computing components

or nodes that work together to attain a common goal and appear as a single co-

herent system to the user. These independent nodes are connected through a net-

work, and they perform the tasks of the system with collaboration. In a distributed

system, to complete an enormous task fast, the task is partitioned into a set of

possible sub-tasks and allocated to multiple nodes. Then the nodes execute their

assigned sub-tasks in a concurrent and consistent manner to complete the task in

a faster way. The banking system, manufacturing industry, artificial intelligence,

e-commerce, transport, health care, agriculture, defense systems have been using

distributed computing for a long time. Various modern technologies like smart city,

blockchain, cloud computing, edge computing, and so on are constructed based on

the concept of decentralized systems. Recently, distributed machine learning and

deep learning technologies are inclined to adopt the concept of distributed systems

to fulfill their need for a reliable, high-performance, and large-scale computational

platform. Though a distributed system is supposed to be scalable, cost-effective,

fault-tolerant, highly available and reliable, and provides a high-performance com-

puting environment, several issues and challenges are also associated with such a

system. System management, synchronization, consistency maintenance, and ef-

ficient resource utilization are some significant issues. In a centralized system, a

central node controls and manages the whole system, synchronizes the events of

vii



the system, utilizes the resources efficiently, and maintains consistency among the

several entities of the system. However, no such central node exists in a truly dis-

tributed system. Hence, a node needs to be elected as the system leader to manage,

coordinate, synchronize, and efficiently utilize a distributed system. The leader helps

distribute the computing load, aggregate the computing results, and present a single

system image for processes and users. It also simplifies the system management, co-

ordination, and operational complexity and reduces the message and time overhead

of the system. Thus, the leader election concept helps reduce the complexity of a

decentralized system by effectuating control through a leader node elected by an

appropriate leader election algorithm and improves overall system performance. A

suitable system leader can help to improve a distributed system’s resource utility,

reliability, and fault tolerability that directly improve the performance of the appli-

cations of the various fields that adopt this system. So, the leader election plays an

important role in the distributed systems.

In this thesis, through a detailed literature survey on existing Leader Election Algo-

rithms (LEAs), we first find out some major issues and challenges with them. Then

we propose possible solutions to those issues. While doing that, to ease out the

survey process, we first divide the existing LEAs into two categories based on net-

work topology. One, algorithms for regular network topology, and two, algorithms

for arbitrary network topology. Then we study the LEAs designed considering var-

ious distributed system models for these two categories and find the research gaps.

Finally, we propose, analyze and characterize four different self-stabilizing leader

election methods to overcome those research gaps. The first two algorithms are de-

signed for two regular network topologies (ring and 2D torus), and the subsequent

two algorithms are designed for the arbitrary network topology.

We design our first algorithm for a ring network topology considering a failure-

recovery and partially synchronous distributed system model. The main aim of

designing this algorithm is to reduce the message complexity and time complexity

of the election process and elect a low-loaded and higher reliable node as the system

leader. The second algorithm is designed for a 2D torus network. Here, we propose a

lower bound message complexity of a comparison-based leader election algorithm in

a 2D torus network. The objectives of this work are to design a more fault-tolerant

leader election algorithm and reduce the message and time overhead of the election

process. We introduce several message-sending patterns that make the algorithm



more link and node failures tolerant, reduce the number of exchanged messages and

time steps of the election process, and elect a good quality leader for the system.

Our last two algorithms are designed for arbitrary network topologies. The first

one of these two algorithms is designed considering a distributed real-time system.

Here, considering the characteristics of a distributed real-time system, the proposed

algorithm not only elects a leader but also identifies some higher potential nodes for

leadership such that if a leader crashes, the system can select another potential node

as the system leader. Using the eccentricity of the nodes, we divide the network into

two layers, i.e., the inner layer and the outer layer, and only the inner layer nodes

take part in the election directly, which helps reduce the message and time overhead

of the election process.

A good quality leader can manage a distributed system in a better way and utilize

the resources efficiently that improve the overall system performance. Different

distributed systems are designed for different purposes. So the definition of a good

quality leader may vary from system to system. On the other hand, a distributed

system may consist of heterogeneous nodes. A node can have multiple attributes,

and different nodes can have different values of those attributes. So it is challenging

to determine which type of quality a leader of a distributed system should have and

which attributes are responsible for that quality of the leader. It is also difficult to

determine how much priority has to be given to those pertinent attributes. Hence

electing a good quality leader for a system considering multiple attributes is a pretty

intricate task and that is why the fourth algorithm is designed to elect a good quality

leader according to the system requirements by introducing the concept of the quality

factor of the nodes. We modify the concept of the TOPSIS (Technique for Order of

Preference by Similarity to Ideal Solution) MCDM method to calculate the quality

factor of the nodes. Here, we involve experts to identify the appropriate attributes

of a good quality leader (according to the system requirements) and assign weight

to identified attributes according to their importance to elect the suitable leader for

the system. This algorithm can tolerate multiple links and node failures during the

election and reduce the time and message overhead of the election process.


